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1. Introduction. For any integer n ≥ 1, we denote by ω(n) the number
of distinct prime factors of n, with ω(1) = 0; by P (n) the greatest prime
factor of n, with P (1) = 1; and by N(n) the radical of n, i.e. the product of
distinct prime divisors of n, with N(1) = 1. We consider the equation

(1.1) n(n+ d) . . . (n+ (k − 1)d) = byl

in positive integers n, d, y, b, l ≥ 2, l prime, k ≥ 2 and gcd(n, d) = 1 and
P (b) ≤ k. Several authors have worked on this equation. Finiteness results
and complete solutions have been found under various restrictions on the
parameters involved. We refer to [8], [7], [11], [14] and [15] for an account
of these results and further references. One of the main conjectures on this
equation is due to Erdős:

Conjecture 1. Equation (1.1) with d > 1 implies that k is bounded by
an absolute constant.

This conjecture is still open. A stronger conjecture states that solutions
exist only when (k, l) ∈ {(3, 3), (4, 2), (3, 2)}. In these cases, in fact, there
are infinitely many solutions.

Results under the abc-conjecture. It was shown by Shorey [15] that
Conjecture 1 is true for l > 3 under the abc-conjecture. The cases l = 2, 3
also follow from the abc-conjecture for binary forms by an argument due
to Granville (see [10]). Further, in 2004, Győry, Hajdu and Saradha [8]
have shown that the abc-conjecture implies that (1.1) with d > 1, k ≥ 3,
l > 4 has only finitely many solutions in n, d, k, b, y and l. However, the
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bounds are not explicitly given due to the implicit constant involved in
the abc-conjecture. In 2004, Baker [1] proposed an explicit version of the
abc-conjecture as follows:

Suppose a, b, c are mutually coprime integers such that

a+ b = c.

Then

(1.2) max(|a|, |b|, |c|) ≤ 6
5
N(abc)

(logN(abc))ω(abc)

ω(abc)!
.

Note that
6
5
xn

n!
≤ xn

n!
+

xn+1

(n+ 1)!
< ex for x ≥ n+ 1

5
.

We put x = logN(abc) and n = ω(abc). Then

n ≤ 1.5 logN(abc) ≤ 1.5x.

Hence we have the following explicit version of the abc-conjecture:

(1.3) max(|a|, |b|, |c|) ≤ (N(abc))2.

This version can also be found in Granville and Tucker [6].
We shall apply this explicit version to show

Theorem 1.1. Under the explicit version (1.3) of the abc-conjecture,
equation (1.1) with k ≥ 8 implies that

l ≤ 29.

Towards Conjecture 1, we have

Theorem 1.2. Under the explicit version (1.3) of the abc-conjecture,
equation (1.1) implies that

k ≤



8 if l = 29,
32 if l = 19, 23,
102 if l = 17,
107 if l = 13,
ee

280
if l = 7, 11.

When b = 1, i.e. the case of perfect powers, Győry, Hajdu and Pinter [7]
have shown that (1.1) implies that k ≥ 35 for l ≥ 3. This is also true for
l = 2 by the result of Hirata-Kohno, Laishram, Shorey and Tijdeman [9].
Thus Theorem 1.2 implies

Corollary 1.3. Under the explicit version (1.3) of the abc-conjecture,
equation (1.1) with b = 1 implies that

l ≤ 17
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and

k ≤


102 if l = 17,
107 if l = 13,
ee

280
if l = 7, 11.

The second equation that we will consider is the equation of Goor-
maghtigh

(1.4)
xm − 1
x− 1

=
yn − 1
y − 1

in integers x > 1, y > 1, m > 2, n > 2. We may assume without loss of
generality that x > y. Then m < n. Thus we always consider (1.4) with

x > y > 1 and n > m > 2.

It is known that this equation has two solutions, viz.,

31 =
53 − 1
5− 1

=
25 − 1
2− 1

and 8191 =
903 − 1
90− 1

=
213 − 1
2− 1

.

It has been conjectured that these are the only solutions of (1.4). A weaker
conjecture is

Conjecture 2. Equation (1.4) has only finitely many solutions in x,
y, m and n.

This conjecture is still open. It is known that (1.4) has only finitely
many solutions if at least two of the variables are fixed. We refer to [16] for
more details. It was shown in [15, p. 473] that the abc-conjecture implies
Conjecture 2. Here we investigate equation (1.4) under the explicit abc-
conjecture (1.3).

Theorem 1.4. Under the explicit version (1.3) of the abc-conjecture,
equation (1.4) implies one of the following:

m ≤ 6; m = 7, 8 ≤ n ≤ 19; m = 8, 9 ≤ n ≤ 11.

