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1. Introduction. For any integers x and y, we denote by (x, y) (resp.
[x, y]) the greatest common divisor (resp. least common multiple) of x and y.
Let e ≥ 1 be an integer and S = {x1, . . . , xn} be a set of n distinct positive
integers. The n× n matrix

(Se) = ((xi, xj)e),
having the eth power (xi, xj)e as its (i, j)-entry, is called the eth power GCD
matrix on S. The n× n matrix

[Se] = ([xi, xj ]e),
having the eth power [xi, xj ]e as its (i, j)-entry, is called the eth power LCM
matrix on S. These are simply called the GCD matrix and LCM matrix
respectively if e = 1. The set S is said to be factor closed (FC) if it contains
every divisor of x for any x ∈ S. The set S is said to be gcd-closed if
for all i and j, (xi, xj) is in S. Evidently, an FC set is gcd-closed but not
conversely. A famous theorem of Smith [29] states that the determinant
of the matrix [(i, j)e] equals

∏n
k=1 Je(k), where Je is the Jordan totient

function (i.e. Je(x) = xe
∏
p|x(1 − 1/pe) for any positive integer x). Smith

also gave a formula for the determinant of the power LCM matrix ([i, j]e).
Since then many generalizations of Smith’s results have been published; see,
for example, [1–4, 7, 8, 12, 14, 19, 27, 28]. Later on power GCD matrices
and power LCM matrices are called Smith matrices. It is known that the
power GCD matrix on any set is nonsingular, but an LCM matrix may
be singular. There are some papers ([6, 13, 17–19, 23, 24]) studying the
nonsingularity of power LCM matrices; also, several authors (see [21, 22,
26, 30]) considered the eigenstructure of power GCD matrices and reciprocal
power LCM matrices.
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Divisibility is another central topic in the field of Smith matrices. Bourque
and Ligh [5] showed that if S is FC, then (Se) | [Se] in the ring Mn(Z) of
n × n matrices over the integers. That is, there is an M ∈ Mn(Z) such
that [Se] = (Se)M , or equivalently, (Se)−1[Se] ∈ Mn(Z). Hong [16] proved
that such factorization holds when S is either a divisor chain or multiple
closed (namely, y ∈ S if x | y | lcm(S) for all x ∈ S, where lcm(S) means the
least common multiple of all the elements of S). But such factorization is
no longer true if S is gcd-closed [15]. For x, y ∈ S and x < y, if x | y and
the conditions x | z | y and z ∈ S imply that z ∈ {x, y}, then we say that
x is a greatest-type divisor of y in S, and we also say that y is a least-type
multiple of x in S. For x ∈ S, we denote by GS(x) and LS(x) the set of all
greatest-type divisors of x in S and the set of all least-type multiples of x
in S respectively. It follows from [15] that there is a gcd-closed set S with
maxx∈S{|GS(x)|} = 2 such that (S)−1[S] 6∈Mn(Z). However, it is not clear
whether there is a gcd-closed set S with maxx∈S{|GS(x)|} = 1 such that
(S)−1[S] 6∈ Mn(Z). Hong believed that the answer to this question should
be negative. Actually, Hong [19] proposed the following conjectures.

Conjecture 1.1 ([19]). Let S be gcd-closed and maxx∈S{|GS(x)|} = 1.
Then the GCD matrix ((xi, xj)) on S divides the LCM matrix ([xi, xj ]) on S
in Mn(Z).

Conjecture 1.2 ([19]). Let S be lcm-closed and maxx∈S{|LS(x)|} = 1.
Then the GCD matrix ((xi, xj)) on S divides the LCM matrix ([xi, xj ]) on S
in Mn(Z).

By [16] we know that Conjectures 1.1 and 1.2 are true when S is a di-
visor chain. Feng, Tan and Zheng [10] showed that Conjecture 1.1 holds
if S consists of two relatively prime divisor chains. In this paper, we in-
troduce a new method to investigate the above conjectures. We first show
several theorems on the structure and properties of gcd-closed sets S with
maxx∈S{|GS(x)|} = 1. Using these we then construct an integer matrix
which equals the product (Se)−1[Se]; see Theorem 2.5 below. This in par-
ticular implies Conjecture 1.1 is true. Next, we establish a result for the
lcm-closed case which confirms Conjecture 1.2. Finally, we make some re-
marks on the finite arithmetic progression case and raise an open problem.

For any permutation σ on {1, . . . , n}, define Sσ := {xσ(1), . . . , xσ(n)}.
Then one can easily check that (Se)−1[Se] = P t(Seσ)−1[Seσ]P , where P is the
n× n permutation matrix whose ith row equals

(0, . . . , 0, 1︸︷︷︸
σ(i)

, 0, . . . , 0) (1 ≤ i ≤ n).

