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1. Introduction. Let V C P" be a singular del Pezzo surface defined
over Q and anticanonically embedded, and let U C V be the open subset
formed by deleting the lines from V. Manin’s conjecture [FMT89] predicts
the asymptotic behaviour of the number of rational points of bounded height
on U, namely of the quantity

(1.1) Nuu(B) = #{z € U(Q): H(z) < B},
where H : P"(Q) — R+ is the exponential height defined for (zg,...,z,) €
7"+ such that ged(wo, ..., 2,) = 1 by

H(xo: - :xy) = max{|z;|: 0 <i<n}.

More precisely, if V denotes the minimal desingularization of V, it is ex-
pected that

(1.2) Nuu(B) = cv.uBlog(B)?~ (1 + o(1)),

where cy g is a constant which has been given a conjectural interpretation

by Peyre [Pey95] and where p = pg is the rank of the Picard group of V.
In this paper, we are interested in singular del Pezzo surfaces of degree

four. These surfaces can be defined as the intersection of two quadrics in P*.
Their classification is well-known and can be found in the work of Coray and
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Tsfasman [CT88]. Up to isomorphism over Q, there are fifteen types of such
surfaces and they are categorized by their extended Dynkin diagrams, which
describe the intersection behaviour of the negative curves on the minimal
desingularizations (see for instance [Der06l, Table 4]).

From now on, we restrict our attention to surfaces which are split over Q.
Manin’s conjecture is already known to hold for seven surfaces of different
types. Batyrev and Tschinkel have proved it for toric varieties [BT98| (which
covers the three types 4A1, 2A1+ Az and 2A1+ A3) and Chambert-Loir and
Tschinkel have proved it for equivariant compactifications of vector groups
[CLT02] (which covers the type Ds). In these two proofs, the conjecture
follows from the study of the height Zeta function

ZU7H(S): Z H(ﬂ:‘)_s,
zeU(Q)

which is well-defined for R(s) > 1, using techniques coming from harmonic
analysis. Let us note that for a certain surface of type Ds, la Bretéche and
Browning have given an independent proof [BB0O7]. Furthermore, they have
proved the following result, which is much stronger than (|1.2)). There exists
a monic polynomial of degree 5 = p — 1 such that for any fixed € > 0,

(1.3) Ny (B) = ey g BP(log(B)) + O(B/1%+),

Manin’s conjecture has also been proved for three other surfaces, a surface
of type Dy by Derenthal and Tschinkel [DT07], a surface of type A; + As
by Derenthal [Der09] and a surface of type A4 by Browning and Derenthal
[BD09]. These proofs are intrinsically very different from those using har-
monic analysis. They use a passage to universal torsors, which consists in
defining a bijection between the set of points to be counted on U and a cer-
tain set of integral points on an affine variety of higher dimension. This can
be done using only elementary techniques (see Section for an example).

The aim of this paper is to give a proof of Manin’s conjecture for two
other surfaces which are split over Q. The first, V; C P%, has singularity
type 3A1 and is defined as the intersection of the two quadrics

2 2
zory — 25 =0, 254+ 2120+ 2324 = 0.

We denote by U; the complement of the lines in V1, and Ny, g (B) is defined
as in . There are six lines on V1, given by ; = 2 = x; = 0 and xg+22 =
z1+ a2 =x; =0forie {0,1} and j € {3,4}. The three singularities of V;
are (1:0:0:0:0),(0:0:0:1:0)and (0:0:0:0:1). We see that V7 is
actually split over Q and thus, if ﬁ denotes the minimal desingularization
of V1, the Picard group of Vi has rank p; = 6. The universal torsor we use
is an open subset of the hypersurface embedded in A® ~ Spec(Q[ny, ..., n9])
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and defined by

(1.4) n4ns + mnen7 + 1Mgne = 0.

Note that 79 and 73 do not appear in the equation.
The second surface Vo C P4 has singularity type A 4+ Ay and is defined
as the intersection of the two quadrics

Tor1 —x2x3 =0, T122 + 24 + T34 = 0.

The open subset Us, Ny, g(B) and Vj are defined in a similar way. There are
also six lines on Va, given by z; = xg = 2; = 0 for i € {0,1} and j € {3,4},
1 =x3 =24 = 0 and 29 = z3 = 1 + x4 = 0. The two singularities of V5
are (1:0:0:0:0)and (0:0:0:0:1), of type Az and A; respectively.
Just as before we have po = 6. In this case, the universal torsor we use is an
open subset of the hypersurface embedded in A? ~ Spec(Q[¢1, ..., &) and
defined by

(1.5) 485 + 3667 + €5&9 = 0.

We immediately see that the equations and are very much alike
and it is not hard to imagine that the proofs have strong similarities; that
is why we have decided to couple them in this paper.

This work has been motivated by a result of Browning [Bro07, Theo-
rem 3]. Using the equation of the universal torsor described above,
he has proved the upper bound of the expected order of magnitude for
Ny, ,m(B), namely

(1.6) Ny, 1(B) < Blog(B)®.

In most of the proofs of Manin’s conjecture for del Pezzo surfaces using
universal torsors, the first step consists in summing over two variables, view-
ing the torsor equation as a congruence and counting the number of integers
lying in a prescribed region and satisfying this congruence. The novelty here
is that we start by summing over three variables instead. In our two cases,
this is linked to studying the distribution of the values of a certain restricted
divisor function in arithmetic progressions. In this task, Weil’s bound for
Kloosterman sums plays a crucial role. Our result is the following.

THEOREM 1. Fori =1,2, as B tends to +00, we have the estimate
log(log(B))
Ny, 1(B) = ey, gBlog(B)° (1 + 0 —=——22
v, H(B) = cv,,nBlog(B) < + ( log(B) 7
where cy, g and cv, g agree with Peyre’s prediction.

Since p; = p2 = 6, these estimates prove that Manin’s conjecture holds
for V7 and V5. Note that Derenthal has shown that V; and V5 are not toric
[Der06], Proposition 12], and Derenthal and Loughran have proved that they
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are not equivariant compactifications of G2 [DLI10], so this work is not cov-
ered by the existing general results. In view of Theorem [I] it remains to deal
with six types of split singular quartic del Pezzo surfaces among the list of
fifteen.

In both cases, we have noted that the universal torsor is an open subset
of a hypersurface embedded in A°. In [Der06], Derenthal has determined the
del Pezzo surfaces whose universal torsors are hypersurfaces and it turns out
that in the case of split quartic surfaces, Manin’s conjecture has only been
proved for surfaces whose universal torsors are either open affine subsets
(which is equivalent to being toric), or open subsets of hypersurfaces. It
would be interesting to prove Manin’s conjecture for a surface which is in
neither of these two classes.

2. Preliminary results

2.1. Equidistribution of the values of a restricted divisor func-
tion in arithmetic progressions. Let 7 denote the divisor function. We
start by recalling a classical fact about the sums of the values of 7 in arith-
metic progressions. For a,q € Z>1 two coprime integers and X > 1, define

D(X;qa)= Y  7(n).
n<X
n=a (mod q)
Then (see [HB79, Corollary 1] for instance) there exists an explicit quantity
D*(X;q) independent of a such that for ¢ < X2/3

D(X;q,a) — D*(X;q) < X'/3%=.

We need a more general result since we have to consider a sum similar
to D(X;q,a) but with 7 replaced by a function which only counts certain
divisors. However, we will not determine a specific value of our main term
and we will content ourselves with the value provided by averaging the
estimate over a coprime to q.

The results stated in this section use several classical ideas which have
for example been developed in Heath-Brown’s investigation of the divisor
function 73 := 7% 1 [HB86|]. Let Z and J be two ranges. We define

N(Z,TJ;q,a) = #{(u,v) €eIxJNZ*: w=a (mod q)},

N*(Z,J;q) = (p(lq)#{(u,v) €I xJNZ*: ged(uv,q) = 1}.

LEMMA 1. Let € > 0 be fized. Then
N(Z,T3q,a) = N*(T,T;q) < ¢'/***.

Proof. Let e, be the function defined by e,(x) = e*7*/9. We detect the
congruence using sums of exponentials:
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q
N(I7j;q7a): Z #{(U7U)EIXJHZ2:Q‘Q_Uaﬁ_’U}

a,B=1
afi=a (mod q)
q 1 q q
LY ANt ) (S el )
a,B=1 q ueZ r=1 veJ s=1
afi=a (mod q)
1 q
= e Z K(r,as,q)Fy(r,s),
r,s=1

where K (r,as, q) is the Kloosterman sum defined by

K(r,as,q) = eq(ra+asa™t),

M-

1

ged(a,g)=1

R

where a~! denotes the inverse of & modulo ¢ and where

Fy(r,s) = (%eq(ru)> (; eq(fsv)>.

Let ||z|| denote the distance from z to the set of integers. If r, s # ¢, Fy(r, s)
is a product of two geometric sums and so

Fy(r,s) < |Ir/all ™" lls/all ™"

Let N(Z,J;q) be the sum of the terms corresponding to r = ¢q or s = q.
Since ged(a, q) = 1, we see that K(q,as, q) and K(r,aq,q) are independent
of a and thus N(Z,J;q) is also independent of a. We are therefore led to
give a bound for N(Z,J;q,a) — N(Z,J;q). Weil’s bound for Kloosterman
sums (see [Est61]) yields

-1
1 ¢
N(Iaj;Q7a) _N(IaJ7Q) = 5 Z K(Tvas)Q)Fq(r>8)
q r,s=1
1 Ck
< —7(q)g"? > ged(r,5,9)"?||r/ql " |Is/qll
q r,s=1
<7’ > ged(r,s, )7 s
0<[rl,|s|<q/2
Let us bound the sum on the right-hand side:
q

q
Z ged(r, s, )2 r| Vs <« Zdl/Q Zril Z 571 < log(q)*

0<|r|,|s|<q/2 d r=1 s=1
rl sl <a/ @l e
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Since N(Z, J;q) does not depend on a, averaging over a coprime to ¢ shows
that we can replace N(Z,J;q) by N*(Z,J;q). =

An immediate consequence of this lemma is the bound
1
o(q)
Lemmas [2| and [3| below are respectively devoted to the treatment of the

varieties V7 and V5.
Let X, X1,Xo,T,Z,L1,Ls > 0. Let also § = S(X, X1, X2, T, 7, Ly, L)
be the set of (z,y) € R? such that

(2.1) N(Z,TJ;q,0) < ——#(T x T NZ?) + ¢/

(2.2) lzy| < X,

(2.3) || |zy + T < X7,

(2.4) lyl < Xo,

(2.5) Z < |zy+ T,

(2.6) Ly < |z},

(2.7) Ly < yl.

Finally, we introduce

(2.8) D(S;q,a) = #{(u,v) € SNZ*: wv = a (mod q)},
(2.9) D*(S;q) = (p(lq)#{(u,v) € SNZ*: ged(uw,q) = 1}.

LEMMA 2. Lete > 0 be fized. If T < X then for g < X2/3,

X3 X < 11 >
D(S;q,a) = D*(S5¢) €« —7—+ —— | — + —
Note that the conditions T' < X, |zy| < X and |zy + T| > Z imply
Z <2X.

Proof. The result is true if S N Zio = ) so assume SN Zio # 0. Let
0 < d <1, to be selected in due course, and { = 14 6. Let also U and V'
be variables running over the set {+£(": n € Z>_1} and let Z = |U, (U] if
U>0(Z=[UU[{U<0) andJ =]V,CV]ifV >0 (J = [CV,V]if
V < 0). We have

D(S;q,a)— >, N(EZTiqa)< >, N(T,J:q0).
IxJNZ2CS IxJNZ2LS
IxJNZ2ERA\S

We define

D(S;q)= Y, N*(I,7J:q).
IxJNZ2CS
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Note that since N*(Z, J; q) is independent of a, so is D(S; q). Furthermore,
Xe ql /2+e

IxJNZ2CS
using Lemma [I| and noticing that the number of rectangles 7 x J with
T x JNZ?C S8 is less than (21og(X)/log(¢))? < X662 since § < 1. Since
q° < X°¢, we have obtained

qul/Q
D(S;q,a) = D(S;q) < Y,  N(T,J:;q.0)+ 52
IxJNZ2ES
IxJNZEERA\S
Using the bound , we finally deduce
1 XEql/2
D(S;q,a) — D(S;q) <<ﬁ Z #(Z xTNZ* + (;]2 ,
A IxJNZELS
IxJNZAERA\S

since the number of rectangles Z x 7 such that Z x J N 72 SZ SandZ x J
NZ? ¢ R?\S is also < X¢§2. The sum on the right-hand side is over all the
rectangles Z x J for which ((51U,¢*2V) € Z* NS and (C1'U,¢2V) € Z2\ S
for some (s1,s2) € ]0,1]% and (t1,t2) € ]0,1]?. This implies that one of
the inequalities defining S is not satisfied by (¢'*U,("2V) and we need to
estimate the contribution coming from each condition among 7.

Note that (2.2)), (2.6) and (2.7) together imply

(2.10) \U| < X/Ls,

(2.11) V| < X/L;.

In the following, we could sometimes write strict inequalities instead of non-
strict ones but this would not change anything in our reasoning. Let us start
by treating the case of (2.2). For the rectangles Z x J described above, we
have (51752|UV| < X and (" ™2|UV]| > X for some (s1,s2) € ]0,1]? and
(t1,t2) € ]0,1]%. These two inequalities imply

(2.12) (2X < |UV| < X.