It has been shown unconditionally that Conjecture 2 holds if x, y are
fixed or composed of primes from a given set (see [16]). We show that under
the explicit version (1.2) of the abc-conjecture, Conjecture 2 holds with a
more relaxed condition. We have

Theorem 1.5. Let the explicit version (1.2) of the abc-conjecture hold.
Then Conjecture 2 holds for m ≥ 6 and ω(xy(x− 1)(y − 1)(x− y)) fixed.

Remark. In the explicit version (1.3) of the abc-conjecture, we lose the
arbitrariness of ε in the original abc-conjecture. Thus, due to the exponent 2
in (1.3), the values l = 3, 5 in Theorem 1.2 and 3 ≤ m ≤ 5 in Theorem 1.5
are not covered.
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Unconditional results. In 2002, Shorey and Tijdeman [19] showed
that equation (1.1) implies that

k ≤ C(l, ω(d))

where C(l, ω(d)) is an effectively computable number depending only on l
and ω(d). Thus if l and ω(d) are fixed then Conjecture 1 follows. In [11],
Laishram and Shorey explicitly calculated

C(2, ω(d)) = 2ω(d)2ω(d).

For l ≥ 3, we have the following result.

Theorem 1.6. Equation (1.1) implies that

k ≤


max(1028, 20 · lω(d)) if l ≥ 11,
max(1050, 20 · 7ω(d)) if l = 7,
max(103000, 23 · 5ω(d)) if l = 5,
max(1010500

, 16 · (3.005)ω(d)) if l = 3.

Suppose l = 7. Then 20 · lω(d) ≤ 1050 for ω(d) ≤ 59. Thus we conclude
from Theorem 1.6 that

k ≤ 1050 if l = 7 and ω(d) ≤ 59.

This is better than the bound given in Theorem 1.2. Similar results can be
obtained for other values of l in Theorem 1.6. The proof of Theorem 1.6
depends mainly on the method of Erdős and repeated application of the
box principle, as in Shorey and Tijdeman [19]. Further it relies on the result
of Evertse [5] on the number of solutions of an equation of the form AX l −
BY l = C or CZ with some condition on Z. The case l = 3 also uses the
result of Saradha and Shorey [13] that equation (1.1) implies

d > .13k1/3.

As we are interested in making the method explicit, we are not economi-
cal with the various constants involved. Thus it is possible to improve the
bounds given in Theorem 1.6. The large constants that occur reflect the
limitations of the method. In Theorem 1.2, the bounds for k when l ≥ 13
follow easily from the proof of Theorem 1.1. To get a bound for k when
l ∈ {7, 11} we use Theorem 1.6. Further we also use a result of Saradha and
Shorey [14] that d ≥ 108 for l ≥ 7.

2. Notation and preliminaries. We assume that equation (1.1) holds.
For 0 ≤ i < k, we can write

n+ id = aix
l
i where ai is lth power free and P (ai) ≤ k
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and

n+ id = AiX
l
i with P (Ai) ≤ k and gcd

(∏
p≤k

p,Xi

)
= 1.

By a result of Shorey and Tijdeman [18], the product n(n+d) . . . (n+(k−1)d)
is divisible by a prime > k except when (n, d, k) = (2, 7, 3). We shall assume
throughout that (n, d, k) 6= (2, 7, 3). Then

(2.1) n+ (k − 1)d > kl and n+ id > kl−1 for 1 ≤ i < k − 1.
Let

S = {A0, A1, . . . , Ak−1} and S′ = {Ai | 0 < i < k, Ai ≤ kl−1}.
Then for any Ai ∈ S′, we have

kl−1 < n+ id = AiX
l
i ≤ kl−1X l

i ,

implying that Xi > 1. Then by the definition of Xi, we get Xi > k. Thus

(2.2) Xi > k for Ai ∈ S′.
Further, note that Xi’s are coprime to each other since gcd(n, d) = 1.
Hence there exists an Xi with Ai ∈ S′ such that Xi is divisible by a prime
≥ pπ(k)+|S′|. By well known estimates for the nth prime pn and the prime
counting function π(n) (see Lemma 3.1 below) it follows that

(2.3) n+ (k − 1)d >
(
k

(
1− 2

log k

)
+ |S′|(log k − 2)

)l
for k ≥ 17.

Fix 1 ≤ l′ < l. For any tuple (i1, . . . , il′) with 0 < i1 ≤ · · · ≤ il′ < k, we call
Xi1 . . . Xil′ an X-product and Ai1 . . . Ail′ an A-product. If necessary, we will
mention the number l′ of terms in these products.

3. Some estimates and combinatorial lemmas. We begin with a
lemma collecting some estimates from prime number theory. For inequalities
(ii)–(v) below we refer to (3.5), (3.13), (3.10) and (3.26) in Rosser and
Schoenfeld [12]. For (i) see Dusart [2].

Lemma 3.1.