It follows that (Se)−1[Se] ∈ Mn(Z) ⇔ (Seσ)−1[Seσ] ∈ Mn(Z). So for divis-
ibility purposes, we can rearrange the elements of S in case of necessity.
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Throughout the paper, for any finite sets T and Q of integers, we denote by
|T | and max(T ) the cardinality of T and the maximal element of T respec-
tively, and define (T,Q) := (max(T ),max(Q)). Then (x, T ) = (x,max(T ))
for any integer x.

2. The gcd-closed case. First we prove three results on the structure
of certain gcd-closed sets.

Lemma 2.1. Let n ≥ 2 and x1 < · · · < xn. If maxx∈S{|GS(x)|} = 1 and
xi |xn for all 1 ≤ i ≤ n, then x1 | · · · |xn−1 |xn.

Proof. We use induction on n. If n = 2, then the result is obvious, so let
n ≥ 3.

Assume that the assertion is true for n− 1. Now consider the case of n.
Let S′ = {x1, . . . , xn−1}. Then xn−1 |xn by assumption. Hence xn−1 is a
greatest-type divisor of xn in S.

We claim that xj |xn−1 for all 1 ≤ j ≤ n − 2. Indeed, otherwise there
exists a j, 1 ≤ j ≤ n− 2, such that xj - xn−1. Let J be the set of all such j
and put j0 := max{j : j ∈ J}. Then xj0 is another greatest-type divisor of
xn in S. This means that |GS(xn)| ≥ 2, a contradiction.

By the claim we know that maxx∈S′{|GS′(x)|} ≥ 1. Since, on the other
hand, maxx∈S{|GS(x)|} = 1, we deduce that maxx∈S′{|GS′(x)|} = 1. It
follows from the claim and induction hypothesis that for the set S′, we have
x1 | · · · |xn−1. So x1 | · · · |xn as required.

Let S be gcd-closed and maxx∈S{|GS(x)|} = 1. Then by Lemma 2.1, we
can rearrange S into “composite divisor chains” using the following iterative
rule:

Step 1. Pick the biggest element of S and consider the set of all its
divisors in S, denoted by X1 = {x11, . . . , x1,a1}, where a1 = |X1|. By Lemma
2.1, these numbers form a divisor chain.

Step 2. If X1 = S, we are done. If X1 6= S, then Step 1 applied to
S \ X1 gives us another divisor chain, denoted by X2 = {x21, . . . , x2,a2},
where a2 = |X2|. If X1∪X2 = S, we are done. If X1∪X2 6= S, then by Step 1
applied to S \ (X1∪X2), we get a new divisor chain X3. Since S is finite, by
repeating Step 1 a finite number of times, we can classify S into k disjoint
divisor chains X1, . . . , Xk, i.e., S =

∐
1≤i≤kXi, where Xi = {xi1, . . . , xi,ai},

ai = |Xi|, xi1 < · · · < xi,ai .
Note that xi1 | · · · |xi,ai for 1 ≤ i ≤ k. Let A := {a1, a1+a2, . . . , a1+· · ·+

ak} and a0 = 0. For 1 ≤ i ≤ k and 1 ≤ j ≤ ai, define ya0+a1+···+ai−1+j := xij .
Now we rearrange the elements of S, and in Lemmas 2.2–2.4 and Theorem
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2.5(i) below, we always let

(1) S =
∐

1≤i≤k
Xi = {y1, . . . , yn}

with y1 = 1. Obviously ya - yb if 1 ≤ b < a ≤ n. If k = 1, then S = X1 is
a divisor chain. By [16], we have (Se) | [Se]. In what follows we let k ≥ 2.
Define Ti := {(Xi, Xj) : 1 ≤ j < i} for 2 ≤ i ≤ k. For any ys ∈ S (1 ≤
s ≤ n), define ns := |{2 ≤ i ≤ k : max(Ti) = ys}|. Clearly ns = 0 if
ys 6= max(Ti) for all 2 ≤ i ≤ k. In particular, ns = 0 if s ∈ A and thus∑n

s=1 ns =
∑

s 6∈A ns = k − 1. We have the following results.

Lemma 2.2.

(i) For any integer 2 ≤ i ≤ k, Ti is a divisor chain.
(ii) For 1 < a ≤ k, if max(Ta) ∈ Xb, then (Xa, Xb) = max(Ta).

Proof. Since (Xi, Xj) | max(Xi) for all integers j ≥ 1, by Lemma 2.1 we
can easily see that Ti is a divisor chain, proving (i). Clearly max(Ta) | (Xa,Xb)
since max(Ta) ∈ Xb. But Ta is a divisor chain. So (Xa, Xb) | max(Ta) and
hence (Xa, Xb) = max(Ta). This proves (ii).

Lemma 2.3. Let 1 ≤ l 6= m ≤ k, yt ∈ Xm, yα ∈ Xl and yβ ∈ S.

(i) If yα - yt and yα | yβ, then (yα, yt) = (yβ, yt).
(ii) If (Xl, yt) 6∈ Xl, then (Xl, yt) = (Tl, yt).
(iii) If yt - yα, yα - yt and (yα, yt) = yω, then nω 6= 0.

