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1. Introduction. In this paper we study the diophantine equation

(1) F (Sk(x)) = dyn in integer unknowns x, y, n ≥ 2,

where F (x) ∈ Q[x] and 0 6= d ∈ Z. Here Sk(x) = 1k + 2k + · · · + xk is the
sum of the first x kth powers for a positive integer k. As is known, Sk(x) is
strongly related to the Bernoulli polynomials, namely

(2) Sk(x) =
Bk+1(x+ 1)−Bk+1(0)

k + 1
.

For k = 0, 1, 2, . . . , the Bernoulli polynomials Bk(x) are defined by

(3)
tetx

et − 1
=
∞∑
k=0

Bk(x)tk

k!
, |t| < 2π.

In 1956, Schäffer [15] investigated the equation

(4) Sk(x) = yn.

He proved the following.

Theorem A. For fixed k ≥ 1 and n ≥ 2, (4) has at most finitely many
solutions in positive integers x and y, unless

(5) (k, n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)},
where, in each case, there are infinitely many such solutions.

Schäffer’s proof used an ineffective method due to Thue and Siegel so
his result is also ineffective. This means that the proof does not provide any
algorithm to find all solutions. Applying Baker’s method, Győry, Tijdeman
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and Voorhoeve [10] proved a more general and effective result in which the
exponent n is also unknown.

Theorem B (Győry, Tijdeman and Voorhoeve [10]). Let k ≥ 2 and r be
fixed integers with k 6∈ {3, 5} if r = 0, and let s be a square-free odd integer.
Then

(6) sSk(x) + r = yn

in positive integers x, y ≥ 2, n ≥ 2 has only finitely many solutions, and
they can all be effectively determined.

Later, various generalizations and analogues of Theorem B have been
established by several authors [4]–[7], [11], [12], [17], [18]. For a survey of
these results we refer to [9] and the references given there. Here we present
only the result of Brindza [4].

Theorem C (Brindza [4]). Set A = Z[x], κ = (k + 1)
∏
p−1|(k+1)! p

(p prime), and

F (y) = Qny
n + · · ·+Q1y +Q0 ∈ A[y].

If Qi(x) ≡ 0 (mod κi) for i = 2, . . . ,m, Q1(x) ≡ ±1 (mod 4), and k 6∈
{1, 2, 3, 5} then all solutions of the equation

(7) F (Sk(x)) = yn

in integers x, y ≥ 2, n ≥ 2 satisfy max(x, y, n) < c1, where c1 is an effec-
tively computable constant depending only on F and k.

The purpose of the present paper is to give a generalization of Theorem B
and an extension of Theorem C to the case when the polynomials Qi(x) are
arbitrary constant polynomials. Our new results are in Section 2. The proofs
are given in Sections 3–5. In Section 6 we list the results and lemmas which
we need for the proofs of our Theorems 2.1 and 2.3.

2. New results

Theorem 2.1. Let F (x) be a polynomial with rational coefficients and
d 6= 0 be an integer. Suppose that F (x) is not an nth power. Then the
equation

(8) F (Sk(x)) = dyn

has only finitely many integer solutions x, y ≥ 2, n ≥ 2, which can be effec-
tively determined provided that k ≥ 6.

We remark that we do not impose any conditions on the coefficients of
the polynomial F (x). In the special case when F (x) = sx + r is a linear
polynomial we can prove the following extension of the result of Győry,
Tijdeman and Voorhoeve [10].
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Theorem 2.2. Let k > 1, r, s 6= 0 be fixed integers. Then apart from the
cases when (i) k = 3 and either r = 0 or s + 64r = 0, and (ii) k = 5 and
either r = 0 or s− 324r = 0, the equation

(9) s(1k + 2k + · · ·+ xk) + r = yn

in integers x > 0, y with |y| ≥ 2, and n ≥ 2 has only finitely many solutions
which can be effectively determined.

In the proof of this theorem we will exhibit, in each exceptional case, an
equation which has infinitely many integer solutions x, y and n ≥ 2.

We note that in the case k = 1 the equation

(10) 8t2n(1 + 2 + · · ·+ x) + t2n = yn, t ∈ N,
has infinitely many integer solutions x = (zn − 1)/2, y = (zt)2, n, where
z ≥ 1 is an arbitrary integer.

The proofs of the above theorems are based upon Lemma 6.6 and the
next result.

Theorem 2.3. For every b ∈ C the polynomial B2m(x) + b has at least
three simple zeros if m ≥ 4.

We remark that B6(x)−B6(0) = (2x2−2x−1)(x(x−1))2/2 and B4(x)−
B4(1/2) = (4x2 − 4x− 1)(2x− 1)2/16.

