
ACTA ARITHMETICA

132.2 (2008)

Lattices in Z2 and the congruence xy + uv ≡ c (mod m)

by

Anwar Ayyad (Gaza) and Todd Cochrane (Manhattan, KS)

1. Introduction. Let m be a positive integer, L be a lattice of points
in Z2 of volume ∆(L) = m and Bm be the box of points

Bm = {(x, y) : |x| ≤
√
m, |y| ≤

√
m}.

We say L is well distributed (with respect to the box Bm) if every inte-
ger translate (A,B) + Bm of Bm contains a point of L other than (A,B).
Minkowski’s convex body theorem implies that Bm itself always contains a
nonzero point of L, but in general translates of Bm may not contain any
point of L. For instance, the points in the lattice defined by x ≡ y (mod m)
are not well distributed at all.

We call L a congruence lattice (mod m) if it is defined by a linear con-
gruence ax + by ≡ 0 (mod m) with gcd(a, b,m) = 1. Not all lattices in Z2

are congruence lattices, for instance 2Z2. However, it is not hard to show
that every lattice of volume m is of the form λL′ = {λx : x ∈ L′} for some
positive integer λ and congruence lattice L′ (modm/λ2); see Lemma 1. In
particular, if m is square free, then every lattice of volume m is a congruence
lattice.

Our first result gives a sufficient condition for L to be well distributed.
Let Rm be the following set of integer points:

Rm = {(x, y) : 0 ≤ |x| ≤
√
m, 0 ≤ |y| ≤

√
m,

|x|+ 2|y| ≥
√
m, 2|x|+ |y| ≥

√
m}.

Theorem 1. If L is a congruence lattice of volume m that contains a
point (x0, y0) ∈ Rm with gcd(x0, y0) = 1 then L is well distributed.

If L = λL′ for some congruence lattice L′ of volumem/λ2 and L′ contains
a point (x0, y0) ∈ Rm/λ with gcd(x0, y0) = 1, then L is uniformly distributed
in the sense that every translate of Bm by a vector of the form λ(u, v)
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contains a point of L. It is an open question whether the converse of the
theorem holds true.

An equivalent way of stating Theorem 1 is

Theorem 2. Let a, b,m be integers with m > 0 and gcd(a, b,m) = 1,
and suppose that the congruence ax+by ≡ 0 (mod m) has a solution (x0, y0)
∈ Rm with gcd(x0, y0) = 1. Then for any integer c, the linear congruence

(1) ax+ by ≡ c (mod m)

has a nonzero solution with |x| ≤
√
m, |y| ≤

√
m.

We note that the size of (x, y) obtained here is nearly best possible.
Indeed, if B is a box of points of cardinality less than m, then for some
integer c, (1) has no solution in B. We also note that we could just as well
have taken (x, y) ∈ (A,B) + Bm for any (A,B) ∈ Z2.

Next we turn to the quadratic equation,

(2) xy + uv ≡ c (mod m).

As a consequence of Theorem 1 we show that the solutions of (2) are well
distributed in the following sense.

Theorem 3. Let A,B,C,D and c be any integers.

(i) If m is a prime power then congruence (2) has a solution with

|x−A| ≤
√
m, |y −B| ≤

√
m, |u− C| ≤

√
m, |v −D| ≤

√
m+ 1.

(ii) In general , for any positive integer m congruence (2) has a solution
with

|x−A| ≤
√
m, |y −B| ≤ (1 + [δ/2])

√
m,

|u− C| ≤
√
m, |v −D| ≤

√
m+ [δ/2],

where δ is the maximum gap between reduced residues (mod m).

For prime powers the result is essentially best possible, aside from a
possible modest improvement in the constant 1 in front of

√
m. Indeed, for

the congruence
xy + uv ≡ [m/2] (mod m)

there is no solution with all variables less than
√
m− 1/2 in absolute value.

For general m there is no reason to believe that the factor δ is necessary, and
most likely it can be removed altogether. In any case, δ � log2(m); see [9].

For the case of prime moduli there is an altogether different approach
for addressing (2) using the combinatorial methods of [4], [3], [7], [8], [6] and
other works. For any subsets S, T of Zp let

S + T = {s+ t : s ∈ S, t ∈ T}, ST = {st : s ∈ S, t ∈ T},
S − T = {s− t : s ∈ S, t ∈ T}, nS = S + · · ·+ S (n times).
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As noted in [6], it follows from the work of Glibichuk [7] that for any sets
S, T with |S| |T | > 2p, (2S)(2T ) + (2S)(2T ) = Zp and (2S)(2T )− (2S)(2T )
= Zp. Applied to intervals, this shows that (2) has a solution with

|x−A| ≤M1, |u−A| ≤M1, |y −B| ≤M2, |v −B| ≤M2

for any A,B,M1,M2 with M1M2 > 4p. This result was refined by Garaev
and Garcia:

Theorem 4 (Garaev and Garcia [6, Theorem 4]). Let S, T, U, V be sub-
sets of Zp − {0} such that |S| |U | > (2 +

√
2)p and |T | |V | > (2 +

√
2)p.