Proof. (i) Let (yα, yt) = a ∈ S and (yβ, yt) = b ∈ S. Clearly yα | yβ and
a | b | yβ. Since maxx∈S{|GS(x)|} = 1, Lemma 2.1 applied to {b, yα, yβ} tells
us that either b | yα | yβ or yα | b | yβ. If yα | b = (yβ, yt), then yα | yt, contrary
to assumption. So we must have b | yα and b | a. Hence (yα, yt) = (yβ, yt) as
required.

(ii) Let (Xl, yt) = yt′ 6∈ Xl and max(Tl) ∈ Xl′ for some positive integers
t′ ≤ n and l′ < l. Then yt′ ∈ Xl′′ for some positive integer l′′ < l. We then
derive that yt′ | (Xl′′ , Xl) | max(Tl) | max(Xl′). By Lemma 2.2 we have

(Tl, yt) = ((Xl, Xl′), yt) = ((Xl, yt), Xl′) = (yt′ , Xl′) = yt′ = (Xl, yt).

(iii) Without loss of generality, we may let l < m. It suffices to show that
yω = max(Ti) for some 2 ≤ i ≤ k. Let yω ∈ Xr. Then r ≤ l < m. Obviously
yω - max(Xi) for 1 ≤ i ≤ r − 1 and yω | max(Xr) as well as yω | max(Xm).
Thus we can define a nonempty index set {q1, . . . , qh} := {r + 1 ≤ q ≤ k :
yω | max(Xq)}. Clearly m ∈ {q1, . . . , qh}.

We claim that there exists some 1 ≤ j ≤ h such that (Xqj , Xr) = yω.
Since yα - yt and yt - max(Xl), we have yω = (yα, yt) = (Xl, yt) = (Xl, Xm)
by (i). So if r = l, the claim is true. If r < l, then l ∈ {q1, . . . , qh}.
Evidently yω | (Xqj , Xr) | max(Xr) for all 1 ≤ j ≤ h. By Lemma 2.1 we
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know that {(Xq1 , Xr), . . . , (Xqh , Xr)} is a divisor chain. Assume that the
claim is not true. Then (Xqj , Xr) > yω for all 1 ≤ j ≤ h. So (Xl, Xm) ≥
((Xl, Xr), (Xm, Xr)) = min((Xl, Xr), (Xm, Xr)) > yω. This is absurd. The
claim is proved.

Now let i be the smallest r + 1 ≤ qj ≤ k such that (Xqj , Xr) = yω.
It remains to show that yω = max(Ti). Since yω = (Xi, Xr), we have
yω | max(Ti). Let max(Ti) ∈ Xv for some 1 ≤ v ≤ i− 1. Then yω | max(Xv)
and so v ∈ {r, q1, . . . , qh}. By Lemma 2.2 we have (Xi, Xv) = max(Ti). Let
(Xv, Xr) = yω′ . Suppose that max(Ti) > yω. Then Xv 6= Xr and so yω′ > yω
by the minimality of i. Since yω′ | max(Xv) and max(Ti) | max(Xv), by
Lemma 2.1 we have either yω′ |max(Ti) |max(Xv) or max(Ti) | yω′ |max(Xv).
From this we deduce that yω = (Xi, Xr) ≥ ((Xi, Xv), (Xr, Xv)) = (Ti, yω′) =
min(max(Ti), yω′) > yω, which is impossible. Thus max(Ti) = yω as de-
sired.

For any s ∈ A, we can define a unique integer 1 ≤ l(s) ≤ k such that
ys = ya1+···+al(s)

= max(Xl(s)). In the rest of this section, for any given
1 ≤ t ≤ n, let yt ∈ Xl(t′) and yt′ = max(Xl(t′)) for 1 ≤ l(t′) ≤ k. Then
t′ ∈ A.

Lemma 2.4. Let A1 := {s : (ys, yt) 6∈ Xl(s), s ∈ A\{t′}} and A2 := {s :
(ys, yt) ∈ Xl(s), s ∈ A\{t′}}. Then

(i) f1(t) :=
∑
s∈A1

((ys, yt)e − (Tl(s), yt)
e) = 0.

(ii) f2(t) :=
∑
s∈A2

(ys, yt)e −
∑

s∈A2∪{t′}\{a1}

(Tl(s), yt)
e = 0.

Proof. (i) If s ∈ A1, then (ys, yt) 6∈ Xl(s). By Lemma 2.3(ii) we have
(ys, yt) = (Tl(s), yt), and so f1 = 0.

(ii) If t′ = a1, then clearly A2 = ∅. Hence f2 = 0 as required. Let now
t′ 6= a1. Consider the following two cases:

Case 1: t ∈ A. Then t = t′. Since (X1, yt) ∈ X1, we can define a
nonempty index set {t1, . . . , tr} := {1 ≤ i ≤ k : (Xi, yt) ∈ Xi}, where
1 = t1 < · · · < tr = l(t).