Going back to the variables u and v, we get (72X < |uv| < ¢?X. Therefore,
the error we aim to estimate is bounded by

(72X < |uv| < CQX}

2 2 .
Z #(IXJOZ)<<#{(U,U)€Z¢O. ol < XL,

©11), @12)
< Y (6X/Pl+1) < 0XE+ X/ Ly
|v|<« X/ L1
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We now deal with the other conditions in a similar fashion. Let us treat
(2.3). In this case, for some (s1,s2) € ]0,1]% and (¢1,t2) € ]0,1]2,

(2.13) CHUI[E =0V + T| < X,

(2.14) CHUICMTRUV + T > X

Note that since |[UV| < X and T < X, the inequality gives
(2.15) U] > X,/X.

The inequalities (2.13]) and (2.14]) imply

(216) (AL (1T < UV 4T < AL 4 (1 - ¢ T

U] U]
Going back to the variables u and v, we easily get

Huv—i—T| — |UV+T|‘ <|luw —UV| <35|UV| <36(X1/|U|+1T),
using ([2.13)). Since 1 — (=2 < 24, the inequality (2.16)) gives

(C8 = 36) 5L 56T < Juv+ T| < (1 + 30) L 1 56T,
Ul U

and therefore

X X
ﬁ — 56T < lwv +T| < ¢(1 + 35)ﬁ + 567
u u

Note that we have not tried to sharpen this inequality because this is useless
for our purpose. Thus in this case, the error is bounded by

(217) (2 —=30)

2.17)
S HEIx TN < #{ () € Zt ul > Xi/X
(2.10)
215), 2.16) lu| < X/Lsy
§X1  oT
< > ( S+ +1> < 6XHE 4 X/ Ly,
u? Jul
lul>X1/X
lu|< X/ Lo

since T' < X. In the case of (2.4, the condition which plays the role of
(2.12)) and (2.16)) in the previous two cases is

(2.18) Xy < V] < X,
Combined with |[UV| < X, this gives
(2.19) U| < X/Xo.

Moreover, in terms of v, we have (~'X5 < |v| < (X3. Therefore, this con-
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tribution is bounded by

C_IXQ < ”U| < CXQ
> #ETxTINE) < #S (w,v) €20 u| < X/Xo

(210)
£15), R19) lu| < X/Ly
< 3 (6X2+1) < 6X + X/La.
|u| <X/ X2

Let us now deal with (2.5)). Here, reasoning as we did to deduce (2.16)) from
B13) and (Z14), we got

(2.20) (?Z-(1-CHT<|UVAHT|<Z+(1-CHT,
and following the reasoning we made to derive (2.17)) from ([2.16]), we obtain
(2.21) (C2—38)Z — 56T < |lww +T| < (1+36)Z + 5T.

Therefore, this contribution is bounded by

> #(IXJDZQ)<<#{(U,”U)EZ;0: (2:21) }
’ |U|<<X/L2

6Z 6T
< > (M Tl +1) < OX'TE + X/ Ly,
|u|<<X /Lo
since T < X and Z < 2X. Mimicking what we have done for (2.4), we
find that the contributions corresponding to (2.6 and (2.7)) are respectively
<K 0X + X/L; and < 6X + X/Lo. Writing 1/¢(q) < X¢/q and rescaling ¢,
we have finally proved that
60X ¢'/? X /1 1
D(S;q,a) — D(S; <<X5(+ = ).

Averaging over a coprime to ¢ and using the fact that D(S;q) does not
depend on a, we can replace D(S;q) by D*(S;q). Furthermore, the choice
§ = ¢/2X~1/3 is allowed provided that ¢ < X2/3. u

We emphasize that the average effect which yields the term 1/¢(q) in
D*(S;q) is the key step of the proof. Note that the estimate of Lemma
is actually true for ¢ < X but the error term is no longer better than the
trivial error term X'*¢/q when ¢ > X2/3,

For given X3 > 0, let S; = S$1(X, X1, X9, X3,7T, Z, L1, Ly) be the set of
(z,7) € R? satisfying (2.2)-(2.7) and
(2.22) 2y + T < X,
(2.23) 2y < Xs.



118 P. Le Boudec

Let also 52 Sao(X, Xl,XQ,Xg,T Z, L1, Ly) be the set of (z,y) € R? satis-

tying €3, €3 €D, €23 and

(2.24) 2] < X1,
(2.25) lyl [zy + T < Xa,
(226) |zly®|zy + T| < X3.

Finally, D(81; ¢, a) and D(S2; g, a) are defined as in (2.8)), and D*(S1; ¢) and
D*(S2;q) as in (2.9).
LEMMA 3. Lete > 0 be fized. If T < 2X then for ¢ < X?/3,

X2/3+a X 1 1
D(S1;q,0) —D*(S1;9) €« ——+ —— | — + —
($1:0,0) ($1:9) q'/? 90(61)<L1 L2>

X4/5+a X 1 1
D(S2;q,a) — D*(S2;¢) € —7—+ —— | — + — |-
(52:0,a) (52:9) q7/10 SO(C])<L1 L2>

To prove Lemma [3| we can proceed almost exactly as in the proof of
Lemma [2| except that the condition is more complicated than the
others. Indeed, it is the only condition where both x and y appear with
powers greater than or equal to 2. To solve this problem, we need the fol-
lowing result.

LEMMA 4. Let 0 < 6 < 1,Y € Ry and A, Y’ € R be such that 0 <
Y —Y' < 6M? where M = max(|A|,Y/?). Let R be the set of real numbers
y subject to

(2.27) V' < |y? +24y| < Y.
Then
#(RNZ) < §*M +1.
Proof. Tt clearly suffices to show that meas(R) < 6'/2M. If we set z =
y + A, the condition can be rewritten as Y/ < |22 — A%2| < Y.
Let us treat first the case where 22 — A2 > 0. If Y/ + A% > 0 then
(V' + A2 < 2] < (Y + A%)V2
Therefore,
meas(R N {y € R: (y + A)? > A%}) < (Y 4+ A%)V2 — (Y 4 42%)1/?
Yy -Y'
- (Y + A2)1/2 4 (Y7 + A2)1/2
which is satisfactory. Now if Y/ + A2 < 0 then Y + A2 <Y — Y’ <« 6§ M?
and thus
meas(R N {y € R: (y+ A)%? > A%}) < (Y + 4)V2 < §'/2 M.

Let us now deal with the case where 22 — A? < 0. Under this assumption,
we have 42 — Y < 22 < A2 — Y’ so we can assume that A2 — Y’ > 0. First

< 0M,
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if A2—Y >0 then
meas(RN{y € R: (y+A)? < A%}) < (A2 —V)V2 (A2 —V)Y2 <« 62 M,

where we have used a!/2 — p1/2 < (a— b)1/2, valid for any a > b > 0. Finally,
if A2—-Y <0then 4> - Y' <Y — Y’ < §M? and thus

meas(R N {y € R: (y+ A)? < A%}) < 6'/%M. u

Proof of Lemma 3. We proceed as in the proof of Lemma [2| The only
thing we have to do is to repeat for all our new conditions what we have
done for (2.2)-(2.7). By symmetry between (2.24)), (2.25) and (2.3), (2.4

it suffices to consider the cases of the conditions ([2.22)), (2.23) and ({2.26)).
Reasoning as for (2.5)), we see that the contribution corresponding to (2.22))

is < X' + X/Lo. In the case of (2.23)), we have

(2.28) (X3 < |UIVE < X3
Combined with |[UV| < X, this implies
(2.29) U] < X?/X3.

In terms of u and v, we have (73X3 < |ulv? < ¢3X3. Therefore,
C_3X3 < |u]”u2 < <3X3
S #ETxTINZ) < #S (w,0) €20 Ju| < X%/ X3

(2.10)
228), @29 lu| < X /Lo
5x3"”
< ) (UP/Q + 1) < 0X + X/Lo.
lul<X?/X3
|u| <X/ Ly

Finally, let us deal with the case of ([2.26)). For some (s1,s2) € ]0,1]? and
(t1,t2) €]0,1)%, we have

(2.30) CIER|UIVA|CTR UV 4+ T < X,
(2.31) 22| VAUV 4+ T > X
Since |UV| < X and T' < 2X, the condition gives
(2.32) V| > X3/X2.

For t € Rg, we set
1/2
M(t) = max(X3" /|t T/ |t]).
The condition ([2.30) shows that |U| < 2M (V). The inequalities (2.30) and
(2.31) imply

(2.33) (7P X3

U2

X3
\U|v?2

~(1-¢HT < |UV+T| < +(1-¢HT.
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To go back to u and v, we can proceed as we did to deduce (2.17) from
(2.16)) in the proof of Lemma [2 We get

X X
-5 3 3
S E e

and thus, multiplying by |U| and using |U| < 2M (V'), we obtain

— 50T < Juv +T| < (14 30) + 50T,

_ X3 X3
(7% = 30) 55 — WOM(V)T < fu] juv +T| < ¢(1+30) 75 + 1065M (V)T
Setting ¢ = 10¢%/2 for short and using M (V) < ¢3/2M (v) and T/|v| < M (v),
we finally see that

X3

(2.34)  (¢7° - 35)W —

coM (v)?

< ul

T X
u+ v' <3+ 35)ﬁ + CebM (v)2.

Applying Lemma 4| to count the number of u subject to (2.34), we get

.34)
Z H#(IT x TNL) < #4 (u,0) € Lyt v > X3/X?
(2.11)
232), 2:33) lv| < X/Ly
51/2X1/2 61/2T
< Y < e + 1)
oz N |v]
[v|<«X/L1

< §V2XME 4 X/ Ly,

since T' < X. In the case of &1, the proof can be completed as that of
Lemma In the case of Ss, the optimal choice of § is seen to be § =
¢35 X ~2/> which yields the result claimed. =

2.2. Arithmetic functions. Let us introduce the following arithmetic
functions:

(2.35) ©*(n) = H<1 - 1),

pln P
(2.36) o(n) = 11(1 - p12>
(2.37) ¢'(n) = H<1 - ;)1 (1 + ; — p12> 71.
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Define also, for a,b,c > 1,
bl = { &7 O B0 ) () =1,
v 0 otherwise.
Finally, for ¢ > 0, let
(2.38) po(n) => 2®k=7,
k|n
where w(k) denotes the number of prime numbers dividing k. The next two

lemmas are built following the reasoning of [BD09, Section 3.

LEMMA 5. Let 0 < 0 <1 be fized. Then
Z ¢a,b,c(n) = ng(aa b7 C)X + OO’(@U(C)XU)’
n<X

where

1oyl * ¢ (abe)

(239)  P=][dw) " ¥(abe)=¢(c)
P

F(ged(a,5)9) ¥ ()

Proof. Let us calculate the Dirichlet convolution of 4. with the
Mobius function pu. We have

(¢a,b,c * ,u) (n) = Z ¢a,b,c <Z> :u(d) = H (%,b,c(Pl’) - ¢a,b,c(pyil)).

dn p¥ln
Moreover tq.(1) = 1 and for all v > 1,

(1-1/p)* ifpfabe,

y 1-1/p if pte, plab and p t ged(a, b),
wa,b,c(p ) = wa,b,c(p) = / J[ | J[ ( )

1 if pfcand p| ged(a,b),
0 if p|e.
Thus, we get
_ w(n)—w(ged(n,abc)) ng(C, n) - i
(wa,b,c * M)(n) - /1,(77,)2 & n | 1;([ b L 2]?
p|n, ptabe

whenever ged(a,b,n) | ¢, and (Yo * p1)(n) =0 otherwise. Writing g pc =
(Vabe * i) * 1 yields

+00
5 tel) = 3 S W 0(d) = X (e # 1)@ T |

n<X n<X d|n d=1
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Let 0 < 0 <1 be fixed. Let us use the elementary estimate [t] =t + O(¢7)
for t = X/d. Since

= [( ¢abc w gcd ¢, d)
Z < 22 (d d1+o' < @U(C)a

we have shown that

+oo
5 el = x 3 Pare D o o) x0),
d=1

n<X

A straightforward calculation finally yields

io (%,b,c; p(d) H<1 B ;) 11 <1 B p12>

d=1 ple pfe, plab
ptged(a,b)
2 1
< (- 505))
pte, ptab
. f(ab
©*(c) #!(ab) Py (abc). m

¢ T (ged(ab, ged(a, b)e))

LEMMA 6. Let 0 < 0 < 1 be fized. Let 0 < t1 < to and I = [t1,t]. Let
also g : Rsg — R be a function having a piecewise continuous derivative on
I whose sign changes at most Ry(I) times on I. Then

> Yape(n)g(n) = PP(a,b,c) | g(t) dt + Oy (0o (c)t3 Mi(g)),
nelNZsgo I

where Mi(g) = (1 + Ry(I)) suprenr., [9(1)]-

Proof. We only treat the case where t; > 0 since the statement for t; = 0
easily follows from it. Let S be the function defined for ¢ > 0 by

St) = tape(n)
n<t

Splitting I into several ranges, we can assume that g has a continuous deriva-
tive. Partial summation gives

> Yape(n)g(n) = S(ta)g(ta) — S(t)g(tr) — | St)g'(t) dt.
n€lti,t2]NZ>o t

Lemma [5| implies that S(t) = P¥(a,b,c)t + O(ps(c)t?). An integration by
parts reveals that the sum to be estimated is equal to

PU(a,b,) [ g(t) dt + O (0o ()5 (9(t2)] + lg(t)] + {19/ (1) ) ).
I I
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It only remains to split I into the R,(I) + 1 ranges where g’ has constant
sign. m

2.3. Lemma for the final summation. Let r>1and n=(ny,...,n,)
€ ZL, (and by analogy, d, k). Let V be the set of n € ZL, satisfying the
following conditions, indexed by 1 < j < N:

'
[[n <x,
i=1
where X > 1 is a quantity independent of j and ; € {—1,0,1}, and 3;; € Q

are bounded by an absolute constant and such that the polytope C defined
by t1,...,t, > 0 and the N inequalities

,
> Bijti <ej
i=1

satisfies C C [0,1]". We are concerned with sums of the form

s Aol
nl o« e nT’
ney

where ¥ is an arithmetic function of r variables.