π(n) <
n

log n

(
1 +

1.2762
log n

)
for n > 1,(i)

π(n) >
n

log n
for n ≥ 17,(ii)

pn < n(log n+ log log n) for n ≥ 6,(iii)
pn > n(log n+ log log n− 3/2) for n ≥ 2,(iv) ∏

p≤z

(
1− 1

p

)
≤ e−γ

log z

(
1 +

1
2(log z)2

)
(v)

where γ is the Euler constant.
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Lemma 3.2. For d > 3, we have

ω(d) ≤ 3 log d
log log d

.

Proof. Suppose d is an integer with l(d) > log d, where l(d) is the least
prime divisor of d. Then (l(d))ω(d) ≤ d, implying

(3.1) ω(d) ≤ log d
log l(d)

<
log d

log log d
.

Hence the conclusion is true in this case. For any d, let us write d = d1d2

such that if p | d1, then p ≤ log d, and if p | d2, then p > log d. So l(d2) >
log d ≥ log d2. Hence by (3.1),

(3.2) ω(d2) <
log d2

log log d2
.

Also

(3.3) ω(d1) ≤ π(log d) <
log d

log log d
+

1.2762 log d
(log log d)2

< 1.836
log d

log log d

for d ≥ 100. Now for 20 ≤ d < 100, ω(d1) ≤ 3, hence the inequality in (3.3)
is satisfied. For 3 < d < 20, one can check that ω(d1) is either 0 or 1, and
again (3.3) is satisfied. Combining (3.1)–(3.3) we get the assertion of the
lemma.

In Lemmas 3.3–3.8, below, we assume that equation (1.1) holds.

Lemma 3.3. Let 1 ≤ l′ < l. Suppose (i1, . . . , il′) and (j1, . . . , jl′) are two
distinct tuples with 0 < i1 ≤ · · · ≤ il′ < k and 0 < j1 ≤ · · · ≤ jl′ < k.
Assume that

n+ (k − 1)d > k
ll′+l−l′
l−l′

(
max

(
1
i1
,

1
j1

)) l′(l−1)

l−l′

.

Then the corresponding A-products are distinct whenever the respective X-
products are congruent modulo d.

Proof. Suppose for two distinct tuples (i1, . . . , il′) and (j1, . . . , jl′) we
have

Ai1 . . . Ail′ = Aj1 . . . Ajl′ .

Consider

∆ = (n+ i1d) . . . (n+ il′d)− (n+ j1d) . . . (n+ jl′d).

First we show ∆ 6= 0. Suppose not. Then

n+ i1d ≤ gcd(n+ i1d, n+ j1d) . . . gcd(n+ i1d, n+ jl′d) < kl
′
.
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Thus n + (k − 1)d < k(n + i1d) < kl
′+1 ≤ kl. This contradicts (2.1). Thus

∆ 6= 0. We may assume that ∆ > 0. Now

∆ = (n+ i1d) . . . (n+ il′d)− (n+ j1d) . . . (n+ jl′d)

(3.4)

≤ (n+ (k − 1)d)l
′ − nl′

= l′(k−1)dnl
′−1 +

(
l′

2

)
((k−1)d)2nl

′−2 +
(
l′

3

)
((k− 1)d)3nl

′−3 + · · ·

≤ l′(k − 1)d
{
nl
′−1 + (l′ − 1)(k − 1)dnl

′−2

+
(l′ − 1)(l′ − 2)

2.1
((k − 1)d)2nl

′−3 + · · ·
}

≤ l′kd(n+ (k − 1)d)l
′−1.

On the other hand,

∆ = Ai1 . . . Ail′ (Xi1 . . . Xil′ )
l −Aj1 . . . Ajl′ (Xj1 . . . Xjl′ )

l

= Aj1 . . . Ajl′ (X
l − Y l)

where X = Xi1 . . . Xil′ , Y = Xj1 . . . Xjl′ . Now

∆ = Aj1 . . . Ajl′ (X − Y )
X l − Y l

X − Y
6= 0.

Hence by assumption, X − Y ≥ d. Since j1 > 0, we get

∆ ≥ ldAj1 . . . Ajl′Y
l−1 ≥ ld(Aj1X

l
j1 . . . Ajl′X

l
jl′

)(l−1)/l(3.5)

≥ ld
(

j1
k − 1

(n+ (k − 1)d)
)l′(l−1)/l

.

Thus from (3.4) and (3.5) we get(
j1
k

(n+ (k − 1)d)
)l′(l−1)/l

≤ l′k

l
(n+ (k − 1)d)l

′−1,

i.e.

(n+ (k − 1)d)1−l
′/l ≤ l′

l

k(ll′+l−l′)/l

j
(ll′−l′)/l
1

,

which gives

n+ (k − 1)d ≤ k(ll′+l−l′)/(l−l′)

j
(ll′−l′)/(l−l′)
1

.

This contradicts our assumption.