Then (2S)(2T ) + (2U)(2V ) = Zp.

Their result implies a solution of (2) with |x − A| <
√

15
2

√
p, |y − B| <

√
15
2

√
p, |u − C| <

√
15
2

√
p, |v − D| <

√
15
2

√
p, a slightly weaker result than

Theorem 3.
The advantage of the combinatorial method is that it can obtain solu-

tions of (2) with the variables belonging to any types of subsets of sufficiently
large cardinality, not necessarily intervals. The disadvantage is that the proof
is not constructive. The lattice method introduced in this paper is construc-
tive. By following the given proof one can write an efficient algorithm for
obtaining the solution guaranteed by Theorem 3. Another disadvantage is
that the combinatorial method has not yet been extended to work for general
moduli.

As another application of Theorem 2 we consider the congruence

(3) axy + buv ≡ c (mod p).

Theorem 5. For any integers a, b, c and any prime p with p - ab, there
exists a solution of (3) in integers x, y, u, v with

max{|x|, |y|, |u|, |v|} < √p.
If p | c then the integers can all be taken to be nonzero.

It is an open question whether the same type of result (perhaps with
a Big-O) holds for the more general congruence Q(x, y, u, v) ≡ c (mod p),
where Q is a quadratic form. For diagonal forms in four variables a nonzero
solution of size � √p log p was obtained in [5]. Finally, we note that a very
detailed analysis of the distribution of solutions of the congruence xy+uv ≡
0 (mod p) is given in [2] and [6].

2. Lemmas

Lemma 1. Every full lattice in Z2 is a scalar multiple of a congruence
lattice. More specifically , if L is a lattice of volume m and λ is the greatest
common divisor of all the coordinates of all the points in L, then L = λL′
for some congruence lattice L′ of volume m/λ2.
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Proof. Let (a, b), (c, d) be a basis of L. Then |ad − bc| = m and
gcd(a, b, c, d) = λ. If λ > 1, we let L′ = λ−1L, and so we may assume
λ = 1. Let A =

[
a
c
b
d

]
. There exist invertible matrices P = [pij ], Q = [qij ]

over Z such that PAQ =
[

1
0

0
m

]
. Then A

[
q12
q22

]
≡

[
0
0

]
(mod m), and so

L ⊂ L1, where L1 is the solution set of q12x+ q22y ≡ 0 (mod m). Now since
gcd(q12, q22) = 1, L1 is also of volume m. Thus L = L1.

Lemma 2. Let a, b,m be positive integers with gcd(a, b) = 1, and c be
any integer. There is a solution of (1) with

|x| ≤ 1
2

(
b+ max

{
m+ ab

a+ b
,
|m− b2|
a+ b

})
,

|y| ≤ 1
2

(
a+ max

{
m+ ab

a+ b
,
|m− a2|
a+ b

})
.

The lemma is a variant of [1, Theorem 2] suited for the special case we
need here.

Proof. We start by obtaining a small integer point on the line ax+by=m.
Put M = (m+ ab)/(a+ b),

(x1, y1) =
(
m− bM

a
,M

)
=

(
m− b2

a+ b
,
m+ ab

a+ b

)
,

(x2, y2) =
(
M,

m− aM
b

)
=

(
m+ ab

a+ b
,
m− a2

a+ b

)
.

Then (x1, y1), (x2, y2) are on the line and |x2− x1| = x2− x1 = b. Since the
x-coordinates of integer points on the line are b units apart, there exists an
integer point on the line between (x1, y1) and (x2, y2), that is, there is an
integer point (x0, y0) on the line with

m− b2

a+ b
≤ x0 ≤

m+ ab

a+ b
,

m− a2

a+ b
≤ y0 ≤

m+ ab

a+ b
.

Let L be the lattice of solutions of the congruence ax+ by ≡ 0 (mod m),
of volume m. Since ax0 + by0 = m, the points (b,−a), (x0, y0) form a basis
for L. Since gcd(a, b) = 1, we have ax+ by = c for some integer pair (x, y).
Now there exists an integer pair (u, v) such that (x, y) ≡ (u, v) (mod L) with
(u, v) = α(b,−a) + β(x0, y0) for some real α, β with |α| ≤ 1/2, |β| ≤ 1/2.
Then (u, v) is a solution of (1) satisfying the conditions of the lemma.

Lemma 3. Let m be any positive integer and (a, b) ∈ Rm with gcd(a, b)
= 1. Then for any integer c, (1) has a solution with |x| ≤

√
m, |y| ≤

√
m.