3. Proof of Theorem 2.3. From Lemmas 6.6, 6.4 and 6.1(iii) we
know that there is at most one complex number b for which the polyno-
mial B2m(x) + b does not have three simple zeros. Now assume that m ≥ 4
and the polynomial B2m(x) + b does not have three simple zeros for some
complex number b. Then either

(a) B2m(x) + b = F (x)2 or (b) B2m(x) + b = G(x)F (x)2,

where F (x), G(x) ∈ C[x] and G(x) is a quadratic polynomial with non-zero
discriminant.

In case (a) we have B2m(x) = F (x)2 − b = T (F (x)), where T (x) =
x2 − b. Lemma 6.3 implies that every non-trivial decomposition of B2m(x)
is equivalent to B̃m((x− 1/2)2), where B̃m(x) ∈ Q[x] is an indecomposable
polynomial of degree m. This gives m = 2, which contradicts our assumption
that m ≥ 4.

In case (b) we only give the strategy of the proof, which uses lemmas of
Section 6:

Step 1. We deduce that b is rational and so G(x), F (x) ∈ Q[x]. See
Lemma 6.9.

Step 2. We show that G(x) is of the form x2 − x + u/v, where v > 0,
u ∈ Z with (u, v) = 1, and F (1− x) = ±F (x). See Lemmas 6.10–6.12.
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Step 3. Every polynomial with rational coefficients can be written
uniquely as a product of a rational number and a primitive polynomial.
Hence we can assume that

(11) vb2m−2(B2m(x)+b) = (vx2−vx+u)f(x)2 = (vx2−vx+u)
2m−2∑
i=0

bix
i,

where f(x) = am−1x
m−1 + · · ·+ a1x+ a0 ∈ Z[x] is a primitive polynomial.

Step 4. We prove that v is even if a0 6= 0. See Lemmas 6.13 and 6.14. If
a0 = 0 then b = −B2m(0) = −B2m and Lemma 6.5 yields m ≤ 3.

Step 5. We infer that 2 ‖ v or 22 ‖ v. See Lemmas 6.15–6.17.

Step 6. If 2 ‖ v then we get a contradiction provided that m is odd. See
Lemmas 6.18–6.21.

Step 7. We show that if 22 ‖ v then m is even. See Lemma 6.22.

Step 8. We get a contradiction if m is even. See Lemmas 6.23 and 6.24.

4. Proof of Theorem 2.1. First we give an effective upper bound for
the exponent n in (8). Write F (x) = A(x− β1)r1 · · · (x− βt)rt . Then

F (Sk(x− 1)) = A1(Bk+1(x)− γ1)r1 · · · (Bk+1(x)− γt)rt(12)

= A

s∏
i=1

(x− δi)ls .

We know from Theorem 2.3 and Lemma 6.6 that any shifted Bernoulli poly-
nomial has at least three simple zeros. Thus, F (Sk(x)) has at least two dis-
tinct zeros by (12). Now we can apply Lemma 6.7 to derive an effective
upper bound for n. We therefore may assume that n is fixed. Since F (x) is
not an nth power we can assume that n/(n, r1) 6= 1. Using again the fact
that any shifted Bernoulli polynomial has at least three simple zeros we can
deduce that l1 = l2 = l3 = r1 in (12). On applying Lemma 6.8 we find that
there are only finitely many solutions x, y of equation (8).

5. Proof of Theorem 2.2. In the case k ≥ 6, Theorem 2.2 is a simple
consequence of Theorem 2.1. Suppose that 1 < k < 6 and write equation
(9) in the form

(13)
s

k + 1
(Bk+1(x+ 1) + b) = yn, where b =

r(k + 1)
s

−Bk+1(0).

Let ∆(k, b) denote the discriminant of the polynomial Bk+1(x+ 1) + b. It is
easy to see that ∆(k, b) is a polynomial in b. In the following table we give
the zeros of ∆(k, b) for k = 2, 3, 4, 5.
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k Solutions of ∆(k, b) = 0

2
√

3
36
, −

√
3

36

3 1
30
, − 7

240

4 ±
√

375+20
√

30

900
, ±
√

375−20
√

30

900

5 − 1
42
, 31

1344
, − 1

189

Using the fact that b is rational we find that the polynomials B3(x+ 1) + b
and B5(x+1)+b have only simple zeros. By Lemmas 6.7 and 6.8, we obtain
the assertion of Theorem 2.2 for k = 2 and 4.