Note that in the above proof we only need that the difference between
the respective X-products exceed d. The next two lemmas are based on the
arguments of Lemma 8 of [19].
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Lemma 3.4. Let T denote a set of h numbers from among the Ai’s. For
any integer r > 0 with 2r < l, assume that

n+ (k − 1)d > k
2rl+l−2r
l−2r .

Suppose Tr is the maximal subset of T such that all the A(r)-products
Ai1 . . . Air with A’s in T are distinct. Then

γ1l
ω(d) + γ2 ≥ h− |Tr|,

where

(γ1, γ2) =


(2, 6) if l = 3,
(1, 2) if l = 5,
(1, 1) if l ≥ 7.

Proof. If |Tr| = h or h−1 then the assertion is trivially true. So we shall
assume that |Tr| ≤ h − 2. Let Aµ ∈ T \ Tr. Then there exist Aµ2 , . . . , Aµr
and Aµ′1 , . . . , Aµ′r in Tr such that

AµAµ2 . . . Aµr = Aµ′1 . . . Aµ′r .

Let I = {µ | Aµ ∈ T \ Tr}. Consider the map f : I → Z/(d) defined as

f(µ) = XµY
−1
µ (mod d),

where Xµ and Y µ are the X(r)-products given by

Xµ = XµXµ2 . . . Xµr and Y µ = Xµ′1
. . . Xµ′r .

Suppose for some µ 6= ν, µ, ν ∈ I, we have f(µ) = f(ν). Then

XµY
−1
µ ≡ XνY

−1
ν (mod d) or XµY ν ≡ XνY µ (mod d).

Also note that

AµAµ2 . . . AµrAν′1 . . . Aν′r = Aµ′1 . . . Aµ′rAνAν2 . . . Aνr .

Then by Lemma 3.3 with l′ = 2r, we get a contradiction. Hence f is 1-1.
Further

(XµY
−1
µ )l ≡ 1 (mod d).

Thus XµY
−1
µ is a solution of Z l ≡ 1 (mod d). The number of solutions of

this congruence is ≤ γ1l
ω(d) + γ2, as shown by Evertse [5]. Thus

γ1l
ω(d) + γ2 ≥ |I| = h− |Tr|.

Remark. By taking r = 1 in Lemma 3.4, we see that the number of
distinct elements in T , viz., |T1| satisfies

(3.6) |T1| ≥ h− γ1l
ω(d) − γ2

provided n + (k − 1)d > k3+4/(l−2), which is true for l ≥ 5. For l = 3, we
have the following lemma.
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Lemma 3.5. Let l = 3 and k ≥ 101000. Let

T ′ = {Ai | Ai ∈ T, i ≥ k/16}.
Then

|T1| ≥ h− k/16− 2lω(d) − 6

provided there exists a subset T ′′ ⊆ T ′ having at least k/16 elements for
which Xi 6= 1.

Proof. By Lemma 3.4 and the proof of Lemma 3.3 we need to satisfy

n+ (k − 1)d >
(

2
3

)3k7

j4
.

We take Aj ’s in T ′. Thus the above inequality implies that we need

(3.7) n+ (k − 1)d ≥ 19420k3.

Suppose (3.7) is not valid. Then

(3.8) d ≤ 19420k2.

Further, since T ′′ has at least k/16 elements with Xi 6= 1, we find that

Ai ≤ 19420

for at least k/16 of the Ai’s in T ′. Hence there are at least .000003k pairs
(Ai, Aj) which are equal. Now we follow the argument in [19, pp. 335–336].
Let ζ = e2πi/3. Then, in Q(ζ), we can write

[d/3] = D1D2D3

with

(3.9) D1 | [Xi −Xj ], D2 | [Xi − ζXj ], D3 | [Xi − ζ2Xj ]

for any pair (Ai, Aj). There are at most 3ω(d) ways of writing [d/3] as above.
By Lemma 3.2, (3.8) and k ≥ 101000, we see that 3ω(d) ≤ k.9. The total
number of such pairs which is at least .000003k exceeds k.9. Hence there are
two pairs (Ai, Aj1), (Ai, Aj2) such that (3.9) holds with j = j1 and j2. This
leads to

|Xj1 −Xj2 | > d/3.

On the other hand, since Aj1 = Aj2 , we get

(j1 − j2)d ≥ Aj1(Xj1 −Xj2)X2
j1 ,

implying k ≥ (n+ j1d)2/3 ≥ k4/3, a contradiction.

Let S1 = {A1, . . . , Ak−1}. For every p ≤ k, we remove an element,
say Aip , in which p appears to the maximum power. Let S2 be the set
of remaining Ai’s. Thus there are at least k − 1− π(k) Ai’s in S2. Further

(3.10)
∏
Ai∈S2

Ai | (k − 1)!.
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Let
S3 = {Ai ∈ S2 | Ai ≤ αk} with some α > 1.