LEMMA 7. Let f be the characteristic function of a polytope D C [0,1]".
Then

f(log(nl), . log(nr))
Z log();) _ log(X) / _ vol(D) log(X)" + O(log(X)"1).
10y

n1y..,nr <X

Proof. Let us reason by induction on r. Let f be the characteristic func-
tion of [a,b] C [0, 1]. We have

log(n)
> f(“’ifx)) = Y =0 w)ls(x)+00),

n<X Xa<n<Xb

as wished. Assume that the result is true for an integer r —1 > 1 and let us
prove it for r. The result for r = 1 applied to n, shows that the sum to be
estimated is equal to

o [ o(log(ni)  log(n,_1)
S (o0 (G St o) o).

N1y, Mr—1 <X

This quantity is plainly equal to

1 ... )
g0 (Y R0 ) gy 0o

0 *np,..np—1<X
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so the induction assumption applied to the » — 1 remaining variables imme-
diately completes the proof. =
LEMMA 8. Let W be an arithmetic function of r variables satisfying
(s W@, (T
2.40 —1 (2 ) ,
(2.40) Z — og an < 400
nezl i=1
where w is the generalized Mdbius function defined by
H(nl, s nT) = /L(’I’Ll) o ,UJ(TZT)

Then
Yz vol<c>< > M) log(X)" + O(log(X)" ).
oy nezl, et

Pmof Writing U= (Uxp)x1, we get

U * d (& % p)(d)
I DD I e R Dl i) Direiey

nev ! neV dy|ny,.dy|ny, dezr, dy -

where the latter sum is over k such that
(2.41) (TT#7) (TT ) < x=.

Let us estimate the difference between this sum and the sum over k satisfying
T
H kzﬂ” < X
i=1
For a certain jg, we have

LN I
X¢io (H dfz’]()) < H kiﬁi’m < X¢%io,
=1 =1

Summing first over k;, for which 3;, j, # 0, we see that since the (; ; are
bounded by an absolute constant, the above difference is bounded by

log(ilj1 d¢> kl; k 7<31E110k‘ < log(}_[ld ) log(X)" L.

740 AR LA A
Thus, Lemma [7] yields

1 7
3 = vol(C) log(X)" + O (1og (2 I1 di) 1og(X)r*1) .
ky--- ke :
k, (2.41) =1
The assumption (2.40|) plainly implies the result. =
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3. Proof for the 3A; surface

3.1. The universal torsor. Using elementary techniques, Browning
[Bro07] has made explicit a bijection between the set of points to be counted
on U; and a certain set of integral points on the hypersurface defined
by . A little thought reveals that the result proved by Browning [Bro07,
Lemma 1] is equivalent to the following. We adopt the notation of Derenthal
[Der06]. Let 71(B) be the set of (11,12, 73, M4, M5, M6, N7, M8, 1M9) € Zgéo such
that M1, 12, M3, M6, N7 > 0 and

(3.1) mans + mnen7 + nsng = 0,
and satisfying the coprimality conditions

(3.2) ged(ng, mmenansnens) = 1,
(3.3) ged(ng, mmenenzng) = 1,
(3.4) ged(ns, mnanenzne) = 1,
(3.5) ged(ne, nanrme) = 1,
(3.6) ged(ns, mmnzne) = 1,
(3.7) ged(n1, 7727]9) 1,

(3.8) ged(no, n7) =

and the height conditions

(3.9) mansmanz < B,
(3.10) minansnen; < B,
(3.11) m3|nalng|ns| < B,
(3.12) mns s |nzlne| < B.

LEMMA 9. We have the equality

Nuy,,m5(B) = %#71(3)-

Browning [Bro07, Theorem 3] has used this description of the problem
to prove the bound .

It is important to notice here that the contribution to Ny, g (B) coming
from the (n1,...,m9) € 71(B) such that all the variables appearing in the
torsor equation are bounded by an absolute constant is > B since 12,73 <
B'/2. That is why a result similar to seems out of reach.

3.2. Calculation of Peyre’s constant. The constant cy, y predicted
by Peyre is
evi i = a(V1)B(Vi)wr (V1),
where a(ﬁ) € Q is the volume of a certain polytope in the dual of the
effective cone of V1 with respect to the intersection form and where 3 (Vl)
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#H'(Gal(Q/Q), Picg(V1)) and

— 1\ 6
wi (V1) = weo H(l - ) wp,
p p
with ws and w;, being respectively the archimedean and p-adic densities.
The work of Derenthal [Der(7] reveals that
~ 1
V) = 10

Moreover, 5(17) = 1 for any del Pezzo surface V split over Q and finally,
using a result of Loughran [Loul(, Lemma 2.3], we get

wp =1+ 6 + %
p p
Let us calculate weo. Set f1(z) = zoz1 — 22 and fo(z) = 22 + 1179 + 1374,
We parametrize the points of Vi by zg, x3 and x4. We have
ofh  Of1
det (g‘ﬁ g”}g) =

ox1 o0xs

i) 0
— ToT4.

To T4
Moreover, 11 = z3/z¢ and x3 = —z3(z2 + 20)/(0z4). Since x = —x in P4,

b =2 il dao dzy dzy

2 2 ToT4
x0,24>0, 0,25 /20, T5|T2+T0|/|T0T4], T4 <1

Define the function
(3.13) h: (ta, ts, te) — max{t3t2, t2, [t4|t2|tsts + te], |t5]}.
The change of variables given by x¢ = t3t2, x9 = tatst and x4 = t5 yields
(3.14) Woo — 4 SSS dt4 dt5 dtﬁ

t5,t6>0, h(t,ts,t6)<1

=2 i) dty dts dtg.
t>0, h(t4,t5,t6)§1
3.3. Restriction of the domain. In order to be able to control the

error terms showing up in our estimations, we need to assume that certain
variables are greater in absolute value than a fixed power of log(B). The

following result shows that this assumption does not affect the main term
predicted by Manin’s conjecture.

LeEMMA 10. Let My(B) be the overall contribution to Ny, g(B) coming
from the (n1,...,m9) € T1(B) such that |n;| < log(B)? for a certain i # 2,3,
where A > 0 is any fived constant. Then

Mi(B) < Blog(B)*log(log(B)).
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LEmMMA 11. Let K1, Ky,...,K9 > 1/2 and define M; = M;(K;, Ky,
..., Ko) as the number of (m1,my, ..., mg) € Z7 such that K; < |m;| < 2K;
fori=1 and 4 <i <9, gcd(mygms, mymems) =1 and
(3.15) mams + mimemy + mgmg = 0.

Then
M, <« K1KgK~7 min(K4K5,K8K9).

Proof. We can assume by symmetry that K4 K5 < KgKg. Let us first deal
with the case where K1 KgK7 < K4K5. Then gives KgKg < K4Ks5.
Let M/ be the number of (m1,my,...,mg) € Z" to be counted in this case.
We can assume by symmetry that K4 < Ks. The idea is to view as
a congruence modulo my. Since |my| < (KgKg)l/Q, the number of ms, mg
and mg to be counted in M/ is at most

K, < |m1] <2K;,1€ {8, 9}

KsK
#{ (mg,mg) € Z*:  ged(mgmg, mymegms) = 1 < =22

my

mgmg = —mimegmy (mod my)

Summing over mq, mq4, mg and my, we get

1
M{ < K1 KgK7KgKq Z — < K1 KeK7K4Ks,

my
K4<|m4|§2K4

since KgKg < K4K5.

We now treat the case where K1KgK7 > K4K5. Then gives
KsK9 < K1KgK7. Let M} be the number of (mi,ma,...,mg) € Z7 to
be counted under this assumption. We assume by symmetry that Kg < Ko,
which yields |mg| < (K1KK7)'/?. We can therefore use [HB03, Lemma 5]
to deduce that the number of my, mg, my and mg to be counted in M} is
at most

K, < |’ITLZ‘ <2K;, i€ {1,6,7}

K1 KgK
# 4 (m1,mg,mz) € Z°: ged(mimgmy, mams) = 1 < t;(T(S;'
8
mimemy = —mgms (mod mg)
We obtain
1
M{’ < K1 Ke K7 Ky K5 Z W < KWK K7 K4 K5,
8

K8<‘m3|§2K3
as wished. =

We are now in a position to prove Lemma Note that the following
proof is largely inspired by Browning’s proof of [Bro07, Theorem 3].

Proof of Lemma 10. Let Y; > 1/2 for i = 1,...,9 and define N7 =
Ni(Y1,...,Yy) as the contribution of the (n1,...,m9) € 71(B) satisfying
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Y < |ni| < 2Y; for i = 1,...,9. The height conditions imply that either
N7 = 0 or we have the inequalities

(3.16) YaY3Y2YZ < B,
(3.17) Y2V, Y3Y2Y2 < B,
(3.18) Y1Y2Y Y2Ys < B,
(3.19) Y1Y7YsY2Yy < B.

Using Lemma [11f and summing over 7y and 13, we get
Ny < Y1Y2Y3YeYs min(Y;Ys, YY),

Let us recall the following basic estimates. Assume that we have to sum over
all the ranges Y < |y| < 2Y for all |y| < Y; then

1 if § <0,
DY 4 log(Y) if 5 =0,
Ysy A if § > 0.

In the following, the notation ) o means that the summation is over all the
Y; # Y. We only treat the case where Y;Y5 < Y3Yy (the case Y, Y5 > YgYy is
identical).

First assume that Y1YsY7 < Y,Y5. We start by summing over
Y,Ys Bl/2 > }/41/4Y51/2B1/4
V1Y’ },11/21%1,41/2}%1/2 = Y13/4131/2Y71/2}g1/47

Ye < min<

and over Y3 using (3.16)). We get in this case
DM €Y MYRYaYiYsYeYy
Y; Y;
< Bl/A Z Y11/4Y2Y31/2Kl5/4Y53/2Y71/2Y8_1/4
Ve
< B3/ Z Y11/4Y21/2Y41/4Y51/2Y71/2Y8_1/4.
Y3, Y6
Now sum over Y; using (3.19)) and over Y; < Y5_1Y23Y9 to obtain

ZNI < B Z Y41/4}%1/4Y8_1/4Y§_1/4 < B Z L

Yi V2,Y3,Ys V2,Y3,Ya, Y
We could have summed over Y5 instead of Y; and over Y7 instead of Yg, so
if we assume that |n;| < log(B)? for a certain i # 2,3, where A > 0 is any
fixed constant, we get an overall contribution <4 Blog(B)*log(log(B)).

Let us now assume Y7YgY7 > Y Y5. Since Y Y5 < YgYy, we deduce from
(3.1) that Y71YsY7 < YgYy. Summing over Y3 using (3.18) and over Y5 using
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(3-19) yields
ZNl < B Z Y41/2Y51/2Y8_1/2Y9_1/2
Yi Y2,V
< B Z Y11/21/631/2Y71/2Yé_1/2%_1/2 < B Z 1,
Y2,Y3.,Y) V2,Y3,Y2,Y6
where we have summed over Yy < Y1Y5_1Y6Y7 and Y5 < Y1_1Y7_1Y8Y9. We
can now conclude exactly as in the first case. m

3.4. Setting up. To be able to apply Lemma [2] we need to assume

Ino| < |ns].

Note that this assumption together with (3.1) and the height conditions
(13.9) and (3.10)) yield the following condition which plays a crucial role in
the proof:

Bl/2
2
M2 73

The symmetry given by (13,74,76,7m8) — (12,75,77,79) and the following
lemma prove that it suffices to multiply our main term by 2 to take into
account this new assumption.

LEMMA 12. Let Ny(B) be the overall contribution from the (n1,...,m9) €
T1(B) such that |ng| = |no|. Then

No(B) < Blog(B).
Proof. Note that we have the inequality (3.20]) here too. Define

Bl/2

X = —r—.
1/2 1/2
772/773/

The number of 71, n4 and 75 to be counted is

nans = 03 + 771776777}

< # S (M1,ma,75) € Lo X T2y
{ * [nans| < X

nans = £n3 (mod %m)}

K # 14 (ayms) € T2y
{ 700 s | < X

X
< Z T(]n\)<<é\,’€<+1>,
1<|n|<X TleT7
n=+n3 (mod ne77)
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for all ¢ > 0. Taking ¢ = 1/4 and summing over 79 using (3.20)), we get

B7/8 B3/8
No(B) < Z ( 7/8_7/8 T 37 3/8>
nemsmemy N2 T3 el Ty T3
< < Blog(B),

5/4_5/4
nz.memr 276" Ty

where we have summed over 13 using (3.10)). =

Since (ng,n9) +— (—ns, —n9) is a bijection between the set of solutions
with 779 > 0 and the set of solutions with ng < 0, we can assume that
N9 > 0 if we multiply our main term by 2 once again. Furthermore, we
need to assume that 74 and 75 are greater in absolute value than a power of
log(B). To sum up, denote by N (A, B) the contribution to Ny, g(B) from
the (n1,...,m9) € T1(B) satisfying

(3.21) 0 < ng < |nsl,
(3.22) log(B)* < |na,
(3.23) log(B)* < |ns),

where A > 0 is a constant to be chosen later. Note that combining ((3.9)
and (3.22), we get

(3.24) log(B)**nansni < B.