We assert that (yt, Xtj−1) = max(Ttj ) ∈ Xtj−1 for all 1 < j ≤ r. Let
(yt, Xtj ) = yt′j ∈ Xtj for 1 < j ≤ r. Clearly there exists a unique 1 ≤
b(j) < tj such that max(Ttj ) ∈ Xb(j). By Lemmas 2.2 and 2.3(i), we have
(yt′j , Xb(j)) = (Xtj , Xb(j)) = max(Ttj ) ∈ Xb(j). Then (yt′j , Xb(j)) | (yt, Xb(j)) |
max(Xb(j)) and so (yt, Xb(j)) ∈ Xb(j). Therefore Xb(j) ∈ {Xt1 , . . . , Xtj−1}.
Since yt′j | yt and (yt, Xtj−1) = yt′j−1

| yt, by Lemma 2.1 we have yt′j−1
| yt′j | yt.

Then yt′j−1
= (yt′j , yt′j−1

) | (Xtj , Xtj−1) | max(Ttj ) | max(Xtj ). Since yt′j−1
∈

Xtj−1 , we have max(Ttj ) ∈ Xtj−1 . Clearly yt′j - Xtj−1 for all 1 < j ≤ r. Then
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(yt, Xtj−1) = (yt′j , Xtj−1) = (Xtj , Xtj−1) = max(Ttj ) by Lemmas 2.3(i) and
2.2. The assertion is proved.

For each s ∈ A2, we can find a unique 1 ≤ j < r such that ys ∈ Xtj .
Note that max(Ttj ) | yt for all 1 ≤ j ≤ r. Therefore

f2 =
∑

1≤j<r
(Xtj , yt)

e −
∑

1<j≤r
(Ttj , yt)

e

=
∑

1≤j<r
max(Ttj+1)e −

∑
1<j≤r

max(Ttj )e = 0.

Case 2: t 6∈ A. If l(s) ∈ A2, then l(s) < l(t′) and yt - ys. Then (ys, yt) =
(ys, yt′) by Lemma 2.3(i). Since yt - ys and yt - max(Tl(s)), by Lemma 2.3(i)
we have (Tl(s), yt) = (Tl(s), yt′) for all l(s) < l(t′). Then

f2 =
∑
s∈A2

(ys, yt′)e −
∑

s∈A2∪{t′}\{a1}

(Tl(s), yt′)
e = 0.

Let A′1 = {s : (ys, yt′) 6∈ Xl(s), s ∈ A\{t′}} and A′2 = {s : (ys, yt′) ∈
Xl(s), s ∈ A\{t′}}. It is easy to see that A′1 = A1 and A′2 = A2. If we replace
A2 by A′2 and t by t′, Case 1 gives f2 = 0.

Definition. Define a matrix C := (cst) ∈Mn(Z), where

cst =
yet

(ys, yt)e
δst

and δst is defined by: δs1 = 1 if s ∈ A;−ns if s 6∈ A, δ1t = 1 − n1 if t > 1,
and for s, t > 1,

δst︸︷︷︸
if t∈A

=

{
1, s ∈ A\{t},
−ns, otherwise,

δst︸︷︷︸
if t6∈A

=


−1− ns, s = t,

1, s ∈ A,
−ns, otherwise.

Now we state the first main result of this paper as follows.

Theorem 2.5.

(i) Let S be a gcd-closed set such that maxx∈S{|GS(x)|} = 1. Then
(Se)−1[Se] = C, where C ∈ Mn(Z) is defined as above. In particu-
lar , Conjecture 1.1 holds.

(ii) For each integer r ≥ 2, there exists a gcd-closed set S such that
maxx∈S{|GS(x)|} = r and the power GCD matrix (Se) on S does
not divide the power LCM matrix [Se] on S in Mn(Z).

Proof. (i) First note that S is as in (1). Then S = {y1, . . . , yn} with y1 = 1.
In what follows we show [Se] = (Se)C, i.e. [ym, yt]e =

∑n
s=1(ym, ys)ecst for

all 1 ≤ m, t ≤ n. Let ym ∈ Xl(m′) and ym′ = max(Xl(m′)) for 1 ≤ l(m′) ≤ k
and m′ ∈ A. Let (ym, yt) = yu ∈ Xl(u′) and yu′ = max(Xl(u′)). Consider the
following three cases:
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Case 1: t = 1. We have
n∑
s=1

(ym, ys)ecs1 =
∑
s∈A

(ym, ys)e −
∑
s 6∈A

ns(ym, ys)e = yem +∆,

where
∆ =

∑
s∈A\{m′}

(ym, ys)e −
∑

s∈A\{a1}

(ym, Tl(s))
e.

Clearly ∆ = f1(m) + f2(m) = 0 by Lemma 2.4. Thus
∑n

s=1(ym, ys)ecs1 =
yem = [ym, y1]e.