Assume that S3 has at most βk elements with β < 1. Thus there are at least
k − 1− π(k)− βk Ai’s in S2 which exceed αk. From (3.10) we get

(3.11) (αk + 1) . . . (αk + k − 1− π(k)− [βk])
≤ |S3|!(αk + 1) . . . (αk + k − 1− π(k)− [βk]) ≤ (k − 1)!,

which implies

|S3|!(αk)k−1−π(k)−|S3|
(

1 +
1
αk

)
. . .

(
1 +

k − 1− π(k)− βk
αk

)
≤ (k − 1)!.

Using Stirling’s formula n! > nne−n and n! < nn+1/2e−n(2π)1/2 and the fact
that (y/x)y is a decreasing function of y whenever y/x < 1/e, we find that(

βk

eαk

)βk
(αk)k−1−π(k)

(
1 +

1
αk

)
. . .

(
1 +

k − 1− π(k)− βk
αk

)
≤ (k − 1)! ≤ kk−1/2e−k+1(2π)1/2.

This gives

(3.12) ββe1−β−1/kα1−β−1/k−π(k)/k

((
1+

1
αk

)
. . .

(
1+

k−1−π(k)−βk
αk

))1/k

≤ k1/2k+π(k)/k(2π)1/2k.

This also implies that

(3.13) ββe1−β−1/kα1−β−1/k−π(k)/k ≤ k1/2k+π(k)/k(2π)1/2k.

Lemma 3.6. Let k ≥ 33. Then there exists a subset S4 ⊆ S1 having at
least 1

4k elements with Ai ≤ 8.5k.

Proof. In the previous discussion, we take α = 8.5 and β = 1/4. We
use the upper bound for π(n) from Lemma 3.1(i) in (3.13) to conclude that
k ≤ 80. Now we check that (3.11) is not satisfied for 33 ≤ k ≤ 80 with exact
value of π(k). This gives the assertion of the lemma.

Lemma 3.7. Let 14 ≤ k ≤ 32. Then there exist at least three Ai’s with
Ai ≤ 8.5k, i > 0.

Proof. Suppose there are only at most two Ai’s with Ai ≤ 8.5k. Then
we apply (3.11) with α = 8.5, β = 2/k to get a contradiction.

Lemma 3.8. Let 8 ≤ k ≤ 13. Then there exist at least three Ai’s with

Ai ≤ C =
{

120 if 9 ≤ k ≤ 13,
420 if k = 8.



Application of the abc-conjecture to Diophantine equations 411

Proof. For a given k, we count the Ai’s with i > 0 which are divisible
only by 2, 3, 5 and 7 at most to the powers a, b, c and d, respectively, where

(a, b, c, d) =
{

(3, 1, 1, 0) for 9 ≤ k ≤ 13,
(2, 1, 1, 1) for k = 8.

For these choices of (a, b, c, d), we get at least three Ai’s which are bounded
by 2a3b5c7d. This proves the result.

4. Proofs of the theorems

Proof of Theorem 1.6. Let l > 3 and k ≥ 1020. We may assume that

(4.1) lω(d) ≤ k/16.

Let k ≥ 33. By Lemma 3.6, there exists a subset S4 ⊆ S1 having at least
1
4k elements with Ai ≤ 8.5k. Let T ⊆ S4 be a set having h elements. We
shall specify T later. Let T1 be the set of distinct elements of T , and T2 the
maximal subset of T1 such that all the products AiAj with Ai, Aj ∈ T1 are
distinct. Then by (3.6) and (4.1) we have

(4.2) |T1| ≥ h− k/16− 2.

Further by Lemma 3.4,

(4.3) lω(d) ≥ |T1| − |T2| − 2

provided

(4.4) n+ (k − 1)d > k(5l−4)/(l−4).

It is known by a result of Erdős [4] (see also Shorey and Tijdeman [17] for
a neat proof) that

|T2| ≤ π(8.5k) + (8.5k)7/8 + (8.5k)3/4 + (8.5k)1/2.

Thus

(4.5) lω(d) ≥ |T1| − π(8.5k)− (8.5k)7/8 − (8.5k)3/4 − (8.5k)1.2 − 2

provided (4.4) holds.
Let l ≥ 11. Then we see that (4.4) holds by (2.1). We take T = S4 as

given in Lemma 3.6. Then |T1| ≥ 3k/16− 2 by (4.2) and using (4.5) we get

(4.6) lω(d) ≥ .05k

for k ≥ 1028. Thus k ≤ 20 · lω(d), which gives the assertion.
Next we consider l = 7. Let

S5 = {Ai ∈ S4 | i ≥ k/16}
and take T = S5. By (4.2), Lemma 3.4 and the proof of Lemma 3.3, we have