Proof. We may assume a and b are nonnegative. Since 0 ≤ b ≤ m, we
have 0 ≤ m − b2 ≤ m + ab. Let (x, y) be the solution given by Lemma 2.
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Then |x| ≤
√
m if b+ (m+ ab)/(a+ b) ≤ 2

√
m, that is,

b2 + (2a− 2
√
m)b+m− 2a

√
m = (b−

√
m)(b−

√
m+ 2a) ≤ 0,

or
√
m− 2a ≤ b ≤

√
m. The latter follows from (a, b) ∈ Rm. By symmetry

we also get |y| ≤
√
m.

3. Proofs of Theorems 1 and 2

Proof of Theorem 2. Let a, b,m be integers with m > 0 and gcd(a, b,m)
= 1, say αa+ βb+ µm = 1 for some integers α, β and µ. Let (x0, y0) ∈ Rm
be such that gcd(x0, y0) = 1 and ax0 +by0 ≡ 0 (mod m). Put λ = αy0−βx0.
Then

λa ≡ y0 (mod m), λb ≡ −x0 (mod m), gcd(λ,m) = 1.

Since (y0,−x0) ∈ Rm and gcd(y0, x0) = 1, it follows from Lemma 3 (with
(a, b) replaced by (y0,−x0)) that the congruence

λax+ λby ≡ λc (mod m)

has a nonzero solution with |x| ≤
√
m and |y| ≤

√
m. Since gcd(λ,m) = 1,

this is a solution of (1).

Proof of Theorem 1. Let L be a congruence lattice of volume m defined
by ax + by ≡ 0 (mod m) with gcd(a, b,m) = 1. Let (A,B) be any pair of
integers. If L contains a point (x0, y0) ∈ Rm with gcd(x0, y0) = 1 then by
Theorem 2 the congruence

a(A+ x) + b(B + y) ≡ 0 (mod m)

has a nonzero solution with |x| ≤
√
m, |y| ≤

√
m, and we are done.

4. Proofs of Theorems 3 and 5

Proof of Theorem 3. Let m,A,B,C,D, c be any integers with m > 0. Let
L be the lattice defined by y ≡ [

√
m ]x (mod m). Since (1, [

√
m ]) ∈ Rm ∩ L

and gcd(1, [
√
m ]) = 1, it follows from Theorem 1 that L contains a point

(y0, v0) with |B − y0| ≤
√
m and |D − v0| ≤

√
m, say

λ(1, [
√
m ]) ≡ (y0, v0) (mod m)

for some integer λ. We consider solving the linear congruence

(4) xy0 + uv0 ≡ c (mod m).

Since y0 ≡ [
√
m ]v0 (mod m), the congruence xy0 + uv0 ≡ 0 (mod m) has

solution (1,−[
√
m ]) ∈ Rm. Thus by Theorem 2, (4) has a solution (x0, u0)

with |A− x0| ≤
√
m, |C − u0| ≤

√
m, provided that gcd(y0, v0,m) = 1.

If gcd(y0, v0,m) > 1 then we let µ be the integer of smallest modulus such
that gcd(µ[

√
m ]+y0, µ+v0,m) = 1, replace (y0, v0) by (µ[

√
m ]+y0, µ+v0),

and proceed as above. Thus we obtain a solution of (2) with |B − y0| ≤
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(1 + |µ|)
√
m and |D − v0| ≤

√
m + |µ|. If δ is the maximum gap between

consecutive reduced residues (mod m) then we have |µ| ≤ [δ/2]. If m is a
prime power (so that δ = 2) we take µ to be 1 if y0 < 0 and µ = −1 if y0 > 0
to obtain the bound in part (i).

Proof of Theorem 5. We start by multiplying the congruence (3) by an
appropriate constant to make the coefficients a, b small. Let L be the lattice
of points in Z2 given by

{(x, y) ∈ Z2 : (x, y) ≡ λ(a, b) (mod p) for some λ ∈ Z}.
Since (a, b) is a nonzero vector (mod p), L is a lattice of volume p and so,
by Minkowski’s convex body theorem, there is a nonzero (x, y) ∈ L with
|x|, |y| ≤ √p, say (x, y) ≡ λ(a, b) (mod p). Multiplying (3) by λ yields a new
congruence of the same type with p - ab and |a|, |b| < √p.

Set y = b, and multiply the congruence by the multiplicative inverse of b
(mod p) to obtain a congruence of the type

(5) ax+ uv ≡ c (mod p)

with 0 < a <
√
p (replacing x with −x in case a < 0). If c ≡ 0 (mod p) one

readily obtains a small solution of (3) with all variables nonzero by taking
x = 1, u = a, v = −1.

Let α be any integer with 0 ≤ α < a and gcd(a, [
√
p ] − α) = 1. There

are φ(a) choices for α. Put u = [
√
p ]− α and consider the congruence

(6) ax+ ([
√
p ]− α)v ≡ c (mod p).

Since (a, [
√
p ]− α) ∈ Rp, it follows from Theorem 2 that (6) has a nonzero

solution with |x| < √p and |v| < √p.
Acknowledgements. The authors wish to thank Sergei Konyagin for
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