This inequality is crucial in the estimation of our error terms. Lemmas [9]

and [12] yield the following result.
LEMMA 13. For any fized A > 0,
Nu,i1(B) = 2N(A, B) + O(Blog(B)" log(log(B))).

Our goal is now to estimate N (A, B) and for this, we start by investi-
gating the contribution of the variables 74, 15 and ng. The idea is to view
the torsor equation (3.1) as a congruence modulo 79. For this, we replace

the height conditions (3.11]) and (3.21]) by the following (we keep denoting
them by (3.11) and (3.21))), obtained using (3.1)):

mng|nangnans +mnentingt < B, na < |nans + mnens|-

Set 0’ = (m1,m2,m3, M6, 7, M0) € Z5. Assume that ' is fixed and subject
to the height conditions and and the coprimality conditions
(B3-F)-(B.8). Let N(n’, B) be the number of n4, 15, 1 satisfying the torsor
equation , the height conditions , and @D, the conditions

(3.21)—(3.23)) and the coprimality conditions f@ . Recalling the defi-
nition ([2.35)) of ¢*, we have the following result.
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LEMMA 14. For any fired A > 7,

N B =~ S B sy ST )

79 ks* (ksno)
ks|n2 ka|mmznenz ks|mnsnenz
ged(ks,n7)=1 ged(ka,kgne)=1 ged(ks,kgng)=1
X Yo )C(n',B) + R(n, B),
L4]ksng
£5|ksng

where, with the notations ny = kalyn) and ns = kslsnl,

C(n’,B)=#{(ni{,n5) €Z =--}

and ), R(n', B) < Blog(B)?.

The thrust of Lemmal[l4]is that the summation over ng has been carried
out, which explains the absence of the torsor equation in C(n,B). The
remainder of this section is devoted to proving Lemma

Let us remove the coprimality condition using a Mdbius inversion.
We get

N(n,aB) = Z /’L(kB)Skg(n/7B)v
ks|nminenansnen7

where

nans + ksngng = —mnens

. (B9, B11), 3.12)
- -
Clearly, if ged(ks, mnen7) #1 or ged(ks, n4175) #1 then ged(nans, mnenz) # 1

and thus Sk (', B) = 0. We can therefore assume that ged(ks, minansnenr)
= 1. We have

Sks(n', B) = # (1,15, 13) €

774775 = *7717]6777 (mOd ksmo)
- - )
where the error term Ry(n’, B) comes from the fact that n} has to be non-

zero. Otherwise, we would have myns = —mingny and so the coprimality
condition ged(nans, mnen7) = 1 would give |ng| = |ns| =m =ns = n7 = 1.

Skg(n/7B) = # (774a775) €EZ
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Summing over 79 using (3.20)), we obtain
1/4

B
Z |u(ks)|Ro(n', B) < Z 240m) « Z Qw(m)m < Blog(B)*.
ks,n’ 72,713,M9 n2,m3 Ny T3
Let us remove the coprimality conditions (3.3) and (3.4]). The main term
of N(n/, B) is equal to

S k) D plk)) > u(ks)S(n',B),

kg|n2 k4|mmnanenrne ks|mmnanenrne
ged(ks,mnen7)=1 ged(kq,kgne)=1 ged(ks,ksno)=1

where, with the notations ny = k4njy and ns = ksn§,

nynt = —(kaks) " minenz (mod ksno)
S(n', B) = # 4 (my,n5) € Z: (B9), B-11), (312)
(3-21)—(3.23)

Indeed, k4 and ks are invertible modulo kgng since ged(ksng, mnenz) = 1.
We can therefore remove 79 from the conditions on k4 and k5. Having in
mind that our aim is to apply Lemma [2] we define

Bl/2

k4k577§/ 2n§/ 2

Let us prove that we can assume that kg < (2k4ks)~/2X1/6  the contri-
bution coming from the condition kg > (2k4ks)~/2X1/6 being negligible.
Indeed, let N’(n, B) be this contribution and define a = —(k4ks) " n11677.
We have

X:

nyns = a (mod kgn)
Imymsl < X

S(n',B) < # {(n&mé) € Z%y:

=2 > ().

1<|n|<X
n=a (mod kgno)

Thus, for all € > 0,
1/4X1+g—1/12

kéﬂng

X
S(n',B) < X°© ( + 1> & (kaks) + X°,

ksmo
since kg > ké/2(2k4k5)*1/4X1/12. Note that if k4, ks or kg appears in the
denominator then the arithmetic function involved by the corresponding
Mobius inversion has average order O(1) and therefore does not play any
role in the estimation of the contribution of the error term. Thus we have

1 Bl/2 1+e—1/12 B1/2 €

Vot (B2 ) (B2
) 1/2 1/2 1/2 1/2
Mo \gy*n3/ "y
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Let us estimate the overall contribution of the right-hand side summing
over 7n’. Using (3.20) to sum over 79, we get

31/2 1+2e—1/12 Bl/Q 1/2+4¢
! / w
SN B < (mm) 2 ()
UPUE] UpRRE]

9
Taking € = 1/48 and summing over 73 using (3.10)), we obtain

B B
"(n' w(n2)
ZN (TI 7B) < Z ( 25/24 25/24 25/24 + 2 ’ 71/48 71/48 71/48>
n n1,m2,m6,m7 T 27 Uk T 27g i

< Blog(B)>.
Therefore, N(n', B) is the sum of the main term

> uka) D plks) > p(ks)S(n', B)
kalmmnanenz k5|771773776777 k8|n2,kg§(2k4k5)*1/2X1/6
ged(ka,mg)=1 ged(ks,mg)=1 ged(ks,kaksninenr)=1

and an error term whose overall contribution is < Blog(B)2. Note that
thanks to , we now have kgng < X2/3. We want to apply Lemma
with Ly = log(B)*/ks, Ly = log(B)*/ks and T = mnenr/(ksks). Since
T < X by and kgng < X2/3 Lemma proves that

X2/3+£ X Ky ks
S(n',B)=5*(n',B +O< + ( + >>
(1, B) = 5700, B) + O\ G2+ Glim) \loa(B)A T o (B)A

for all € > 0, with

. ged(nns, ksng) = 1
S*(n',B) = T# (3, m5) € . - -
ollm) 62062
As explained above, k4, k5 and kg do not play any role in the estimation of

the contribution of the first error term. Using (3.20)) to sum over 79, we find
that the contribution of the first error term is

B1/3+e Bl1/24+
Z 1/3%¢ _1/34¢ 1/2 < Z 11/244¢ 11/24+<
n M3 U n1,m2,m3,m6,m7 112 UE!

B
< Z 13/12—2¢_13/12—2¢_13/12—2¢ < Blog(B)
n1m2mesnr T N2 0,

for e = 1/48 and where we have summed over 73 using (3.10)). Furthermore,
the contribution of the second error term is

2 A _A
22“ momm BU2VOBB) ™ 5 ) Blog(B)

1/2 1/2
2 T3 171,12,76,7M7,M9 2677719

< Blog(B)*™4,



134 P. Le Boudec

which is satisfactory if A > 7. The contribution of the third error term is
easily seen to be also < Blog(B)°~4. Furthermore,

S By =——— 5 ) 3 ults)Cr, B),

p(ksino) L4]ksng 5| ksng

where we have set ny = f4n) and n} = lsn7. We now prove that we can
remove the condition kg < (2k4k5)*1/ 2X1/6 from the sum over kg. The
height condition (3.9)) plainly gives

/ X\
C(n,B)<<<£4€5> .

Let us bound the overall contribution corresponding to kg > (2k4k5)_1/ 2x1/6
Note that ¢(ksng) = ksnop*(ksng) and write kg > ké/2(2k4k5)*1/4X1/12.
Once again, the Mobius inversions do not play any part in the estimation
of the contribution of this error term, which we find to be less than

1 B1/2 1+e—1/12 B
Z% 172 1/2 < Z 25/24__ 25/24 25/24
n T2 T3 n1,m2,m6,m7,m9 1 1127 Uk 9

< Blog(B)?,

where we have set ¢ = 1/24. Finally, the condition ged(ks,m1m6) = 1 can
be removed from the sum over kg since kg |n2 and ged(m1m6,m2) = 1, which
completes the proof of Lemma [T4]

3.5. Summing over 7}, 77 and 7. We intend to sum also over 7
and thus we set n= (77177727 n3, N, 779) € Z5>0 For (7”1,7'2,7‘3, T7,T9) S Q57 we
introduce the useful notation

n(r1,7"2,7"3,7"7,7"9) = bl

1 127 N3 M7 Mg
Setting
G S 7
4 = Bl/2 ) 4 — k’4€47
B Y5
Y5 = ) Yy = ’
')7(112701271) 5 k5£5
Bl/2
Ys =

n(L1/21/210)"

and recalling the definition (3.13|) of the function h, the height conditions
(3-9)—(3.12) can be rewritten as

h(ni /e 15 /Y5 me/ Ye) < 1.
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We also define the real-valued functions

911 (ts,t6,t;m, B) — | dis,
h(t4,t5,t6)gl,tS‘t4t5+t6|, ‘t4|Y4210g(B)A
92: (te,t;m, By —~ | qits,te, t;m, B) dts,

[t5]Ys>log(B)4
g3: (tm,B)— | galte, t;m, B) ds,
teYe>1
ga = SSS dt4dt5dt6.
t6>0, h(ta,ts,t6)<1,t<|t4t5+ts|

The condition t < |t4ts + tg| corresponds to (3.21) which becomes, in our
new notations,

|
Y4Y'5 Y4// Y// Y6

We denote by x the left-hand side of this inequality. Note that (3.20]) is
exactly k < 2.
LEMMA 15. We have the bounds
01(ts, te, t;m, B) < \t5|‘2/3f2/3 gt i, B) < 1577,

Proof. Recall the definition (3 of h. The condition [t4|t3|tsts+ts| < 1
shows that t4 runs over a set Whose measure is < |t5|~*/?|tg| L. Since also
|tats| < 1, we derive the bound ¢ (t5, s, t;m, B) < min(]t5\*1/2]t6\*1, [ts|~1)
< |t 2/3{2/3

The bound for go immediately follows since |t5| < 1. =
It is immediate to check that 7 is restricted to lie in the region
(3.25) V={neZl:Ys>log(B)", Ys > 1, 2V,Y5s > n}.
Assume that n € V and ng € Z~q are fixed and satisfy the height condition

and the coprimality conditions f.

Our next task is to estimate C'(n’, B). Recall the condition which
can be rewritten as |nf| < Y,Y/ log(B)_A. Let us sum over 7] using the
basic estimate #{n € Z: t; < n < ta} = ta —t; + O(1). The change of
variable ¢4 — Yty shows that

C(n',B) = > (e YE e/ Yo, wim, B) + O(1)).
ng <Y1Y{ log(B)~4

The overall contribution of the error term is

1/2 —A
Z gw(mmnanent) 9w (n2me) B! log(B) < Z ow(mn2n7) g (n2no
n

) Blog(B)' =4
77(0’1/2’1/2’0’1)

(1,1,1,1,1)
n n

< B log(B)lQ_A,
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where we have summed over 75 using (3.10]). Let us now sum over 7. Partial
summation and the change of variable t5 — YZ't5 yield

C(n',B) =YY g2(n6/ Y5, k:m, B)+O(Y,  sup  gi(ts,m6/ Y6, k31, B)).
|t5|Y5ZlOg(B)A

Since h(t4,t5,t6) < 1 implies |t4t5] < 1, we have g1(ts,t6,t;1, B) < |t5|!
and thus

sup  gi1(ts,m6/Ye, k3m, B) < Yslog(B) ™.
‘t5|Y5210g(B)A

Summing over 7g using (3.10)), the overall contribution of this error term is
BY?log(B)~4 (name) Blog(B)' 4

Z ow(mnanent) 9w (nz2m9) O1/2.1/200) < Z ow (M n3nT) ow GLTLD)
/ n n
n n
< Blog(B)!*4.
Recalling Lemma [I4], for any fixed A > 10, we have obtained
1 (e p(ks) (k)
N(n',B) = — — k1, B |Y,Y: —_—
(T) ) ) 77992(}/767,%"’ > 415 Z k‘ggD*(kgng) Z k‘4
kg|n2 ka|mnanenz
ged(ks,n7)=1 ged(ka,kgng)=1
p(ks) p(ly) p(ls) /
R B
ks|ninsnent L4|ksno £5|ksng

ged (ks ksno)=1

where }°, Ri(n', B) < Blog(B)?. A straightforward calculation reveals
that the main term of N(n’, B) is equal to