(4.7) lω(d) ≥ |S5| − |T2| − 2 ≥ |T1| − |T2| − k/16− 2 ≥ k/8− |T2| − 4
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provided
n+ (k − 1)d > k31/3(16/k)8 = 168k7/3,

which is satisfied by (2.1). Thus from (4.7) we get

lω(d) ≥ 1
8
k − π(8.5k)− (8.5k)7/8 − (8.5k)3/4 − (8.5k)1/2 − 4 ≥ .05k

for k ≥ 1050. Thus k ≤ 20 · lω(d), which gives the assertion.
Now we consider l = 5. Define

S6 =
{
Ai ∈ S4

∣∣∣∣ i ≥ 9
64
k

}
and take T = S6. As in the case l = 7, we have

lω(d) ≥ |S6| − |T2| − 2

provided

(4.8) n+ (k − 1)d > k21

(
64
9k

)16

= k5

(
64
9

)16

.

Let k > 103000. From (2.3), since |S′| > |S6|, we get

n+ (k − 1)d >
(

3
64

(.99)k log k
)5

.

Thus (4.8) is satisfied if

(log k)5 >
(

64
9

)16(64
3

)5

(1.0003)5.

Then we find as in the case of l = 7 that k ≤ 23 · lω(d), which gives the
assertion. This completes the proof of Theorem 1.6 for l ≥ 5.

Lastly, we take up the case l = 3. Let k ≥ 101000. We take T = S5. Since
Xi’s exceed 1 for all Ai’s in S5, we apply Lemma 3.5 and assume (4.1) to
get

|T1| ≥ k/16− 6.

We split the proof into two lemmas. The first is based on the method of
Erdős [3].

Lemma 4.1. Let 0 < θ < 1. Let b1, . . . , bs be integers in (k/(log k)θ, 8.5k]
such that every proper divisor of bi is ≤ k/(log k)θ. Then there exists an
equation

NX l −MY l = Ld

with N,M,L ≤ 8.5(log k)θ having at least h/(2(8.5)2(log k)3θ) solutions
(X,Y ) where h = k/16− k/(log k)θ − s− 6.

Proof. Note that all integers in the interval (k/(log k)θ, 8.5k] of the form
pα with p prime and α minimal belong to the set of bi’s. Suppose an integer
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n in (k/(log k)θ, 8.5k] is not divisible by any of the bi. Then n is a product
of at least two distinct primes exceeding k/(log k)θ, implying that

8.5k ≥ n > k2/(log k)2θ,

which gives k ≤ 4. Hence every integer in (k/(log k)θ, 8.5k], is divisible by
some bi. Let S7 be the set of Ai’s in this interval. We observe that among
these Ai’s there can be at most s such that if some bi divides an Ai, it does
not divide any other Aj . After removing these Ai’s, we are left with a set
S8 ⊆ S7 of Ai’s such that

(4.9) |S8| ≥ |T1| −
k

(log k)θ
− s ≥ k

16
− k

(log k)θ
− s− 6

and there are at least |S8|/2 pairs (Ai, Aj) such that Di,j = gcd(Ai, Aj) >
k/(log k)θ. For each pair (Ai, Aj) we have the equality

A′iX
l
i −A′jX l

j = D′i,jd

where

A′i =
Ai
Di,j

, A′j =
Aj
Di,j

, D′i,j =
i− j
Di,j

.

Hence A′i, A
′
j , D

′
i,j are all bounded by 8.5(log k)θ. Thus the distinct pairs

(Xi, Xj), which are |S8|/2 in number, satisfy the Thue equations A′iX
l −

A′jY
l = D′i,jd. The number of such equations is at most (8.5)2(log k)3θ.

Hence there must be an equation

NX l −MY l = Dd

with N,M,D not exceeding 8.5(log k)θ having at least

|S8|
2(8.5)2(log k)3θ

solutions. Now the assertion follows from (4.9).

In the next lemma we bound s.

Lemma 4.2. Let k ≥ 1010500
and 1/4 ≤ θ < 1. Let b1, . . . , bs be integers

as in Lemma 4.1. Then

s ≤ 60
k

log log k
.

Proof. Suppose some bi > k/(log k)θ/2. Then all its proper divisors are
> (log k)θ/2. By Brun’s sieve, the number of such bi’s is

≤ 8.5k
∏

p≤(log k)θ/2

(1− 1/p) + 2π((log k)θ/2).

Now we apply estimates (i) and (v) from Lemma 3.1 to get the assertion.
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Concluding the proof of Theorem 1.6 for l = 3. Let k ≥ 1010500
and

θ = 1/4. Combining Lemmas 4.1 and 4.2 shows that there exists an equation

NX l −MY l = Dd

with N,M,D not exceeding 8.5(log k)θ having at least
k
16 −

k
(log k)θ

− 60k
log log k − 6

2(8.5)2(log k)3θ

solutions. But by Corollary 1(ii) of Evertse [5] such an equation has at most
4 · 3ω(d) + 3 solutions provided D ≤ d1/5. From Saradha and Shorey [13], we
find that

d > .13k1/3.