Case 2: t ∈ A. We have
n∑
s=1

(ym, ys)ecst = (ym, y1)eyet (1− n1) + (ym, yt)e(−nt)

+
∑

s∈A\{t}

(ym, ys)eyet
(ys, yt)e

−
∑

s 6∈A, s 6=1

ns(ym, ys)eyet
(ys, yt)e

= yet +
∑

s∈A\{t}

(ym, ys)eyet
(ys, yt)e

−
∑
s 6∈A

ns(ym, ys)eyet
(ys, yt)e

= yet + yet g1,

since nt = 0 for t ∈ A, where

g1 =
∑

s∈A\{t}

(ym, ys)e

(ys, yt)e
−

∑
s∈A\{a1}

(Tl(s), ym)e

(Tl(s), yt)e
.

Let A1 and A2 be as in Lemma 2.4, and let {t1, . . . , tr} be as in the proof
of Lemma 2.4. Consider the following two subcases.

Subcase 2-1: ym | yt. Since [ym, yt] = yt, it suffices to show g1 = 0. We
have

g1 =
( ∑
s∈A1

(ys, ym)e

(ys, yt)e
−
∑
s∈A1

(Tl(s), ym)e

(Tl(s), yt)e

)

+
( ∑
s∈A2

(ys, ym)e

(ys, yt)e
−

∑
s∈A2∪{t}\{a1}

(Tl(s), ym)e

(Tl(s), yt)e

)

=
∑
s∈A1

(
(ys, ym)e

(ys, yt)e
−

(Tl(s), ym)e

(Tl(s), yt)e

)
+
( ∑

1≤j<r

(Xtj , ym)e

(Xtj , yt)e
−
∑

1<j≤r

(Ttj , ym)e

(Ttj , yt)e

)

=
∑
s∈A1

(
(ys, ym)e

(ys, yt)e
−

(Tl(s), ym)e

(Tl(s), yt)e

)
+
∑

1<j≤r

(
(Xtj−1 , ym)e

(Xtj−1 , yt)e
−

(Ttj , ym)e

(Ttj , yt)e

)
=: h1 + h2.

If s ∈ A1, then (yt, ys) 6∈ Xl(s). Since (ym, ys) | (yt, ys) we have (ym, ys) 6∈
Xl(s). From Lemma 2.3(ii), we deduce (ys, ym) = (Tl(s), ym) and (ys, yt) =
(Tl(s), yt). So h1 = 0.
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We now show h2 = 0. We have proved in Lemma 2.4 that (yt, Xtj−1) =
max(Ttj ) ∈ Xtj−1 for all 1 < j ≤ r. Let first m′ = a1, i.e. ym ∈ X1. For
2 < j ≤ r, we have max(Ttj ) - ym. Then by Lemma 2.3(i), (Ttj , ym) =
(Xtj−1 , ym). Let j = 2. Then ym | (yt, ym′) = max(Tt2) ∈ X1 and so (Tt2 , ym)
= ym = (X1, ym). Thus h2 = 0. Let now m′ 6= a1. Since ym | (yt, ym′) | ym′
and ym, ym′ ∈ Xl(m′), we have (ym′ , yt) ∈ Xl(m′), which implies that l(m′) ∈
{t1, . . . , tr}. Write l(m′) = tj0 for some 1 ≤ j0 ≤ r. Since (yt, Xtj−1) =
max(Ttj ) ∈ Xtj−1 for all 1 < j ≤ r, we have max(Ttj ) - ym and (Xtj−1 , ym) =
(Ttj , ym) for all j0 + 2 ≤ j ≤ r by Lemma 2.3(i). For all 1 < j ≤ j0 we have
ym - max(Ttj ) and so (Xtj−1 , ym) = (Xtj−1 , yt) = max(Ttj ) by Lemma 2.3(i).
Hence (Xtj−1 , ym) = (Ttj , ym) for all 1 < j ≤ j0. For j = j0 + 1, we have
(Ttj0+1 , ym) = ((yt, Xtj0

), ym) = (Xtj0
, ym). This implies that h2 = 0, which

means g1 = 0. (Note that

g′1 :=
∑

s∈A\{t}

(yt, ys)e

(ys, ym)e
−

∑
s∈A\{a1}

(Tl(s), yt)e

(Tl(s), ym)e
= 0,

which will be used in Subcase 3-2).

Subcase 2-2: ym - yt. Clearly m′ 6= t. Since (ym, yt) = yu and yt - ym
for all ym ∈ S, we have nu 6= 0 by Lemma 2.3(iii). So we can find a v ∈ A
such that yu = max(Tl(v)). Then (Tl(v), ym)/(Tl(v), yt) = yu/yu = 1. Since
yu | (yt, yu′) | yu′ , we have (yt, yu′) ∈ Xl(u′) and so l(u′) ∈ {t1, . . . , tr}. Let
tj1 = l(u′) for some 1 ≤ j1 ≤ r. By Lemma 2.3(i) and ym - yt, we have
(ym, ym′)/(ym′ , yt) = ym/(ym, yt). Then

n∑
s=1

(ym, ys)ecst = [ym, yt]e + yet g2,

where

g2 =
∑

s∈A\{t,m′}

(ys, ym)e

(ys, yt)e
−

∑
s∈A\{a1,v}

(Tl(s), ym)e

(Tl(s), yt)e
.