Now let k = 3. We know that equation (13) may have infinitely many
integer solutions x, y, n ≥ 2 only if B4(x + 1) + b has multiple zeros, that
is, if b = 1/30 or −7/240. In the first case we deduce that r = 0 from (13)
and B4(0) = −1/30. But then, if s is a fourth power, equation (9) has
infinitely many integer solutions x, y and n by Theorem A. If b = −7/240
then s+ 64r = 0 and so our equation is

(14) − r(4x2 + 4x− 1)(2x+ 1)2 = yn.

Since the polynomial on the left side of (14) has two simple zeros, we
infer from Lemmas 6.7 and 6.8 that (14) has only finitely many integer
solutions x, y and n ≥ 3. If n = 2, s = 448 and r = −7 then the equation

(15) 448S3(x)− 7 = y2

has the integer solutions

x =
bn − 1

2
, y = anbn, n = 0, 1, . . . ,

where (a0, b0) = (7, 3), (an+1, bn+1) = (8an + 21bn, 3an + 8bn).
When k = 5 and b = 31/1344 the polynomial B6(x + 1) + b has four

simple zeros. Thus, there are only finitely many integer solutions x, y,
and n ≥ 2. If b = −1/42 we have again r = 0, and equation (9) has
infinitely many integer solutions x, y for n = 2 by Theorem A. Finally,
if b = −1/189 we can infer that s = 2234r, and so we get the equa-
tion

(16) r(6x2 + 6x+ 1)(3x2 + 3x− 1)2 = yn.

It is obvious that the polynomial on the left side has two simple zeros.
Using again Lemmas 6.7 and 6.8, we deduce that equation (16) has only
finitely many integer solutions x, y and n ≥ 3. If n = 2, s = 324 and r = 1
then the equation

(17) 324S5(x) + 1 = y2
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has the integer solutions

x =
an − 3

6
, y = bn(3x2 + 3x− 1), n = 1, 2, . . . ,

where (a0, b0) = (3, 1), (an+1, bn+1) = (5an + 12bn, 2an + 5bn).

6. Auxiliary results. For the well-known properties of Bernoulli poly-
nomials and numbers we refer to Rademacher [14, pp. 1–17]. In the next two
lemmas we list some properties of Bernoulli polynomials that will be often
used, sometimes without special reference.

Lemma 6.1. For a positive integer n, let Bn(x) denote the nth Bernoulli
polynomial and set Bn = Bn(0). Then:

(i) Bn(x) = (−1)nBn(1− x).
(ii) Bn(x+ 1)−Bn(x) = nxn−1.

(iii) B′n(x) = nBn−1(x).
(iv) (−1)n−1B2n > 0 for n ≥ 1.
(v) |B2n| > 2(2n)!/(2π)2n.

(vi) Bn(1/2) = (21−n − 1)Bn.
(vii) Bn(x) =

∑n
k=0

(
n
k

)
Bkx

n−k.

Lemma 6.2 (The von Staudt–Clausen Theorem). The denominator of
the Bernoulli number B2n is the product of those different primes p for which
p− 1 divides 2n.

A decomposition of a polynomial H(x) ∈ C[x] is an equality of the form
H(x) = H1(H2(x)), where H1(x), H2(x) ∈ C[x]; the decomposition is non-
trivial if degH1(x), degH2(x) > 1. Two decompositions H(x) = H1(H2(x))
and H(x) = G1(G2(x)) are equivalent if there exists a linear polynomial
t(x) ∈ C[x] such that H1(x) = G1(t(x)) and G2(x) = t(H2(x)). The poly-
nomial F (x) is called decomposable if it has at least one non-trivial decom-
position, and indecomposable otherwise.

The following lemma was proved by Bilu et al. [1].

Lemma 6.3. The polynomial Bn(x) is indecomposable for odd n. If
n = 2m is even, then any non-trivial decomposition of Bn(x) is equivalent
to Bn(x) = B̃m((x − 1/2)2), where B̃m(x) ∈ Q[x] is an indecomposable
polynomial of degree m.

Lemma 6.4. Bernoulli polynomials have no multiple zeros.

Proof. See [2] and [8].

The next lemma is due to Győry, Tijdeman and Voorhoeve [10].

Lemma 6.5. For every r ∈ Z the polynomial Bk(x)−Bk + r has at least
three simple zeros if k = 3 and at least four simple zeros if k ≥ 4, unless
r = 0 and k ∈ {4, 6}.
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Lemma 6.6 (Pintér and Rakaczki [13]). If k ≥ 5 is odd then the polyno-
mial Bk(x)+b has at least three zeros of odd multiplicities for every complex
number b. If k ≥ 8 is even then there is at most one complex number b for
which the polynomial Bk(x)+b does not have three zeros of odd multiplicities.

The following well known effective result on superelliptic equations was
proved by Schinzel and Tijdeman [16].