0) o ) (i, ) T

©*(ged(ns, mnan7)) *(ged(ne, mnsng)) ™\ Ye 9

where

Y

©" (n2m9)
©*(ged(n2, 7))
For fixed € V satisfying the coprimality conditions (3.6))—(3.8]), let N(n, B)

be the sum over 7g of the main term of N (7', B), with ng satisfying the height

condition (3.10) and the coprimality condition (3.5). Let us use Lemma [f]
to sum over ng. We find that for any fixed A > 10 and 0 < o < 1,

0(n) = ¢ (mnan7)e* (mnsng)

1
(3.26) N(n,B) = %P@(n)gg(ﬁ; N, B)Y1Y5Ys

Y,Y: -
+0 <5<Pa(772777779)yﬁ sup go(te, K5 M, B)),
M9 teYs>1

where

T

O(n) = 0(n)e™ (mnrme) e’ (n3)¢’ (mnansnine),
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and where o', ¢/, ¢, and P are respectively introduced in (2.36)(2.39).
Using the bound of Lemma [15| for g2 and choosing o = 1/4, we see that the
overall contribution of the error term is

YiYs 11712
ZSOU n2m7M9 TY / <

B
Z 900(772777779)m < B 10g(B)4,
’r’ Pt bt i)
12573,M7,719
since ¢, has average order O(1) and we have summed over 7; using Yg > 1.
Note that
YiY5Ys B

ng  mLLLLY’

The aim now is to remove the conditions |t4|Yy, |t5|Ys > log(B)#4 from the
integral defining g3 in the main term of N(n, B) in and to replace
t¢Ys > 1 by tg > 0. This will replace g3(k;n, B) by g4(k) in the main
term of N(n, B) in . This is more subtle for ¢4 than for t5 and tg.
Indeed, since Y5 > log(B)A and Yz > 1, we can prove that the conditions
|ts| < log(B)?/Ys and tg < 1/Yg in the integral both yield a negligible con-
tribution. However, we do not have Yy > log(B)A SO our reasoning consists
in this case in proving that the contribution corresponding to Y3 < log(B)*
is negligible, which will allow us to assume that Y; > log(B)“ and therefore
conclude as for t5 and tg. For brevity, we set

Dy, = {(ts, t5,t) € R® : t > 0, h(ts, ts,t6) < 1}.
LEMMA 16. For Zy, Zs, Zg > 0,

(3.27) meas{(ts, t5,t6) € Dy [ta| Z4 > 1} < 23/,
(3.28) meas{(t4,t5,t6) € Dp: [ta]Z4 < 1} < Z; 7,
(3.29) meas{(t4,t5,t6) € Dp: |t5|Z5 < 1} < Zy 13,
(3.30) meas{(ty, 5, t6) € Dy t6Z6 < 1} < Zg 1/3.

Proof. The conditions [t4]t3|tsts + tg| < 1 and |tst5| < 1 show that t;
runs over a set whose measure is < mln(tZQtG_Q, ta]™h) < Jta] 7 Mg 1/2
which proves since tg < 1. The bound (3.28) is clear since |t5], tg S 1.
The bound l’ follows from the bound of Lemma for g1 and tg < 1.
In a similar way, is a consequence of the bound of Lemma [15| for g;

and [t5| < 1. =

Using (3.29), we see that removing the condition |t5|Y5 > log(B)# from
the integral defining g3 in the main term of N(n, B) in (3.26)) yields an error
term whose overall contribution is

B
S Vv Pyslog(B) < Y —oiiin < Blog(B)",
n n2,13,M7,1M9 T’



138 P. Le Boudec

where we have summed over 7; using Y5 > log(B)“. In a similar fashion,
(3.30) shows that replacing tgYs > 1 by tg > 0 in the integral defining g3 in
the main term of N(n, B) in also creates an error term whose overall
contribution is < Blog(B)*.

We now assume that Y3 < log(B)# and we bound the contribution of
the main term of N(n, B) under this assumption. The bound shows
that this contribution is

_ B
S Y YaYslog(B) M < Y —iiin < Blos(B).
n a2z e |
We can therefore assume from now on that
(3.31) Y, > log(B)™.

Under this assumption, exactly as for ¢5 and g, the bound shows that
the overall contribution of the error term created by removing the condition
|t4|Ys > log(B)# from the integral defining g3 in the main term of N(n, B)
in is < Blog(B)*. We have proved that for any fixed A > 9,

(3.32) N(n, B) = Pga(k) O(n) + Ra(n, B),

B
n(LLLLI)

where }_, Ro(n, B) < Blog(B)*. The goal of the following lemma is to
replace g4(k) by g4(0) in the main term of N(n, B) in (3.32). By (3.14),
94(0) is equal to

w
m dty dts dtg = ?’O
t6>0, h(ta,ts,te)<1
LEMMA 17. Fort >0,
(3.33) meas{(t4, t5, 1) € Dy |tats + te] < t} < t'/2,

Proof. The conditions |t4|t2|tats + ts] < 1 and |tats + tg| < t imply
that ¢, runs over a set whose measure is < min(|ts|™V/2t5 1, tlts| 1) <
t1/2|t5]*3/4tg1/2, which suffices since |t5],t6 < 1. m

Let us estimate the overall contribution of the error term which appears

if we replace g4(x) by ¢4(0) in the main term of N(n, B) in (3.32). Using
(3.33)) and summing over 79 using (3.20)), we find that this contribution is

B 1/2 B 4
Z n(1,1,1,1,1)“ < Z n(LLLL0) < Blog(B)".
n n1,M2,M3,M7

We have thus obtained the following result.
LEMMA 18. For any fized A > 10,

00 B

2 pLLLLD
where 3, R3(n, B) < Blog(B)*.

O(n) + R3(n, B),
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3.6. Conclusion. Recall the definition (3.25) of V. It remains to sum
the main term of N(n, B) over the € V satisfying (3.31)) and the coprimal-

ity conditions (3.6))—(3.8)). It is easy to see that replacing {n € V: (3.31)} by
the region
Vi={neZly:Ya>1,Y>1,Y > 1, YaYs > 13},

produces an error term contributing < Blog(B)*log(log(B)). Let us re-
define © as being equal to zero if the remaining coprimality conditions
f are not satisfied. Fixing for example A = 10 and combining
Lemmas [13] and [I8] we obtain

6
Nuy,i1(B) = PwasB Y — i 1(’172 5 + O(Blog(B)* log(log(B))).
'T] ytytyty
ney’

Set k = (k1, ka, k3, k7, kg) and define, for s € C such that R(s) > 1,
k1 k2 k3 k7 ko

k k k. k k.
URE ~ pr1sph2spsspiTs plos
P keZl,

5
LIS

If k ¢ {0,1}° then (© % p)(p*1, p*2, p*3, p*7, p*) = 0 and furthermore if only
one of the k; is equal to 1, then (O x p)(p**, p*2, pks | p*7, pko) < 1/p, so the
local factors F), of I satisfy

1
Fp(s) =1+ 0 <pmin(m(s)+1,2%(s)) >’

and thus F' actually converges in the half-plane R(s) > 1/2. This proves
that © satisfies the assumption (2.40) of Lemma [8] We therefore get

O p)(n
Nuy 1 (B) :Pwooa< > W)Blog(Bf
"ezio

+ O(Blog(B)*log(log(B))),

where « is the volume of the polytope defined in R> by ¢y, t,t3,t7,tg > 0
and

2t 4 3ty — t3 + 4ty + 29 > 1,
t1 + 2to + 2t7 +tg < 1,

2t +to +t3 4+ 2t7 < 1,

to +t3 4+ 4tg < 1.

A computation using Franz’s additional Maple package [Fra09] gives o =
1/1440, that is,

a=a(V),
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and moreover

O x O % kl’ k2, ka7 k7’ kg
Z (n(l,lli)l(,?)):H<Z (O * p)(P™,p™, p™, P, p ))

k1 ko ks k7 ko
=1 5 N, phiphapks pktp
5
11 - 3 O(pkr, ph2, phks, pht, pho)
B p ph1 pha2pks pk7 pho '
p kGZSZo

We omit the details of the calculation of the series on the right-hand side;
let us just say that the remaining coprimality conditions greatly simplify
the calculation. We obtain

O(pkr, ph2, ks, ph, pho 1 6 1
Z ( )ch’(p) I-—J{1+=-+=)

k1 pk2 pks pk7 pko
prpTEpTpTp p p p
keZ,

and thus

(©* p)(n) 1 1\°
Z n(LLLLT) =P H 1- P “p»
nEZio p

which completes the proof.

4. Proof for the A; + A, surface

4.1. The universal torsor. We now proceed to define a bijection be-
tween the set of points to be counted on U and a certain set of integral
points on the affine variety defined by . Our choice of notation might
be surprising but our aim is simply to highlight the similarities with the
case of the 3A; surface. Note that for a given (g : x1 : x2 : x3 : 24) € V3,
we have (zg : x1 : x2 : 23 : x4) € Uz if and only if zozixowszy # 0. Let
(0,1, T2, T3, T4) € Z“;O be such that ged(zo, 1, x2, 23,24) = 1 and

xor1 — x2w3 = 0,
T1T2 + Toxg + w324 = 0,

and max{|z;|: 0 <i <4} < B. Define £ = ged(xo, 1, 22, 23) > 0 and write
z; = e, for i =0, 1,2, 3. We thus have ged(&p, 24) = 1 and ged(z), 2, zb, %)
= 1. Now let &3 = ged(xy, o4, 25) > 0. Since ged (&3, ) = 1, it follows that
€3 |z, and we can write x; = &z for j = 2,3 and 2 = £2xy. Moreover,
ged(&3xg, 2, 24) = 1. Let & = ged(xg, 24) > 0 and write a2 = £g&€4 and
zhy = &gys with ged(€4,y3) = 1. The first equation can be rewritten as &2
= afys. Since ged (&4, y3) = 1, we have &4 |2 and we can write ) = {4y
and thus 2} = y2ys3. Let us sum up what we have done until now. We have

been able to find (&g, &3, &8, €4, Y3, Y2) € ZS>0 X Z:;O such that ged (&g, z4) = 1,
ged (€3, y2y3) = 1, ged(€s,&ay) = 1, ged(&a,y3) = 1 and 2o = &E58s6,
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1 = &6Y2y3, T2 = E6€384y2, T3 = E6&388y3. Simplifying by 36, the second
equation gives

Eeyaysés + x4 (Eayo + Esy3) = 0.

Let y23 =ged(y2, y3) > 0 and write y2 =y2385, Y3 =y2380 with ged(&5, &) = 1.
We obtain

E6y33E5€0&a + w4 (Eas + Es&o) = 0.
Since ged(£485,€s&9) = 1, it is obvious that £462&g | z4. If we write z4 =
£4€2¢97)), the equation becomes

Eoyss + T4 (Ea&s + Es&o) = 0.

We now see that since ged(&g,2;) = 1, we have /) | y3; and thus there is a
unique way to write yo3 = £1€2€7 and ) = £3&7 with ged(&1,&2) = 1 and
&5 >0, £1&7 > 0. This leads to

(4.1) €45 + 3667 + Eg€9 = 0,

and so finally zo = £3€486Es, 11 = E16565666780, T2 = E1626364E5E687, T3 =
£169€386878580, T4 = E3E4E287E0; a little thought reveals that, given ,
the coprimality conditions can be rewritten as

ged (8485, &16667) = 1,

ged(€4és, §s69) = 1,

ged(§166€7, §s89) = 1,

ged (&2, §1€3848688) = 1,

ged (&3, 61€58789) = 1,

ged(&e, &) = 1.

Since & — —&; is a bijection on the set of solutions, we can assume that
&1 > 0 and thus &7 > 0, keeping in mind that we have to divide our result
by 2. In a similar fashion, (£g,&9) — (—&s, —&9) shows that we can remove
the condition &g > 0 multiplying our result by 2. To sum up, let 73(B) be the

number of (&1, &, &3, 4, &5, 66, &7, €85 &) € L with €162, 83, &, &7 > 0 and
satisfying (4.1)), the coprimality conditions above and the height conditions

(4.2) &31€4l¢6/¢s| < B,
(4.3) E163 16516667 160] < B,
(4.4) £162831€4851€667 < B,
(4.5) §1628386€716880| < B,
(4.6) &31Eale3erléo] < B.
Since we have not taken into account that x = —x € P* yet, we have finally

proved the following lemma.
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LEMMA 19. We have the equality
1
Ny, 1 (B) = S#T2(B).

4.2. Calculation of Peyre’s constant. We have
evont = (V) B(V2)wr (V2),
where (see [Der(7])
“2) = 5160
I} (%) = 1 since V4 is split over Q, and

wir(Va) = Too H(l - 1>67p,

p

where, thanks to [Loul(, Lemma 2.3],

1+ 0 + -

Tp = -+ .