In what follows we show that g2 = 0.

Subcase 2-2-1: m′ ∈ A2, i.e. (ym′ , yt) ∈ Xl(m′). Then l(u′) 6= l(t) = tr.
Since ym - yt, we have yu = (ym, yt) = (ym′ , yt) ∈ Xl(m′) by Lemma 2.3(i).
Then l(m′) = l(u′) = tj1 . Since (ym′ , yt) = max(Ttj1+1), we may let l(v) =
tj1+1. Note that {l(s) : s ∈ A2} = {t1, . . . , tr−1}. Then

g2 =
∑
s∈A1

(
(ys, ym)e

(ys, yt)e
−

(Tl(s), ym)e

(Tl(s), yt)e

)
+

∑
s∈A2\{m′}

(ys, ym)e

(ys, yt)e

−
∑

s∈A2∪{t}\{a1,v}

(Tl(s), ym)e

(Tl(s), yt)e
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=
∑
s∈A1

(
(ys, ym)e

(ys, yt)e
−

(Tl(s), ym)e

(Tl(s), yt)e

)
+

∑
1<j≤j1

(
(Xtj−1 , ym)e

(Xtj−1 , yt)e
−

(Ttj , ym)e

(Ttj , yt)e

)

+
∑

j1+2≤j≤r

(
(Xtj−1 , ym)e

(Xtj−1 , yt)e
−

(Ttj , ym)e

(Ttj , yt)e

)
=: h1 + h3 + h4.

For 1 < j ≤ j1 − 1, since max(Ttj ) ∈ Xtj−1 , max(Ttj1+1) - max(Xtj−1) and
(ym, yt) = max(Ttj1+1), we have

(Xtj−1 , ym) = (Xtj−1 , Ttj1+1) = (Xtj−1 , yt) = max(Ttj ) = (Ttj , ym)

by Lemma 2.3(i). But by Lemmas 2.2 and 2.3(i), (Xtj1−1 , ym) = (Xtj1−1 , ym′)
= max(Ttj1 ) = (Ttj1 , ym). Since max(Ttj ) ∈ Xtj−1 and max(Ttj ) - ym for
j1 + 2 ≤ j ≤ r, we have (Xtj−1 , ym) = (Ttj , ym) by Lemma 2.3(i). Since
(yt, Xtj−1) = max(Ttj ) for all 1 < j ≤ r, we have h3 = h4 = 0.

Now we treat h1. Let first s > m′ ≥ m and s ∈ A1. Then (ys, ym) 6∈ Xl(s)

for all s ∈ A1 and so (ys, ym) = (Tl(s), ym) by Lemma 2.3(ii). Let s < m ≤
m′ and s ∈ A1. Clearly max(Ttj1+1) - max(Xl(s)) = ys. Then (ys, ym) =
(ys, Ttj1+1) = (ys, yt) 6∈ Xl(s) by Lemma 2.3(i). Hence (ys, ym) = (Tl(s), ym)
by Lemma 2.3(ii). Since (ys, yt) = (Tl(s), yt) for all s ∈ A1, we have h1 = 0.
Thus g2 = h1 + h3 + h4 = 0.

Subcase 2-2-2: m′ ∈ A1, i.e. yu = (ym′ , yt) 6∈ Xl(m′). Define an index
set B := {s ∈ A1 : (ym, ys) 6∈ Xl(s)}. If (ym, yt) ∈ Xl(t), i.e. l(u′) = l(t), then
let {mr, . . . ,mw} := {i : l(t) ≤ i ≤ k, (Xi, Xl(m′)) ∈ Xi}, where l(t) = tr =
mr < · · · < mw = l(m′). As in the proof of (yt, Xtj−1) = max(Ttj ) ∈ Xtj−1

for all 1 < j ≤ r, we can show (ym′ , Xmj−1) = max(Tmj ) ∈ Xmj−1 for
all r < j ≤ w. Then yu = (ym′ , yt) = max(Tmr+1). Hence we may let
l(v) = mr+1. Since {l(s) : s ∈ A1\B} = {mr+1, . . . ,mw} and {l(s) : s ∈
A2} = {t1, . . . , tr−1}, we have

g2 =
∑
s∈B

(
(ys, ym)e

(ys, yt)e
−

(Tl(s), ym)e

(Tl(s), yt)e

)
+
∑

1<j≤r

(
(Xtj−1 , ym)e

(Xtj−1 , yt)e
−

(Ttj , ym)e

(Ttj , yt)e

)

+
∑

r+2≤j≤w

(
(Xmj−1 , ym)e

(Xmj−1 , yt)e
−

(Tmj , ym)e

(Tmj , yt)e

)
=: h5 + h6 + h7.