Lemma 6.7. Let 0 6= d ∈ Z, and let P (x) ∈ Z[x] be a polynomial with at
least two distinct zeros. Then the equation

(18) P (x) = dyz

in integers x, y > 1, z implies that z < C, where C = C(P, d) is an
effectively computable constant.

Lemma 6.8 (Brindza [3]). Let K be an algebraic number field with the
ring of integers OK , and let

f(x) = a0x
N + · · ·+ aN = a0

n∏
i=1

(x− αi)ri

be a polynomial in OK [x] with a0 6= 0 and αi 6= αj for i 6= j. Further, let
d ∈ OK , m > 1 and qi = m/(m, ri), i = 1, . . . , n. Suppose that (q1, . . . , qn)
is not a permutation of (q, 1, . . . , 1) or (2, 2, 1, . . . , 1), where q ≥ 1. Then the
equation

f(x) = dym in x, y ∈ OK
has only finitely many solutions, and they can all be effectively determined.

Lemma 6.9. If B2m(x)+b (m ≥ 4) does not have three simple zeros then
b is rational.

Proof. Suppose that B2m(x) + b does not have three simple zeros and
consider the following euclidean algorithm:

(19)

B2m(x) + b = (x− 1/2)B2m−1(x) + r1(x),
B2m−1(x) = t1(x)r1(x) + r2(x),
r1(x) = t2(x)r2(x) + r3(x),
...
rk−3(x) = tk−2(x)rk−2(x) + rk−1(x),
rk−2(x) = tk−1(x)rk−1(x) + rk(x),
rk−1(x) = tk(x)rk(x) + rk+1(x).

Take b as a parameter. We denote by ti, ri the degrees of the polynomials
ti(x) and ri(x), respectively, and rk(x) the first polynomial whose leading
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coefficient depends on b. First we prove that the coefficients of the poly-
nomials t1(x), . . . , tk−1(x) do not depend on b. Indeed, if the coefficients of
t1(x) depend on b then one of the coefficients of B2m−1(x) also depends
on b, which is impossible. Assume that we know that the coefficients of
t1(x), . . . , ti−1(x) do not depend on b for some i ∈ {2, . . . , k − 1}. Notice
that x0 in r1(x), xt1 in r2(x), and xt1+···+ti−1 in ri(x) is the largest power
whose coefficient depends on b. If ti(x) depends on b then we see, using
ri+1 < ri and the euclidean algorithm, that the coefficient of xri+j depends
on b in ri−1(x). Here j is the largest exponent for which the coefficient of xj

depends on b in ti(x). But xt1+···+ti−2 is the largest power in ri−1(x) whose
coefficient depends on b. Thus

t1 + · · ·+ ti−2 ≥ ri + j ≥ ri ≥ rk−1.

Since the leading coefficient of rk−1(x) does not depend on b, it is obvious
that rk−1 ≥ deg(gcd(B2m(x) + b, B2m−1(x))) ≥ m− 1.

Comparing the degrees of the polynomials in the algorithm we obtain

2m = 1 +
i−2∑
j=1

tj + ri−2 ≥ 1 + ri + ri−2 ≥ 3 + 2ri ≥ 3 + 2(m− 1) = 2m+ 1.

This contradiction shows that ti(x) does not depend on b for i = 1, . . . , k−1.
Consequently, every coefficient of the polynomials r1(x), . . . , rk(x) is of the
form u+ vb, where u, v are rational numbers, and

rk = t1 + · · ·+ tk−1.

When rk(x) ≡ 0 all coefficients u+ vb of rk(x) are zero. This means that
b must be a rational number.

If rk(x) 6≡ 0 then

(20) 2m = 1 + t1 + · · ·+ tk−1 + tk + rk ≥ 2 + 2rk, that is, m− 1 ≥ rk.

By (20), we deduce that rk = m − 1 and rk+1(x) must be identically zero
for some b since otherwise the degree of the greatest common divisor would
be less than m− 1. Comparing again the degrees of the polynomials in the
euclidean algorithm we infer that

(21) 2m = 1 + t1 + · · ·+ tk−1 + rk−1 = 1 + rk + rk−1 = 1 + (m− 1) + rk−1

and

(22) rk−1(x) = tk(x)rk(x).