? p P

Let us calculate 7. Set f1(x) = zox1 —z2xs and fo(z) = 122+ 2024+2324.
Let us parametrize the points of V5 by xg, 2 and x3. We have

0h  Oh T 0
det [ Dn Jea ) = |70 = zo(x2 + 73).
D, Omy T2 X2 + xs3
Moreover, x1 = x273/70 and x4 = —x373/(w0(z2+23)). Since x = —x in P*,
we have
dxo dxo dzs
i oy
xo(x2 + x3)

20>0, z2+x3<0,20, [T223/20|,|T2|,|23],| 2323/ (0 (T2+23))|<1

We introduce the functions

tal [tats + t2|, t2|ts|, t1|tat
(A7) ha:(t4,t5,t1)l—>max{ |ta] |tats + 1], t1|ts], te]ta 5|7}’

t1[tats + 3], [ta|t2

tal, t2\ts| |tats + t2], t1|tats),
(48) Bt (tats,tr) o maxq 1|5||245+21‘ 1“3' .
ty|tats + £3], |ta|t2|tats + 3]

The change of variables given by zg = t4(tsts + t3), 1o = titsts and z3 =

—ty (tats + t2) yields

(4.9) Too =6 m dty dts dty
ta(tats+13)>0,81>0, ha(ta,ts,t1)<1

=3 SSS dty dts dtq.
t1>0, ha(ta,t5,t1)<1
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Moreover, the change of variables xg = t4, xo = t1t4t5 and x3 = —t1(t4t5 +t%)
gives the alternative expression
(4.10) Too =6 i) dty dts dty
t4>0,t1>0, hb(t4,t5,t1)S1
=3 SSS dty dts dtq.
t1>0, hb(tq,t5,t1)<1
Let us repeat here that the proof below is very similar to the one before,
so we will sometimes allow ourselves to be concise.
4.3. Restriction of the domain. The following two lemmas are the
analogues of Lemmas [10] and [T1] respectively.

LEMMA 20. Let Ma(B) be the overall contribution to Ny, r(B) coming
from the (&1,...,&) € To(B) such that |&| < log(B)A for a certain i #
1,2,3, where A > 0 is any fized constant. Then

Ms(B) <4 Blog(B)*log(log(B)).

LEMMA 21. Let Ll, L47 . ,LQZ 1/2 and deﬁne MQZMQ(Ll, L4, . ,Lg)
as the number of (n1,n4,...,ng) € Z7 such that L; < |n;| < 2L; fori =1
and 4 <i <9, ged(ngns, ningny) =1 and
(4.11) n4ans + n%n6n7 + ngng = 0.

Then
My <« L1(L4L5L6L7L8L9)1/2 + LyLgL~ min(L4L5, Lng).

Proof. We can assume by symmetry that LyLs < LgLg. Let us first deal
with the case where L%L6L7 < L4Ls. Then (4.11)) gives LgLg < L4Ls. Let
M} be the number of (ni,ny4,...,n9) € Z7 to be counted in this case. The
first case of the proof of Lemma [11| shows that

M} < L1 LgL7L4Ls.
In the other case where L3LgLy > LyLs, (4.11) gives LgLg < L3LgL7. Let
MY be the number of (nq,n4,...,n9) € 7" to be counted here. Assume by
symmetry that Ly < Ls, Lg < L7 and Lg < Lg. Since ged(ng, ning, ng) = 1,
using [HB03, Lemma 6] we can deduce that
L; < |ng| <2Li, i€ {579
i <|nil <2Li; i €{ } Lo

+# (725,717,719) € 73 gcd(n5,n7,n9) =1 L1+ 2n
176

n4ns + n%n6n7 + ngng =0
Summing over ny, ng, ng and ng, we get
My < LiLyLeLg+ LyLsLgLy/Ly < Ly(LyLsLgL7LgLg)?+ LyLsLyLeLy,
which ends the proof. =
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Proof of Lemma [20 Let Z; > 1/2 for i = 1,...,9 and define Ny =
No(Zy,...,Zy) as the contribution of the (&1,...,&) € 7T2(B) satisfying
Zi < |&| < 2Z; for i = 1,...,9. The height conditions imply that either
Ny =0, or

(4.12) 72747673 < B,
(4.13) 737375767279 < B,
(4.14) 7\ 7y Z3 24 Zs Zs Zr < B,
(4.15) 7\ 797376 %7 Zs 7y < B,
(4.16) 737,72 7779 < B.

Using Lemma |21 and summing over & and &3, we get
Ny <« Z1Z2Z3(Z4Z5ZgZ7Z8Z9)1/2 + 2172973726 Z7 min(Zy Zs, Zg Zg).

Assume that Z4Z5 < ZgZg (the case Z4Z5 > ZgZy is identical). Note that
the torsor equation then gives Z12Z6Z7 < ZgZy. Denote by N the
first term of the right-hand side, and by N2’ the second term. We proceed
to prove that

>N} < Blog(B)".

Z;
First assume that Z12Z6Z7 < Z4Z5. Summing over
Zi/2251/2 B1/2 ) Zi/4B1/4
7273 2,727 7,237 ) T 2y Zh R 2 g

(417) Z; < min<

we get in this case
ZNI < Bl/A‘ZZl/QZ Z3/4 1/2 —1/4 1/2 1/4

Z; Zl
<BN 22,727 < B Y 7Pz
71,2, 71,23,Z3

< Blog(B)4,

where we have summed over Z3 and Z3 using (4.16|) and (4.12)).
Let us treat the case where Z12Z6Z7 > Z4Z5. Summing over Zo using

(4.15)), we obtain
ZN/ <<BZZ1/2 ;/2 ~1/2 71/2Zg1/2Z§1/2

<<BZZIZ81/2 2, <B N z5Pz?
72,24 71,22,Z4
< Blog(B)4,
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where we sum over 74 < ZlZ Y7677 and Z; < Zg 1/2Z 1/2Z§/2Z;/2. Let
us estimate the contribution of AV in the case Z? Z6Z7 g Z4Zs5. Summing

over Z using (4.17), we get
SN <« BN 2, 2323 2528 2y 2

7 7
<B Y z/Pz)lzi'Pzg'P<B Y 1,
71,Z5,Z3 71,22,23,%4

where we have summed over Z; and Z3 using respectively and .
At the last step, we could have summed over Zs instead of Zy4, so if we
assume that |&;| < log(B)4 for a certain i # 1,2,3, where A > 0 is any fixed
constant, we get an overall contribution <4 Blog(B)*log(log(B)).

We now deal with the case where Z12Z6Z7 > Z,Z5. Summing over Zj
and Z3 using (4.13) and (4.12)), we get

SV < B Y 22222 P2

Z 75,73
<B Y nz*zPziPzg'P<B Y1,
Z5,73,24 Z1,22,73,74

—-1/2 ,—-1/2 ,1/2 ,1/2
Pz 1272 72 We

where we sum over Z, < ZlZ 17677 and 7, < Z
can plainly conclude just as above. n

4.4. Setting up First, we note that the torsor equation (4.1)) and the
height conditions and . ) give

(4.18) 762638567 < 2B.

Our goal is to tackle the equation (4.1)) by viewing it as a congruence modulo
& if &9 < |€s| and modulo &g if |£g9] > |&g], so we split the proof into two
parts. Let No(A, B) be the contribution to Ny, g(B) from the (&1,...,&) €

7T5(B) such that
(4.19) 0 <& <[],
(4.20) log(B)" < |&l,
(4.21) log(B)" <[],

where A > 0 is a parameter at our disposal. Symmetrically, let N,(A, B) be
the contribution to Ny, g(B) from the (1,. .., &) € To(B) such that
(4.22) €0l > &5 >0,

(4.23) log(B)" < |&l,

(4.24) log(B)* < |&.
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Note that in both cases, combining (#.4) and log(B)* < |&4], we get
(4.25) log(B)*¢16283¢5/¢6¢7 < B.

Since (€8,&9) — (—&s, —&9) is a bijection on the set of solutions, assuming
&9 > 0 in the first case and & > 0 in the second brings a factor 2. Thus, by
Lemmas [19] and [20] we have the following.

LEMMA 22. For any fixzed A > 0,
Nu,,1(B) = Na(A, B) + No(A, B) + O(Blog(B)* log(log(B))).

The next two sections are respectively devoted to the estimations of
No(A, B) and Ny(A, B).

4.5. Estimating N, (A, B). We see that the assumption & < [£g] and
(4.5)) give the following condition which is crucial in order to apply Lemma

B
182838687

We first estimate the contribution of the variables &4, &5 and £g. We rewrite
the coprimality conditions as

(4.26) & <

(4.27) ged(Es, £16264858667) = 1,
(4.28) ged (€4, €182866780) = 1,
(4.29) ged(&s, §163866780) = 1,
(4.30) ged (&1, 628380) = 1,
(4.31) ged (&3, €28789) = 1,
(4.32) ged (e, 28789) = 1,
(4.33) ng(§7,§9) =L

We view the torsor equation (4.1)) as a congruence modulo &g. To do so, we

replace the height conditions , (4.5) and (4.19) by the following (we
keep denoting them by . and (4.19) respectively), obtained using
the torsor equation (4

5%\54!56|54f5 + & 6orléy !
&1626386871485 + E6667] < B,
€5 < 1&a&s + E168rl.-
Set &, = (51,52,53,56,57,59) 6 Zgo. Assume that &/ is fixed and subject

to the height conditions and (4.26) and to the coprimality condi-

tions - Let N Ea, B) be the number of &4, & and &g satisfying
the torsor equation (4.1)), the height conditions —(4.6)), the conditions

(4.19)—(4.21)) and the coprimality conditions (4.27))—(4.29).
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LEMMA 23. For any fized A > 8,

NELB) =~ Y sy ST k)

kso*(k
& kg|é2 s (ko) k4|€1628687 ksl€1€38687
ged(ks,é7)=1 ged(ka,ks€o)=1 ged(ks,kglo)=1
x Y p(a)u(ts)C(&L, B) + R(€,, B),
L4]kso
£5]ks&o

where, setting &4 = kals&l and & = ksls&l,

/ _ "N 2 . 7
C(EavB)_#{( 4765)€Z¢0' }}

and 3 g R(¢,, B) < Blog(B)2.

Let us remove the coprimality condition (4.27)) using a Mobius inversion.
We get

NE,.B) = Y p(ks)Sk (&, B),
ks|€16284858667

where

€485 + ks&ilo = —E7&6Er
! By ne s . ED-ES
Sk8(£a7B) - # (64755758) € Z;ﬁo 7
#.29),

If ged(ks, §186€7) # 1 or ged(ks, €4&5) # 1 then ged(&és, §1€6€7) # 1 and
thus Sk, (€}, B) = 0, so we can assume ged (ks, £1€4€586€7) = 1. We have
€485 = —£7€6&7 (mod kséo)
/ _ 2 7 /
Sk8(£avB) =# (54765) GZ#O' 7 +R0<€a?B)7
(@.29),

where the error term Ry(£),, B) comes from the fact that & has to be non-
zero. Otherwise, we would have 465 = —£2£6¢7 and thus |[&4] = |&5] = & =
&6 = &7 = 1. Summing over &y using (4.26), we easily obtain

> |ulks)|Ro(£,,, B) < Blog(B)®.
ks, &,

Let us remove the coprimality conditions (4.28)) and (4.29). The main term
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of N(&,, B) is equal to

oo ouks) D k) Y p(ks)S(€L B),

kgléo k4l€162€68780 ks|€1€386€760
ged(ks,E16687)=1 ged(ka,kséo)=1 ged(ks,kséo)=1

where, with the notations {4 = k4&j and & = k&L,

€165 = —(kaks) "' €¢€6&r (mod ks&y)
S(&,, B) = # 1 (€4,65) GZ D (@2)-([106)
E19)-[E21)
Indeed, we clearly have ged(kqks, kséy) = 1 since ged(kgéo, £186€7) = 1. We

can therefore remove & from the conditions on k4 and k5. We now proceed
to apply Lemma [3| To do so, define

B

kaks€1€2838667
An argument identical to the one developed in the proof of Lemma[I4]shows
that assuming kg < (ksks)~"/2X /6 produces an error term N'(¢!, B) with

ZN/(E/ B) - < B >1+2€1/12 N Qw(&) < B >1/2+€
o v §162€38687 §182838667 '

Choosing € = 1/48 and summing over &3 using (4.18)), we see that

Y N'(g,B) <
g/

X =

B w(é2) B
Z 13/12, L25/21,05)21 T 2 ’ 47/24, ,71/48 71/48
£1,82,6,67 ~S1 £ g 5 & &2 f f

< Blog(B)>.
The assumption kg < (kz4k5)_1/ 2x1/6 and (4.26) prove that now kg&y
< X?/3. We apply the first estimate of Lemma [3| with L; = log( )A/k4,

Ly = log(B)*/ks and T = £3¢6&7/ (kaks). We have T < 2X by (4.18) and
k&g < X2/3 thus Lemma (3| shows that

, o X2/3+5 X ]{,‘4 k5 >)
(8o B) = 576w, B) + O((k8£9)1/2 " o kst) <log<B>A " log(B)

for all € > 0, with

) ged(€)&5, kséo) = 1
S*(&, B) = ———# 9 (€1,&5) € Zg
( a ) go(ksﬁg) ( 4565 . .
The Mobius inversions do not play any part in the estimation of the contri-
bution of the first error term. Using (4.26)) to sum over &g, we find that this
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contribution is

> (eoees) <2 ’
7/6—2¢ 13/12—¢ +13/12—¢
£1,62,€3,86,87 §1828386¢7 §1,62,86,67 S1 5256 7

< Blog(B)
for e = 1/24, where we have used (4.18]) to sum over £3. The contribution
of the second error term is

w(&1828687) Blog( )
Z 2 §1£263866789

which is satisfactory provided that A > 8. The contribution of the third
error term is also < Blog(B)'*~4. Furthermore,