If s ∈ B, we have (ys, yt) = (Tl(s), yt) and (ys, ym) = (Tl(s), ym) by Lemma
2.3(ii). Then h5 = 0. Since for all 1 < j ≤ r, yu - max(Ttj ) and yu -
max(Xtj−1), by Lemma 2.3(i) we have (Xtj−1 , yt) = (Xtj−1 , yu) = (Xtj−1 , ym)
and (Ttj , yt) = (Ttj , yu) = (Ttj , ym). Hence h6 = 0. As in the proof of h4 = 0,
we can show h7 = 0. Thus g2 = 0.

If (ym, yt) 6∈ Xl(t), then let {mj1 ,mj1+1, . . . ,mw′} := {i : l(u′) = mj1 ≤
i ≤ k, (Xi, Xl(m′)) ∈ Xi}, where l(u′) = mj1 < mj1+1 < · · · < mw′ = l(m′).
Clearly l(u′) 6= tr. Sincem′, t∈A, we have yu | (ym′ , Xmj1

) = max(Tmj1+1) | yu′
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and yu | (ym′ , Xtj1
) = max(Ttj1+1) | yu′ . Then either yu | max(Tmj1+1) |

max(Ttj1+1) | yu′ or yu | max(Ttj1+1) | max(Tmj1+1) | yu′ by Lemma 2.1. But

yu = (ym′ , yt) ≥ ((ym′ , y′u), (yt, yu′)) = (max(Tmj1+1),max(Ttj1+1)).

Then yu = min(max(Tmj1+1),max(Ttj1+1)). So either yu = max(Tmj1+1) or
yu = max(Ttj1+1). Then we may let l(v) = tj1+1 or l(v) = mj1+1. Note that
{l(s) : s ∈ A1\B} = {mj1+1, . . . ,mw′} and {l(s) : s ∈ A2} = {t1, . . . , tr−1}.
If l(v) = tj1+1, then

g2 =
∑

1<j≤j1

(
(Xtj−1 , ym)e

(Xtj−1 , yt)e
−

(Ttj , ym)e

(Ttj , yt)e

)
+

∑
j1+2≤j≤r

(
(Xtj−1 , ym)e

(Xtj−1 , yt)e
−

(Ttj , ym)e

(Ttj , yt)e

)

+
∑

j1+1≤j≤w′

(
(Xmj−1 , ym)e

(Xmj−1 , yt)e
−

(Tmj , ym)e

(Tmj , yt)e

)
+ h5 := h3 + h4 + h8 + h5.

As in Subcase 2-2-1, we can prove h3 = 0. As in the proof of h6 = 0, we can
show h4 = h8 = 0. Notice that h5 = 0. Thus g2 = 0. Similarly, we can show
that if l(v) = mj1+1, then g2 = 0. Therefore Case 2 is proved.

Case 3: t 6∈ A. We have
n∑
s=1

(ym, ys)ecst = yet (1− n1)− (1 + nt)(yt, ym)e

+
∑
s∈A

(ym, ys)eyet
(ys, yt)e

−
∑

s6∈A, s 6=1,t

ns(ym, ys)eyet
(ys, yt)e

= (yet − (yt, ym)e) +
∑
s∈A

(ym, ys)eyet
(ys, yt)e

−
∑
s 6∈A

ns(ym, ys)eyet
(ys, yt)e

.

Consider the following three subcases.

Subcase 3-1: ym | yt. We have
n∑
s=1

(ym, ys)ecst = yet + yet

( ∑
s∈A\{t′}

(ys, ym)e

(ys, yt)e
−

∑
s∈A\{a1}

(Tl(s), ym)e

(Tl(s), yt)e

)
= yet + yet (h1 + h9),

where

h9 =
∑
s∈A2

(ys, ym)e

(ys, yt)e
−

∑
s∈A2∪{t′}\{a1}

(Tl(s), ym)e

(Tl(s), yt)e
.

As in Subcase 2-1, we have h1 = 0 since t is independent of t ∈ A. If s ∈ A2,
then yt - ys and yt - max(Tl(s)). By Lemma 2.3(i), (ys, yt) = (ys, yt′) and
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(Tl(s), yt) = (Tl(s), yt′). Thus

h9 =
∑
s∈A2

(ys, ym)e

(ys, yt′)e
−

∑
s∈A2∪{t′}\{a1}

(Tl(s), ym)e

(Tl(s), yt′)e
.

Since t′ ∈ A, h2 = 0 gives h9 = 0.

Subcase 3-2: yt | ym. We have
n∑
s=1

(ym, ys)ecst = yem + yet

( ∑
s∈A\{m′}

(ys, ym)e

(ys, yt)e
−

∑
s∈A\{a1}

(Tl(s), ym)e

(Tl(s), yt)e

)
=: yem + yet g3.

Let
g′3 =

∑
s∈A\{m′}

(ys, yt)e

(ys, ym)e
−

∑
s∈A\{a1}

(Tl(s), yt)e

(Tl(s), ym)e
.

Since yt | ym, h1 + h9 = 0 in Subcase 3-1 gives g′3 = 0. Then as in Subcase
2-1, g1 = 0 implying g′1 = 0 tells us that g′3 = 0 implies that g3 = 0.