From (21) and (22) we see that rk−1 = m, tk = 1 and the coefficient of xm−1

in rk−1(x) does not depend on b because otherwise t1 + · · ·+ tk−2 = m−1 =
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rk = t1 + · · ·+ tk−1. Thus

rk−1(x) = umx
m + um−1x

m−1 +
m−2∑
i=0

(ui + vib)xi

and

rk(x) =
m−1∑
j=0

(Uj + Vjb)xj ,

where um 6= 0, um−1, ui, vi, Uj , Vj are rational numbers for i = 0, . . . ,m−2,
j = 0, . . . ,m− 1. The remainder when rk−1(x) is divided by rk(x) is of the
form

rk+1(x) =
m−2∑
i=0

hi(b)
(Um−1 + Vm−1b)2

xi,

where hi(x) ∈ Q[x] are not all identically zero and of degree at most 3 for
i = 0, . . . ,m − 2. If rk+1(x) is identically zero for some complex number b
then b is a root of all polynomials hi(x), i = 0, . . . ,m − 2. But if b is not
rational then any algebraic conjugate of b is also a root of hi(x). This means
that in this case there are at least two complex numbers, b and its algebraic
conjugate, for which the shifted Bernoulli polynomials do not have three
simple zeros. However, this is not possible by Lemma 6.6. Thus b must be
rational.

Denote by S+ and S− the sets of those polynomials with real coefficients
which are symmetric with respect to the line x = 1/2 and the point P =
(1/2, 0), respectively:

S+ := {f(x) ∈ R[x] : f(x) = f(1− x)},
S− := {f(x) ∈ R[x] : f(x) = −f(1− x)}.

Lemma 6.10. Let f(x) ∈ S+ and g(x) ∈ S−. Then there are uniquely
determined polynomials q(x) ∈ S− and r(x) ∈ S+ with f(x) = q(x)g(x) +
r(x) and either r(x) ≡ 0 or deg r(x) < deg g(x).

Proof. From the division algorithm for polynomials we know that there
exist unique polynomials q(x), r(x) ∈ R[x] for which

(23) f(x) = q(x)g(x) + r(x), r(x) ≡ 0 or deg r(x) < deg g(x).

Hence we have to prove only that q(x) ∈ S− and r(x) ∈ S+. Substituting
x = 1− x into (23) and applying f(x) ∈ S+ and g(x) ∈ S− we have

f(x) = −q(1− x)g(x) + r(1− x).

It follows from the division algorithm that q(x) = −q(1 − x) and r(x) =
r(1− x).
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Lemma 6.11. Let f(x) ∈ S− and g(x) ∈ S+. Then there are uniquely
determined polynomials q(x) ∈ S− and r(x) ∈ S− with f(x) = q(x)g(x) +
r(x) and either r(x) ≡ 0 or deg r(x) < deg g(x).

Proof. The proof is similar to that of Lemma 6.10.

Lemma 6.12. Assume that B2m(x) + b = G(x)F (x)2, where b ∈ Q,
G(X), F (x) ∈ Q[x] are monic polynomials, degG(x) = 2 and G(x) has
non-zero discriminant. Then G(x) = x2− x+ u/v, where v > 0, u ∈ Z, and
F (x) ∈ S+ ∪ S−.

Proof. One can check that F (x) is the greatest common divisor of the
polynomials B2m(x) + b and B2m−1(x) = B′2m(x)/2m. From Lemma 6.1(i)
we know that B2m(x) ∈ S+ and B2m−1(x) ∈ S−. Combining Lemmas 6.10
and 6.11 with the euclidean algorithm (19), we deduce that the greatest
common divisor F (x) is in S+ ∪ S−. Now it easily follows that F (x)2 ∈ S+

and so G(x) ∈ S+. Since degG(x) = 2 and G(x) ∈ Q[x] is monic, we infer
that G(x) = x2 − x+ u/v.

Lemma 6.13. am−1 + · · ·+ a1 = 0 or am−1 + · · ·+ a1 + 2a0 = 0.

Proof. Since f(x) = am−1x
m−1 + · · ·+ a1x+ a0 ∈ S+ ∪ S− we see that

f(0) = f(1) or f(0) = −f(1). The first equality implies am−1 + · · ·+a1 = 0,
and the second yields am−1 + · · ·+ a1 + 2a0 = 0.

Let ci denote the coefficient of xi on the left side of (11). Then

(24) ci =



vb2m−2 if i = 2m,
−vb2m−2 + vb2m−3 if i = 2m− 1,
ubi − vbi−1 + vbi−2 if 2 ≤ i ≤ 2m− 2,
ub1 − vb0 if i = 1,
ub0 if i = 0.

Lemma 6.14. v is even provided that a0 6= 0.