Since D ≤ 8.5(log k)1/4, we see that D ≤ d1/5. Thus we have

4 · 3ω(d) + 3 ≥ k
{ 1

16 −
1

(log k)1/4
− 60

log log k −
6
k

2(8.5)2(log k)3/4

}
.

We check that the term in the curly bracket above is > k−1/1001 for k ≥
1010500

. Thus we find that
3ω(d) ≥ k1−1/1000.

From this and our assumption (4.1) we get the assertion of the theorem.

Proof of Theorem 1.1. Let 0 < f < g < h < k be any three indices.
Then we have the identity

(4.10) (g − f)AhX l
h + (h− g)AfX l

f = (h− f)AgX l
g.

Let G be the gcd of (g− f)AhX l
h, (h− g)AfX l

f and (h− f)AgX l
g. We know

that Xf , Xg, Xh are coprime to each other. Hence

G | (g − f)Ah, G | (h− g)Af , G | (h− f)Ag.

Let G = g1g2 with g1 | (g − f) and g2 |Ah. We write g2 = g
(1)
2 g

(2)
2 with

g
(1)
2 | (h − g) and g

(2)
2 |Af . Thus g(2)

2 divides both Af and Ah, and hence
g
(2)
2 | (h− f). Thus

(4.11) G = g1g
(1)
2 g

(2)
2 ≤ (g − f)(h− g)(h− f).

We divide (4.10) by G and put

a =
(g − f)AhX l

h

G
, b =

(h− g)AfX l
f

G
, c =

(h− f)AgX l
g

G
.

Note that by (4.10),

(4.12) X l
h ≤ (h− f)AgX l

g, X l
f ≤ (h− f)AgX l

g.

Thus

N(abc) ≤ N((g − f)(h− g))(h− f)1+2/lAfAhA
1+2/l
g X3

g .
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Hence, by (1.3), we get

(h− f)
AgX

l
g

G
≤ (N((g − f)(h− g)))2(h− f)2+4/lA2

fA
2
hA

2+4/l
g X6

g .

Thus, using (4.11), we get

(4.13) X l−6
g ≤ (g−f)(h−g)(h−f)2+4/l(N((g−f)(h−g)))2A2

fA
2
hA

1+4/l
g .

Case 1: k ≥ 33. We divide the interval [0, k) into [k/8] equal subin-
tervals. If each subinterval contains only at most two indices i, j with
Ai, Aj ∈ S4, then S4 has at most k/4 elements. This contradicts Lemma 3.6.
Hence there exists a subinterval containing at least three indices 0 < f <
g < h < k such that Af , Ag, Ah are in S4 and h − f ≤ 9. Also note that
Xf , Xg, Xh > 1 since S4 ⊆ S′. Hence by (2.2), Xf , Xg, Xh > k. Further
since h− f ≤ 9, we have

(g − f)(h− g) ≤ 20 and N((g − f)(h− g)) ≤ 15.

Thus from (4.13) we get

(4.14) kl−6 ≤ X l−6
g ≤ 2 · 1011k5+4/l,

implying that

(l − 11− 4/l) log k ≤ log(2 · 1011) ≤ 26.03.

Thus we get

(4.15) l ≤ 17.

Further for l = 13 and 17, we also have k ≤ 107 and 102, respectively.

Case 2: 14 ≤ k ≤ 32. In this case by Lemma 3.7, we have three indices
0 < f < g < h < k such that Af , Ag, Ah ≤ 8.5k. We apply (4.13) to get

kl−6 ≤ (8.5)5+4/lk13+8/l,

which implies that

(l − 19− 5/l) log k ≤ (5 + 4/l) log 8.5.

This is not valid for any l ≥ 29. Thus in this case we get

(4.16) l ≤ 23.

Case 3: 8 ≤ k ≤ 13. We apply Lemma 3.8 to (4.13). We get

kl−6 ≤ C5+4/lk8+4/l,

which implies that l ≤ 23 if k ≥ 9 and l ≤ 29 if k = 8. Thus Theorem 1.1
follows from (4.15) and (4.16).
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Proof of Theorem 1.2. From the proof of Theorem 1.1, it is clear that

k ≤ 8 if l = 29, k ≤ 32 if l = 19, 23.

These bounds together with the bounds for l = 13, 17 in Case 1 prove
Theorem 1.2 for l ≥ 13. We shall now derive a bound for k when l = 7, 11.
In this case we may assume that k > 34. So we are in Case 1 of the proof of
Theorem 1.1. From (4.14) we get

X l−6
g ≤ 2 · 1011k5+4/l.