S*<sg,B>=® S ) D nits)CUEL B),

L4|ks&o £5]ks&o
with the notations & = £4&} and & = ¢5£7. It is obvious that

, X\

Let us use this bound to estimate the overall contribution of the error term
produced if we remove the condition kg < (ksks)~'/2X'/6 from the sum

over kg. Writing kg > k;/2(k4k:5)_1/4X1/12 and choosing € = 1/24, we infer
that this contribution is

Z 1 ( B >23/24 Z B 2
Eo \ £16063E6E7 < < Blog(B)~.
~ &9 \ £1£2838687 (e 6 13/125 525/24525/245

—A
< B log(B)lO*A,

We can remove the condition ged(ks,£186) = 1 from the sum over kg since
it follows from kg |& and ged(&1€6,&2) = 1, which completes the proof of
Lemma 23]

We intend to sum over & also. For this, we set &, = (&2,&3,6,&7,&9)
. We also define &, (rars.re.rrre) 57637850 &77Ey” for (ra,73,76,77,79)
€ Q5. Setting

1/3
Yy = 6&—2/3,4/?,2/3,—1/3,—1)’ i = ]{3:24’
v B!/ v_ Y5

5= €g;/s,fz/g,f1/3,2/3,1)’ 5 7 ksls’
v BL/3

5(1/3,1/3,2/3,2/3,0)’
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and recalling the definition (4.7) of the function h®, we can sum up the
height conditions (4.2))—(4.6) as

W&/ YL, & /Yy & /Y1) < 1.
Note also that (4.18) can be rewritten as
&)Y <213

We also define the following real-valued functions:

gZCLL : (t5at17t§£aaB) = S dt4a
ho(ta,tst1)<1,t<|tats+t3], |t4|Ya>log(B)A
gg : (tlat;saaB) = S g?(tﬁ—)atlyt;gaaB)dt&

|t5]Ys>log(B)4

gg : (ta EavB) = S g%(tlvt; EauB)dtl)
t1>0

gd it — i) dty dts dt;.
t1>0, % (ta,t5,t1) <1, t<[tats5+t3|

The condition t < |t4t5+t7| corresponds to (4.19)) which can now be rewritten
as

& _|a g (ay

YaYs — |V Y i) |
We denote by x, the left-hand side of this inequality.

LEMMA 24. We have the bounds
g%(tfn t17 tv £a7 B) < t1_1|t5’717 gg(tla ta Eav B) < 1.
Proof. Recall the definition (4.7) of the function h®. The first bound
is clear since |t4t5]t; < 1. Moreover, the conditions |t [tsts + 2] < 1 and
|t4|t2 < 1 show that t5 runs over a set whose measure is < min(t; 2, |ts|~1/?).

Splitting the integration of this minimum over ¢4 depending on whether |t4|
is greater or less than 1 completes the proof. =

It is easy to check that &, is restricted to lie in the region
(4.34) Vo ={& €Z2: Y1 > 2713, "VaYs > &3},
Assume that §, € V, and & € Z-( are fixed and satisfy the coprimality

conditions 74.33.

We now proceed to estimate C(¢£/,, B). Recall the condition which
can be rewritten as |€7| < V1€, 'Y3YZ log(B) 4. Let us sum over £/ using
the basic estimate #{n € Z: t; <n < ts} = ts —t; + O(1). The change of
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variable ¢4 — Yty shows that
C(¢,,B) = > (Vi gl (&) YY &1/ Y1, Kai €4, B) + O(1)).
e/ |<Y1€7 ' YaYY log(B) =4

We see that the overall contribution of the error term is

Blog(B)~4
Z 9w (§18286€7) 9w (€289) (101g1(1 1)) < 10g(B)137A,
. g,

Let us now sum over ;. Using partial summation and the change of variable
ts — Y7'ts, we obtain

C(&, B) = Y{'Y5'95(61 /Y1, K3 €4, B)

+O(}/4” sup g(ll(t57£1/}/17’%a;£a7B))‘
[t5]Y5>log(B)4

Using the bound of Lemma [24] for gf, we get

sup  gM(ts, &1/ V1, K; €,y B) < Yslog(B)™4Y1 /61
t5]|Y5>log(B)4

The overall contribution coming from this error term is therefore

—A
Z 2w(§1£3€6£7)2¢U(€2£9) B log(B) < B 10g(B)12_A.

50’171’171)51
& @
Recalling Lemma we find that for any fixed A > 9,
/ 1 ©*(&1) ©*(&1)
N(€,, B) = —04(&,
(Car B) = 0 (80) i (e (61, 2606) 7 (eed (Er. 6o

x g5(&1/Y1,ka; €4, B)YaYs + Ri (€, B),

o . _ P(&b)
0a(€s) = 0" (§28687)p (535657)S0*(gcd(£2757))

and > e Iy (¢, B) < Blog(B)*. For fixed £, € V, satisfying the coprimal-

ity conditions (4.31))—(4.33)), let N(&,, B) be the sum over & of the main
term of N (¢, B), with & subject to the coprimality condition . Let
us make use of Lemma [0] to sum over £. We find that for any fixed A > 9
and 0 <o <1,

where

_1
&

Y,Y:
+O< 1 5(/70'(525359))/10— sup gg(tlaﬂa;€a73)>7
59 t1>0

(4.35)  N(&., B) POa(€4)93(Ka; €4, B)YaY5Y1

where

Ou(&,) = 0a(&,)9" (§28380) ¢ (§2€38687E0)-
Using the bound of Lemma [24] for g3 and choosing o = 1/2, we see that the
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overall contribution of the error term is

Y, Y: B
> po(&28ao) 4595 D D (€28380) iy < Blog(B)",
£a £2a£37£6>£9 S

where we have summed over &7 using Y7 > 271/ and used the fact that ¢,
has average order O(1). Note that

YiYsY) B

& 5[(11,1,1,1,1)‘

For brevity, we set
Dpa = {(ta, t5,t1) € R®: t; > 0, h%(ty, t5,11) < 1}.
LEMMA 25. For Zy,Z5 > 0,

(4.36) meas{(tq,t5,t1) € Dpa: |t4|Z4 > 1} K Zy,
(4.37) meas{(t4,t5,t1) € Dpa: |t5|Z5 > 1} < Zs,
(4.38) meas{(ty, t5,t1) € Dpa: [ta] Z4 < 1} < Z; /2,
(4.39) meas{(t4,t5,t1) € Dpa: |t5|Z5 < 1} < Z 1/2.

Proof. First, the conditions t[t4t5] < 1 and ti|tsts5 + t2| < 1 show that
we always have 3 < 2. Using |t4] [tats + 3| < 1, we see that t5 runs over
a set whose measure is < |t4|72 and thus integrating over ¢; using t3 < 2
gives . Since |t4]t2 < 1, we see that ¢4 runs over a set whose measure
is < t5°. Integrating this over ¢; using t3 < 2 leads to . Furthermore,
integrating over t5 using |t4|t2 < 1 and then over #; using t3 < 2 leads to
(4.38). Finally, the condition |t4| [tat5 + t3| < 1 shows that ¢4 runs over a
set whose measure is < ]t5]_1/ 2 and integrating this quantity over ¢ using
t3 < 2 proves . n

Exactly as in Section for the case of the 3A; surface, the bounds
and show that if we do not have Yy, Y5 > log(B)%, the contri-
bution of the main term of N(&,, B) is < Blog(B)*. Thus we can assume
from now on that

(4.40) Yy > log(B)*,
(4.41) Ys > log(B)*,

and the two bounds - ) therefore show that removing the condi-
tions |t4|Ya, |t5|Ys > log( )A from the integral defining ¢§ in the main term
of N(&,,B) in creates an error term whose overall contribution is
< Blog(B)*. We have thus proved that for any fixed A > 9,

B
(4.42) N(¢,, B) = Pgi(“a)mea(ﬁa) + Ra(&,, B),

where 3 . Ry(§,, B) < Blog(B)*.
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LEMMA 26. Fort > 0,

(4.43) meas{ (4, t5,t1) € Dpa: |tats + 3] > t} < t73/2,
(4.44) meas{(t4, t5,t1) € Dpa: |tats + t3] < t} < t'/2.

Proof. First, the conditions [t4]|tats + t3| < 1, t1|tats + 3] < 1 and
[tats + t3| > t yield t[t4] < 1 and tt; < 1. Therefore, integrating over t;
using [4]t2 < 1 and then over |t4],t; < ¢! yields (.43). In addition, the
condition |t4t5 + t3| < t shows that t; runs over a set whose measure is
< min(t|ts| 71, |ts|1/2) < t1/2|t5|73/%. Integrating this quantity over ¢ using
£2|t5| < 1 and then over t; using 3 < 2 gives (4.44). u

The bound (4.43)) shows that if k, > 1, the contribution of the main
term of N(&,, B) is < Blog(B)*, thus we assume from now on that s, < 1,
that is,

(4.45) YiYs > €2,

Replacing g{(kq) by ¢4(0) in the main term of N(&,, B) in (4.42)) therefore
produces an error term whose overall contribution is < Blog(B)* thanks to

(4.44). Since g$(0) = 7o0/3 by (4.9)), we have obtained the following result.
LEMMA 27. For any fized A > 9,

Too B
N(¢,, B) = 7)? mea(éa) + R3(&,, B),

where 3 ¢ R3(§,, B) < Blog(B)*.

Recall the definition (4.34) of V,. It remains to sum the main term

of N(&,,B) over the &, € V, satisfying (4.40), (4.41) and (4.45) and
the coprimality conditions (4.31))-(4.33). It is easy to check that replacing

{€, € V,: (4.40), (4.41), (4.45) } by the region
V,={6,€Z%: Y4 >1,Y;s>1,Y1 > 1, Y,Y; > &}

produces an error term whose overall contribution is < B log(B)* log(log(B)).
Let us redefine ©, as being equal to zero if the remaining coprimality con-
ditions (4.31))—(4.33) are not satisfied. Lemma [27| proves that for any fixed
A>9,

N,(A, B) PTOOB > =
£,V
As in Section O, satisfies the assumption (2.40) of Lemma |8 and thus
Too (O * p)(€a) 5
£.€2%, S¢
+O(Blog(B)*log(log(B))).

P 171’171’1 + O(Blog(B)*1og(log(B))).
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where «, is the volume of the polytope defined in R® by to, t3,ts,t7,t9 > 0
and
—2tg + 4t3 4+ 2tg — t7 — 3tg < 1,
dtg — 2ts —tg + 2t7 + 3tg < 1,
to +t3 + 2ts + 2t7 < 1,
2tg + 2t + tg + t7 + 619 < 2.

A computation using [Fra09] gives

1871

(4.46) % = 5016000’

and moreover, as in Section

(O * p)(€,) 6
Z%: 1H< )Tp»

€.€7%, S¢
thus we have obtained the following lemma.

LEMMA 28. For any fited A > 9,
1 —
Nu.(A,B) = gaawH(Vg)Blog(B)‘:’ + O(Blog(B)*1og(log(B))).

4.6. Estimating N,(A, B). Note that the assumption |{9| > &5 and
(4.5) yield in this case

B
§162838667

We estimate the contribution of the variables &4, &5 and &. To do so, we
rewrite the coprimality conditions as

(4.48) ged (o, £1€364858667) = 1,
(4.49) ged (€4, €182866788) = 1,

(4.50) ged (&5, €1€386678s) = 1,

(4.51) ged (€1, €2838s) = 1,
(4.52)
(4.53)
(

(4.47) €<

ged(§2,838688) = 1,
ged (&7, 838688) = 1,
4.54) ged(és,&6) = 1,

This time, we want to view the torsor equation (4.1]) as a congruence mod-

ulo &. To do so, we replace (4.3)), (4.5]), (4.6 and (4.22)) by the following (we
keep denoting them by (4.3]), (4.5, (4.6) and (4.22)), obtained using (4.1)):
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263165166621 6aks + 36660165 < B,
162638667 |E485 + E166E7| < B,
e2|ea|e2er|€as + 2666n1E5t < B,
€ < |€as + ET¢etrl-
Set &, = (&1,62,8&3, &6, &7, &) € 78 Assume that €] is fixed and satisfies the

height conditions (4.18) and (4.47) and the coprimality conditions (4.51])—
([4.54). Let Ny(&, B) be the number of &4, & and &g satisfying the torsor

equation (4.1)), the height conditions (4.2])—(4.6)), the conditions (4.22))—(4.24)
and the coprimality conditions (4.48[)—(4.50)).