Proof. Assume that v ≡ 1 (mod 2). We know that

(25) c2i+1 = vb2m−2

(
2m

2m− (2i+ 1)

)
B2m−(2i+1) = 0, i = 0, . . . ,m−2,

because B3 = B5 = · · · = 0. From (25), (24) and (11) we deduce that
c1 = ub1 − vb0 = 2a1a0u − a2

0v = 0. This yields a2
0v ≡ 0 (mod 2), and so

a0 ≡ 0 (mod 2). Assume that we have showed that

(26) 2 | a0, a1, . . . , ai−1 for some i ∈ {1, . . . ,m− 2}.
Using the fact that b2j−1 = 2a2j−1a0 +2a2j−2a1 + · · ·+2ajaj−1 ≡ 0 (mod 2)
for j = 1, . . . ,m− 1, we deduce from c2i+1 = ub2i+1− vb2i + vb2i−1 = 0 that
vb2i = v(a2

i +2a2ia0 + · · ·+2ai+1ai−1) ≡ 0 (mod 2). Thus ai ≡ 0 (mod 2). It
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now follows from Lemma 6.13 that am−1, . . . , a0 are even, which contradicts
our assumption that am−1x

m−1 + · · ·+a1x+a0 is a primitive polynomial.

Lemma 6.15. Suppose that the polynomial B2m(x) + r/s has a multiple
zero, where r, s ∈ Z, s 6= 0 and (r, s) = 1. Let pβ be a prime power occurring
in the prime factorization of s. Then β ≤ 2m+ 1.

Proof. Choose integers A and B such that AB2m(x), BB2m−1(x) are
primitive polynomials. Since B2m(x) + r/s has a multiple zero, the polyno-
mials AB2m(x) +Ar/s and BB2m−1(x) have a common zero. It follows that
their resultant is zero. If we write AB2m(x) and BB2m−1(x) in the form

AB2m(x) = Ax2m + d2m−1x
2m−1 + · · ·+ d1x+ d0 ∈ Z[x],

BB2m−1(x) = Bx2m−1 + e2m−2x
2m−2 + · · ·+ e1x+ e0 ∈ Z[x]

then the above resultant is the following determinant of order 4m− 1:

Res(AB2m(x) +Ar/s,BB2m−1(x)) =˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨

A d2m−1 d2m−2 · · · d2 d1 d0 +Ar/s 0 · · · 0

0 A d2m−1 · · · d3 d2 d1 d0 +Ar/s · · · 0
...

...

0 0 0 · · · A d2m−1 d2m−2 d2m−3 · · · d0 +Ar/s

B e2m−2 e2m−3 · · · e1 e0 0 0 · · · 0

0 B e2m−2 · · · e2 e1 e0 0 · · · 0

0 0 B · · · e3 e2 e1 e0 · · · 0
...

...

0 0 0 · · · 0 B e2m−2 e2m−3 · · · e0

˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
˛̨̨̨
.

Let s = pβ1
1 · · · p

βt
t be the prime factorization. Since A is the product of

distinct primes, the denominator of the rational number d0 + Ar/s =
(d0s+Ar)/s is of the form pα1

1 · · · p
αt
t , where αi ∈ {0, βi−1, β} for i = 1, . . . , t.

Actually, the above resultant is a polynomial in d0 + Ar/s with integer co-
efficients of degree 2m − 1 and leading coefficient B2m. Since B is also the
product of distinct primes, we infer that αi ≤ 2m for i = 1, . . . , t. Hence
βi − 1 ≤ 2m, that is, βi ≤ 2m+ 1.

Lemma 6.16. If pα | v then α ≤ 2.

Proof. Supposing the contrary we have p3 | v and p2 | c1, . . . , c2m. This is
so because ci = vb2m−2

(
2m

2m−i
)
B2m−i for i = 1, . . . , 2m and the denominator

of B2m−i is the product of those different primes p for which p − 1 divides
2m − i. It is easy to see that p2 divides b2m−2 since p2 | c2m−2 = ub2m−2 −
vb2m−3 + vb2m−4 and (u, v) = 1. But then p5 | vb2m−2 and so

(27) p4 | c1, . . . , c2m.
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From (24), (27) and (u, v) = 1 we obtain

p3 | b1, . . . , b2m−2.

Assume that

(28) p2j+1 | b2j−1, b2j , . . . , b2m−2 for some 1 ≤ j ≤ m− 2.

Then from p3 | v and p2j+1 | b2m−2 we see that p2j+4 | vb2m−2 and thus
p2j+3 | ci = ubi − vbi−1 + vbi−2 for i = 2j + 1, . . . , 2m − 2. By combining
this with (28) and p3 | v we obtain

(29) p2j+3 | b2j+1, . . . , b2m−2.

Inserting j = m − 2 we get p2m−1 | b2m−2 and so p2m+2 | vb2m−2. But then
p2m+2 | s because otherwise p | c2m, . . . , c1, c0, which contradicts c2mx2m +
· · · + c1x + c0 being a primitive polynomial. However, p2m+2 | s contradicts
our Lemma 6.15.

Lemma 6.17. 2 ‖ v or 22 ‖ v.