Thus
AgX

l
g ≤ 8.5k(2 · 1011k5+4/l)

l
l−6 ≤ 8.5 · 2

l
l−6 10

11l
l−6k

6l−2
l−6 .

This implies that

(4.17) d ≤ n+ d ≤ AgX l
g ≤ 8.5 · 2

l
l−6 10

11l
l−6 k

6l−2
l−6 .

We combine Lemma 3.2 and Theorem 1.6 to give a bound for k in terms
of l. We state it as a lemma.

Lemma 4.3. Let l ≥ 7. Suppose d ≤ kδ with δ > 1. Then

k ≤ ll4δ .

Proof. Let k ≥ 1050. By Theorem 1.6, we have k ≤ 20lω(d). Consequently,
ω(d) ≥ 13 and

log d ≤ δ log k ≤ δ(log 20 + ω(d) log l)

≤ δ log d
log log d

(log l)
(

3 +
(log 20)(log log d)

log d

)
.

by Lemma 3.2. By the result of [14], we may assume that d ≥ 108 for l ≥ 7.
Hence from the above inequality we get

log log d ≤ 3.48δ log l, implying log d ≤ l3.48δ.

Thus

log k ≤ log 20 + ω(d) log l = (ω(d) log l)
(

1 +
log 20

ω(d) log l

)
≤ 1.2ω(d) log l ≤ 1.2 log d · log l ≤ 1.2l3.48δ log l.

Hence
k ≤ l1.2l3.48δ ≤ ll4δ .

Note that this estimate also holds when k < 1011. Thus k ≤ ll4δ always.

Continuation of the proof of Theorem 1.2. Let l = 7, 11. Let k ≥ 10120.
From (4.17), we get

d ≤
{
k41 if l = 7,
k14 if l = 11.
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We apply Lemma 4.3 with δ = 41, 14 for l = 7, 11, respectively, to get

k ≤
{

77164
if l = 7,

111156
if l = 11.

This proves the assertion of the theorem.

Proof of Theorem 1.4. From (1.4) we see that xm−1 < 2yn−1, implying

(4.18) x < 2
1

m−1 y
n−1
m−1 .

Further

(4.19) yn(x− 1) = xm(y − 1) + (x− y).

Let G = gcd(yn(x− 1), xm(y − 1), x− y). Then G ≤ x− y < x. Take

a = xm(y − 1)/G, b = (x− y)/G, c = yn(x− 1)/G.

Applying (1.3), we get

yn(x− 1)/G ≤ (xy(x− 1)(y − 1)(x− y)/G)2,

which by (4.18) gives

yn−4 ≤ 25/(m−1)y5(n−1)/(m−1).

Thus
ymn−4m−6n+9 ≤ 25.

Hence we derive that m ≤ 9. Further we have the following possibilities:

(i) m = 9: n = 10 and y = 2, 3,
(ii) m = 8: n = 14, y = 2; n = 13, y ≤ 32; n = 12, y ≤ 32,

(iii) m = 8: n ≤ 11,
(iv) m = 7: n ≤ 19,
(v) m ≤ 6.

The first two possibilities are excluded by a direct verification of (1.4).
The possibilities (iii)–(v) give the assertion of the theorem.

Proof of Theorem 1.5. We may assume that y is large andm > 6. Further
let ω(xy(x− 1)(y− 1)(x− y)) be bounded by, say, h. Applying (1.2) we get

yn(x− 1)
G

≤ 6
5

(xy(x− 1)(y − 1)(x− y))/G)(log(x3y2))h/h!,

which implies that

yn � y
2m+2n−4
m−1

(
3n+ 2m
m− 1

log y
)h

or
y
n(m−5)
m−1 �h n

h(log y)h,
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giving

y
n(m−6)
m−1 �h (log y)h.

Thus y and n are bounded for m > 6, showing also that x and m are
bounded. This proves Theorem 1.5.
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[8] K. Győry, L. Hajdu and N. Saradha, On the Diophantine equation n(n + d) . . .

(n+ (k − 1)d) = dyl, Canad. Math. Bull. 47 (2004), 373–388.
[9] N. Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman, An extension of a

theorem of Euler, Acta Arith. 129 (2007), 71–102.
[10] S. Laishram, Topics in Diophantine equations, M.Sc. thesis, Tata Inst. Fund. Res.,

2004.
[11] S. Laishram and T. N. Shorey, The equation n(n+ d) . . . (n+ (k − 1)d) = by2 with

w(d) ≤ 6 or d ≤ 1010, Acta Arith. 129 (2007), 249–305.
[12] B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime

numbers, Illinois J. Math. 6 (1962), 64–94.
[13] N. Saradha and T. N. Shorey, Almost perfect powers in arithmetic progression, Acta

Arith. 99 (2001), 363–388.
[14] —, —, Contributions towards a conjecture of Erdős on perfect powers in arithmetic
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