LEMMA 29. For any fized A > 8,

N(EZ,B)ZL > _plks) S ulk) D> plks)

kowo* (K
& e Reetlkets) ks €1 EaEotr
ged(kg,&6)=1 ged(ka,koés)=1 ged(ks,kgég)=1
X Y p(la)pu(fs)C (&, B) + R(&, B),
l4|koés
l5|koks

where, setting &4 = kals&l and & = ksls&l,

4.2)—(4.6
C(ngB):# (Z? g)ezgéo: ’
{292
and Zg;} R(¢,, B) < Blog(B)2.
Let us remove the coprimality condition (4.27]) using a Mobius inversion.
We get

N, B)= > ulke)Sk (&, B),
ko|€1€384858687
where
€485 + kolsy = —E3€6&7
— e ED-E6)
Sk9(£b7 B) - # (64?55759) € Z#O . _
(@.49).
If ged(ko, §18687) # 1 or ged(kg, €4€5) # 1 then ged(§4és,£18667) # 1 and so
Sk, (€}, B) = 0; thus we can assume ged(kg, £1€4€5€6€7) = 1. We have
€45 = —E7&6E7 (mod ko&s)
) By » . @E-E9 :
Skg(gb?B) - # (54755) € Z;é(] 7 + RO(SbaB)7
(@.49).
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where the error term Ry (&), B) comes from the fact that &) has to be non-
zero. Otherwise, we would have {465 = —£2£3¢7 and thus |&4] = |65 = & =

&6 = & = 1. Summing over &g using (4.47)), we easily obtain

> |ulko)|Ro (&}, B) < Blog(B)?.
ko &},

We now remove the coprimality conditions (4.49)) and (4.50). The main term
of N (&}, B) is equal to

> pko) > p(ka) > p(ks)S(&, B),

kgl€s k4l€162€687E8 k51€16386€7¢Es
ged(ko,€18687)=1 ged(ka,kos)=1 ged(ks,koés)=1

where, setting {4 = k4&) and & = ks&f,

€465 = —(kaks)1€386E7 (mod kols)
S, B) =#1{ (€.&) € 2% [E2)-EH)
-2
Indeed, since ged(kols,E186€7) = 1, we have ged(kqks, koég) = 1. We can

therefore remove &g from the conditions on k4 and k5. Everything is now in
place to apply Lemma (3| Set

- B
 kaks&&63&eér

An argument identical to the one given in the proof of Lemma shows
that assuming kg < (ksks)™"/2X /6 produces an error term N'(&}, B) with

B 1426-1/12 B 1/2+e
o b wés) (=2
2N (cacee) 2O (et

Choosing ¢ = 1/48 and summing over & using (4.18)), we get

B B
13
ZN,(SZ’ B) < Z ( 13/12 25/24 25/24 + ZW( 3) 47/24 71/48 71/48)
I £1,63,66,67 ~S1 €3 5 51 5356 57

< Blog(B)>.
The assumption kg < (kiks)~V/2X1/0 and (LI7) give koés < X2/% We
proceed to apply the second estimate of Lemma [3] Set as in the first case

Ly = log(B)*/ky, Ly = log(B)"/ks and T = £3¢6&7/ (kaks). We have T <
2X by - ) and kg&g < X2/3, thus Lemma shows that

, e X 4/5+e X k4 ks
56, B) = 57(&, B) + O<<k9§8>7/10 T (k) <log<B>A * 1og<B>A)>
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for all € > 0, with
1 ged (6465, kols) =1
S (EbvB)Zm# (&, &5) €Z c (12)-(a06)
(@.22)-(@29

Using (4.47)) to sum over &g, we find that the contribution of the first error

term is
Z <
£1,82,63,86,87 51525356&

for ¢ = 1/40, where we have summed over &3 using (4.18). The contri-
butions of the second and third error terms are easily seen to be both

< Blog(B)'%~4, which is satisfactory if A > 8. Furthermore,

SW&Jﬂ—¢“;wZ:mﬁ)EijHC@&B%

L4]ko&s L5]ko&s
where we have set & = £4&] and & = (5¢. Tt is plain that

/ X\
C@mb<(&&) .

Let us use this bound to estimate the overall contribution of the error term
produced by removing the condition kg < (k4ks)~/2X'/6 from the sum

over kg. Writing kg > k;/Q(k4k5)_1/4X1/12 and choosing ¢ = 1/24, we see
that this contribution is

1 B 23/24 )
;§<55555) < Blog(B)"

as in Section We can remove the condition ged(kg, £1£7) = 1 from the
sum over kg since it follows from kg | 3 and ged(£1£7,&3) = 1. This ends the
proof of Lemma

We intend to sum also over &; and we therefore set &, = (§2, &3, &6, &7, &3)

€ Z3 . We also set ££r2’r3’r6’r7’r8) = E2EPEL0ENTER for (1o, 73,76, 77, 78) € QP
and finally

19/20+¢
) < Blog(B)

B Yy
Y= ——— Y/ =
4 l()0,2,1,0,1) ’ 4 k4g4’

(_2/374/372/37_1/371)
Yy = b yr— Y5
b B1/3 U Ty P
B1/3

Y, =

(1/3,1/3,2/3,2/3,0)
b
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Recalling the definition of the function h®, we can sum up the height
conditions f as
W&/ Y] 6/ Y 6 /) < 1.
Note that, as in the first case, can be rewritten as
/Y, <213,

We also introduce the following real-valued functions:

9y (ts,t1, €, B) — S dts,
RY(ta,ts,t1)<1,t<|tats+t3], [ta]Ya>log(B)A
gg : (tl,t, Eb’B) = S gll)(t57t17t;€b7B) dt57

[t5|Ys>log(B)4
g5 (6, B)— | gh(t1,t:€, B)dt,
t1>0
diite 1) dty dts dt;.
t1>0, kO (ta,ts,t1) <1, t<|tat5+t2]|

The condition t < |t4t5+t7| corresponds to (4.22)) which can now be rewritten
&

as
& & <€1>2
vavs |7 v T\vi) |
We denote by xp the left-hand side of this inequality.
LEMMA 30. We have the bounds
i (ts 1,66, B) < 7 s gb(tr, 66, B) < 1,

Proof. Recall the definition of the function hb. The first bound
is clear since t;|tst5| < 1. For the other one, the conditions |t4] < 1 and
|ta|t3|tsats + t3| < 1 show that t4 runs over a set whose measure is <
min(1, |t5|~3/?). Splitting the integration of this minimum over t5 depending
on whether |t5| is greater or less than 1 provides the desired bound. m

<

It is immediate to check that &, is restricted to lie in the region
(4.55) Vy = {& € Z2,: Y4 > log(B)4, 1 > 271/3}.
Assume that £, € V) and & € Z-o are fixed and satisfy the coprimality

conditions (4.51)—(4.54).

We now turn to the estimation of C(&}, B). Let us sum over £] using
the basic estimate #{n € Z: t; <n <ts} =ty —t; + O(1). The change of
variable t4 — Y,'t4 shows that

C(SZ,B) = Z (Yzlllgllj(gg/yglagl/ylvHb;ébvB) +O(1))
/| <Y1€; ' YaYY log(B)~4A
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The overall contribution of the error term is

—A
Z gw(§1828687) 9w (€3€s) M < 10g(B)12_A.

1,1,1,1,1
& 51() )fl

Let us now sum over &/. Using partial summation and the change of variable
ts — YZ't5, we obtain

C(&,B) =YYy "(a/yl,nb,sb, B)

+ O( 1 sup 9h(t5, &1/ Y1, kp; &, B)).
|t5]Ys>log(B)A

Using the bound of Lemma, [30| for gll’, we get

sup  ¢b(ts, &1/ Y1, k3 €&y, B) < Yslog(B) ™Y1 /6.
[t5|Y5s>log(B)4

The overall contribution coming from this error term is therefore

A
Z 9w ( 61535657)2w(53§s)w < B 10g(B)13_A
(1,1,1,1,1) :
fb 51
Recalling Lemma [29] we find that for any fixed A > 9,

/ 1 (P*(él) QD*(&)
N =0
(&, B) & b(€b>¢*(gcd(€1,§2§6§7)) ¢*(ged (&1, €386€7))

X gg(gl/YI, Hb?éb: B)YZIYE) + Rl(fé; B)7

where

©*(£388)
(ng(fs &6))

and ng Ry (EZ, B) < Blog(B)*. For fixed &, € V, satisfying the coprimality
conditions (4.52)—(4.54)), let N(&,, B) be the sum over & of the main term of

N(¢;, B), Wlth &1 subject to the coprlmahty condition - Let us make
use of Lemma [f] to sum over &;. We find that for any fixed A > 9 and
0<o <1,

(4.56) N(&, B) = ;P@b@b)gg(m;sb, B)YiYsVi

Y,Yr
+ O (YT sup (.15 64. ) ).

0(&p) = " (&28687) ™ (€386ET)

where

Op(&y) = 0(&p) " (§28388) ¢’ (€2638687Es)-
Using the bound of Lemma [30| for g4 and choosing o = 1/2, we see that the
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overall contribution of the error term is

Y.Y: B
D wol&atsts) VP < 3 wol@lsts) gy < Bloa(B)!
& £2,£3,66,88 £b

where we have summed over &; using Y; > 271/3. Note that
Y,YsYs B

(L,L,1,1,1)°
&s ¢!
For brevity, we set
Dhb = {(t4,t5,t1) € Rgi t1 >0, hb(t4,t5,t1) < 1},

LEMMA 31. For Z4,Zs > 0,
1/2

(4.57) meas{(t4,t5,t1) € Dy ’t5’Z5 > 1} < Z5 r
(4.58) meas{ (t, t5,t1) € Dyo: |ta]Zs < 1} < 2,3,
(4.59) meas{ (L4, t5,t1) € Dy : [t5]Z5 < 1} < Z5*.

Proof. Asin Lemma we have 3 < 2. The condition |t4|t2|tsts+t3| < 1
shows that ¢, runs over a set whose measure is < |t5|~%/2 and integrating
this over t; < 1 yields . Concerning , we split the proof into
two cases depending on whether [tst5 + t3| is greater or less than [t]'/3.
If |tats 4 t3| > |ta4|'/3, the condition |ta|t2|tats + 7] < 1 gives [t4]*/312 < 1
and integrating over t; using this inequality and over ¢; < 1 gives the
result. In the other case, t5 runs over a set whose measure is < |t4]|~2/3
and integrating this over t; < 1 also gives the result. Finally, is an
immediate consequence of |t4] <1 and t; < 1. =

As in Section the bound (4.57) shows that if we do not have Y5 >
log(B)4, the contribution of the main term of N(&,, B) is < Blog(B)*.
Thus we can assume from now on that

(4.60) Y5 > log(B)4,

and since also Y; > log(B)4, the two bounds (4.58) and ([.59) prove that
removing the conditions |t4|Yy, [t5]Ys > log(B)* from the integral defining
g5 in the main term of N(&,, B) in produces an error term whose
overall contribution is < Blog(B)*. We have thus proved that for any fixed
A>9,

B
(4.61) N(&,,B) = Pgi(“b)m(ab(ﬁb) + Ra(&y, B),
b

where 3, Ra(&;, B) < Blog(B)*.
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LEMMA 32. Fort > 0,

(4.62) meas{(tq,t5,t1) € Dy |tats + 12| > t} < t73/2,
(4.63) meas{(t4,t5,t1) € Dyt [tats + 3] <t} < /2.

Proof. For (4.62), the conditions t[tats + 3| < 1, [ta|t2|tats + 3] < 1
and |tyt5 + 3] > t give t1t < 1 and |t4|t3t < 1. Integrating over t5 using this
inequality, then over |t4] < 1 and over t; using ¢t < 1 yields (4.62)). For
(4.63)), the conditions #2|t5| [tats +13| < 1 and |t4t5+13| < t show that t5 runs
over a set whose measure is < min(t] '[ts] /2, t|ts| 1) < t1/2tf1/2|t4|_3/4.
This concludes the proof since t1, [t4] < 1. =

The bound (4.62)) shows that if s, > 1, the contribution of the main
term of N(&,, B) is < Blog(B)*, thus we assume from now on that s, < 1,
that is,

(4.64) YiYs > &.

Replacing g4(ky) by ¢4(0) in the main term of N(&,, B) in (#.61) there-
fore creates an error term whose overall contribution is < Blog(B)*. Since

g4(0) = 7o /3 by (.10), we have obtained the following result.
LEMMA 33. For any fizred A > 9,

Too B
N(&,, B) = P? €(1,1,1,1,1)
b

where 3 ¢ R3(&;, B) < Blog(B)*.

Recall the definition of V. It remains to sum the main term of
N(&,, B) over the &, € V, satisfying and and the coprimality
conditions 74.54. It is easy to see that replacing {&, € V: ,
([.64)} by the region

={&, €72 :Ya>1,Y;>1,Y) > 1, V,Y; > &}

produces an error term whose overall contribution is < B log(B)*log(log(B)).
Let us redefine O} as being equal to zero if the remaining coprimality con-
ditions (4.52))—(4.54) are not satisfied. Lemma [33| proves that for any fixed
A>9,

O (&) + R3(&p, B),

Too Op(
Ny(A, B) = P-B > : Lﬁf’;’l + O(Blog(B)*log(log(B))).
&V, Sb

As in Section Oy, satisfies the assumption (2.40)) of Lemma [§] and thus
Ny(A, B) = PTOOab< 3 M)Blog(z}f

3 5(171717171)
&€, b

+ O(Blog(B)" log(log(B))),
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where o, is the volume of the polytope defined in R® by to, ts, ts, t7,tg > 0
and

s+ tg +tg < 1,
~ Oty + At + g — t7 + 3ty > 1,
to + t3 + 2tg + 2ty < 1,
2ty + s + t + t7 + 6tg < 2.
A computation using [Fra09] gives
929

2016000’
and exactly as in the case of N,(A, B), a calculation provides

Op* ) (€
R (B

stZiO Eb IR}

(4.65) ap =

We have proved the following lemma.

LEMMA 34. For any fized A > 9,
1 —~
Ny(4, B) = sopwi (V2) Blog(B)” + O(B log(B)" log(log(B))).

We now fix A =9 for example. The equalities (4.46]) and (4.65]) yield
g+ ap = 304(,1‘/;),

and we immediately complete the proof putting together Lemmas
and 341
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