Proof. By Lemma 6.14 we know that v is even. Now the assertion im-
mediately follows from Lemma 6.16 with p = 2.

Lemma 6.18. If 2 ‖ v then b2m−2 ≡ 1 (mod 2).

Proof. If 2 | b2m−2 = a2
m−1 then 22 | b2m−2 and 23 | vb2m−2. It follows

that 22 | c1, . . . , c2m. Applying (24) and (u, v) = 1 one can deduce that
2 | b1, . . . , b2m−2. Since b2 = a2

1 + 2a2a0, b1 = 2a1a0 we find that 2 | a1 and
4 | b1. But c1 = ub1 − vb0 = 0, 2 ‖ v, hence 2 | b0, which contradicts the fact
that b2m−2x

2m−2 + · · ·+ b1x+ b0 is a primitive polynomial.

Lemma 6.19. If 2 ‖ v then a0 ≡ 1 (mod 2) provided that m ≡ 1 (mod 2)
and a0 6= 0.

Proof. If a0 ≡ 0 (mod 2) then b0 = a2
0 ≡ 0 (mod 4). We know that

c2 = ub2 − vb1 + vb0(30)

= vb2m−2

(
2m

2m− 2

)
B2m−2 = vb2m−2m(2m− 1)B2m−2.

By Lemma 6.18 we have b2 ≡ 1 (mod 2). Further, from Lemma 6.2, c2 ∈ Z
and n ≡ 2n − 1 ≡ 1 (mod 2) we infer that c2 ≡ 1 (mod 2). Thus b2 ≡ 1
(mod 2) by (30). Since c1 = ub1− vb0 = 2a1a0u− va2

0 = 0, it is obvious that
a1 ≡ 0 (mod 2). This means that b2 = a2

1 + 2a2a0 ≡ 0 (mod 2) which is a
contradiction.

Lemma 6.20. If m ≡ 1 (mod 2) then
(
2m
6

)
+
(
2m
4

)
≡ 0 (mod 2).
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Proof. It is easy to see that(
2m
6

)
+
(

2m
4

)
≡
(

2m
6

)
+
(

2m
5

)
+
(

2m
5

)
+
(

2m
4

)
≡
(

2m+ 1
6

)
+
(

2m+ 1
5

)
≡
(

2m+ 2
6

)
(mod 2).

The assertion follows from(
2m+ 2

6

)
=

(2m+ 2)(2m+ 1)2m(2m− 1)(2m− 2)(2m− 3)
6!

=
(m+ 1)(2m+ 1)m(2m− 1)(m− 1)(2m− 3)

6 · 5 · 3
.

Lemma 6.21. If 2 ‖ v then B2m(x) + b has at least three simple zeros
provided that m ≡ 1 (mod 2).

Proof. Supposing the contrary we have

(31) vb2m−2(B2m(x) + b) = (vx2 − vx+ u)(b2m−2x
2m−2 + · · ·+ b1x+ b0)

as mentioned before. By Lemmas 6.18 and 6.19, we have b2m−2 ≡ a0 ≡ 1
(mod 2). Since 2 ‖ v and c1 = ub1 − vb0 = 2a1a0u− a2

0v = 0 we get a1 ≡ 1
(mod 2). Now one can check using

c3 = ub3 − vb2 + vb1 = u(2a3a0 + 2a2a1)− v(a2
1 + 2a2a0 − 2a1a0) = 0

that u(2a3a0 + 2a2a1) ≡ 2 (mod 4). This yields a2 6≡ a3 (mod 2). At the
same time we know from

b6 = a2
3 + 2a6a0 + 2a5a1 + 2a4a2, b4 = a2

2 + 2a4a0 + 2a3a1

and
c6 = ub6 − vb5 + vb4, c4 = ub4 − vb3 + vb2

that b6 6≡ b4 and c6 6≡ c4 (mod 2), that is, c6 + c4 ≡ 1 (mod 2). From 2 ‖ v,
b2m−2 ≡ 1 (mod 2) and Lemma 6.2 we can deduce that

c6 = vb2m−2

(
2m

2m− 6

)
B2m−6 = vb2m−2

(
2m
6

)
B2m−6 ≡

(
2m
6

)
(mod 2)

and

c4 = vb2m−2

(
2m

2m− 4

)
B2m−4 = vb2m−2

(
2m
4

)
B2m−4 ≡

(
2m
4

)
(mod 2).

But then (
2m
6

)
+
(

2m
4

)
≡ 1 (mod 2),

which contradicts Lemma 6.20.

Lemma 6.22. If 22 ‖ v then m is even.
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Proof. Suppose that 22 divides v. Then similarly to the proof of Lem-
ma 6.16, we get 2 | c1, . . . , c2m. From c2m−2 = ub2m−2− vb2m−3 + vb2m−4 we
obtain 2 | b2m−2 = a2

m−1. Hence 22 | b2m−2, 24 | vb2m−2 and so 23 | c1, . . . , c2m.
Using this fact and (24) one can easily check that

(32) 22 | b1, . . . , b2m−2 and what is more 23 | b3, . . . , b2m−2.

Denote by i the greatest index for which ai ≡ 1 (mod 2). Such an i exists
since am−1x

m−1 + · · ·+ a1x+ a0 is a primitive polynomial. If i ≥ 1 then we
have b2i = a2

i +2a2ia0 + · · ·+2ai+1ai−1 ≡ 1 (mod 2), which contradicts (32).
This means that

am−1 ≡ am−2 ≡ · · · ≡ a1 ≡ 0 (mod 2) and a0 ≡ 1 (mod 2).

Now denote by j the greatest index for which aj ≡ 2 (mod 4). Such a j also
exists since otherwise 8 | b1 = 2a1a0, which, together with c1 = ub1−vb0 = 0,
implies that 8 | v.

If j > 1, then b2j = a2
j + 2a2ja0 + · · · + 2aj+1aj−1 ≡ 4 (mod 8) since

4 | aj+1, . . . , am−1 and aj ≡ 2 (mod 4). This contradicts (32). Now we have

(33) am−1 ≡ am−2 ≡ · · · ≡ a2 ≡ 0 (mod 4) and a1 ≡ 2 (mod 4).

This yields am−1 + · · ·+ a1 ≡ 2 (mod 4) and hence f(x) = am−1x
m−1 + · · ·

+ a1x+ a0 ∈ S− by Lemma 6.13. This means that deg f(x) = m− 1 is odd
and so m is even.

Lemma 6.23. u = ±1.

Proof. Assuming the contrary, there exists a prime p for which p |u.
From c1 = ub1 − vb0 = 0 and (u, v) = 1 we find that p | b0 = a2

0 and
so p | a0. Further, from c3 = ub3 − vb2 + vb1 = 0 we obtain p | v(b2 − b1) =
v(a2

1 + 2a2a0 − 2a1a0). This shows that p | a1. Now assume that

(34) p | a0, a1, . . . , ai for some i < m− 2.

From c2i+3 = ub2i+3 − vb2i+2 + vb2i+1 = 0, we get p | b2i+2 − b2i+1. Using

b2i+2 = a2
i+1 + 2a2i+2a0 + · · ·+ 2ai+2ai

and
b2i+1 = 2a2i+1a0 + · · ·+ 2ai+1ai,

it follows from (34) that p | ai+1. By inserting i = m− 3 into (34) we obtain
inductively

(35) p | a0, a1, . . . , am−2.

Finally, from Lemma 6.13 we infer that p | am−1, which contradicts our as-
sumption that the polynomial am−1x

m−1 + · · ·+ a1x+ a0 is primitive.

Lemma 6.24. If m is even then B2m(x) + b has at least three simple
zeros.



Diophantine equation s(1k + 2k + · · ·+ xk) + r = dyn 215

Proof. Assuming the contrary, we have (11). Since f(x) ∈ S+ ∪ S− and
now deg f(x) = m− 1 is odd we get f(x) ∈ S−. It follows that f(1/2) = 0,
whence 1/2 is a root of B2m(x) + b, so b = −B2m(1/2). Since we assumed
that v and b2m−2 are positive, from (11) and Lemma 6.23 we deduce that
B2m(2)−B2m(1/2) is also positive. However,

(36) B2m(2)−B2m(1/2) = B2m(2)−B2m(1) +B2m(1)−B2m(1/2)

= 2m+B2m − (21−2m − 1)B2m = 2m+ 2
22m − 1

22m
B2m.

From (iv) and (v) of Lemma 6.1 it follows that B2m < 0 and |B2m| >
2(2m)!/(2π)2m. One can deduce from the above that

(37) 2
22m − 1

22m
|B2m| >

15
4

(2m)!
(2π)2m

> 2m if m ≥ 10,

and so B2m(2) − B2m(1/2) < 0 by (36). Since u = ±1, by Lemma 6.23,
and v ≥ 2, inserting x = 2 into (11) we get a negative integer on the left
side and a positive integer on the right side. If we factorize the polynomial
B2m(x) − B2m(1/2) for m = 4, 6, 8 over Q we see that it has three simple
zeros. Further, B4(x)−B4(1/2) = (4x2 − 4x− 1)(2x− 1)2/16.

Acknowledgements. The author thanks Professor Á. Pintér and the
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