Subcase 3-3: ym - yt and yt - ym. Since (yt, ym) = yu, we have nu 6= 0
by Lemma 2.3(iii). So we also can find a v ∈ A such that yu = max(Tl(v))
as in Subcase 2-2. Then

n∑
s=1

(ym, ys)ecst = [ym, yt]e + yet g4,

where
g4 =

∑
s∈A\{t′,m′}

(ys, ym)e

(ys, yt)e
−

∑
s∈A\{a1,v}

(Tl(s), ym)e

(Tl(s), yt)e
.

In what follows we show that g4 = 0.

Subcase 3-3-1: m′ ∈ A2. Since yt - max(Tl(s)) and yt | yt′ , by Lemma
2.3(i) we have (Tl(s), yt) = (Tl(s), yt′). Then

g4 = h1 +
( ∑
s∈A2\{m′}

(ys, ym)e

(ys, yt)e
−

∑
s∈A2∪{t′}\{a1,v}

(Tl(s), ym)e

(Tl(s), yt)e

)

= h1 +
( ∑
s∈A2\{m′}

(ys, ym)e

(ys, yt′)e
−

∑
s∈A2∪{t′}\{a1,v}

(Tl(s), ym)e

(Tl(s), yt′)e

)
=: h1 + h10.

As in Subcase 2-2-1, we have h1 = 0 since t is independent of t ∈ A. Since
t′ ∈ A, h3 + h4 = 0 gives h10 = 0. Therefore g4 = 0.

Subcase 3-3-2: m′ ∈ A1. Let B be as in Subcase 2-2-2. Then

g4 = h10 + h5 +
∑

s∈A1\B

(
(ys, ym)e

(ys, yt)e
−

(Tl(s), ym)e

(Tl(s), yt)e

)
.

As in the proof of Subcase 2-2-2, we can show g4 = 0. Part (i) is proved.



172 S. F. Hong et al.

(ii) By [31] we know that there is a gcd-closed set S with maxx∈S{|GS(x)|}
= 2 such that (Se)−1[Se] 6∈ M|S|(Z). Now let r ≥ 3 and p1 < · · · < pr be
prime numbers. Define x1 = 1, xi = pi−1 (2 ≤ i ≤ r+1) and xr+2 = p1 · · · pr.
Obviously S := {x1, . . . , xr+2} is gcd-closed and maxx∈S{|GS(x)|} = r.
By [4], we have

((Se)−1)ij =
∑
xi|xk

xj |xk

cikcjk
bk

,

where
bi =

∑
d|xi

d-xt, xt<xi

Je(d) and cij =
∑
dxi|xj

dxi-xt, xt<xj

µ(d).

From [19] we derive br+2 =
∏r
i=1 p

e
i −

∑r
i=1 p

e
i + r − 1. Using these and by

some computations, we get ((Se)−1[Se])22 = −σ/br+2, where

σ =
r∏
i=1

pei − pe1
r∑
i=2

pei + (r − 2)pe1.

Since
∑r

i=2 p
e
i > r−1, we have br+2−σ > 0. Clearly σ > 0. So 0 < σ/br+2 < 1

and ((Se)−1[Se])22 6∈ Z. Hence (Se) - [Se] as required. Part (ii) is proved.

Remark. By Theorem 2.5(i) we know immediately that the sum of the
elements of the tth column of the matrix C equals yet . On the other hand,
let S0 be the gcd-closed set as in (1). Then by Theorem 2.5(i) we have
(Se0)−1[Se0] = C. For any general gcd-closed set S, let τ be the permutation
such that Sτ = S0. It follows that (Se)−1[Se] = P tCP , where P is the n×n
permutation matrix formed by τ . Now let e ≥ 1 be a given integer and S be a
gcd-closed set with maxx∈S{|GS(x)|} ≥ 2. It is of interest to have necessary
and sufficient conditions on S such that (Se) | [Se] in M|S|(Z). This is an
open problem.

3. The lcm-closed case. The reciprocal set of S = {x1, . . . , xn}, de-
noted by mS−1, is defined by mS−1 := {m/x1, . . . ,m/xn}. By [19] we know
that mS−1 is gcd-closed if and only if S is lcm-closed. We can now state the
second main result of this paper.

Theorem 3.1.

(i) Let S be an lcm-closed set such that maxx∈S{|LS(x)|} = 1 and mS−1

be the same set as in (1). Then (Se)−1[Se] = diag(x−e1 , . . . , x−en ) ·C ·
diag(xe1, . . . , x

e
n) ∈Mn(Z). In particular , Conjecture 1.2 is true.

(ii) For each integer r ≥ 2, there exists an lcm-closed set S with
maxx∈S{|LS(x)|} = r such that the power GCD matrix (Se) on S
does not divide the power LCM matrix [Se] on S in Mn(Z).
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Proof. (i) Let xiyi = m for all 1 ≤ i ≤ n. Then S = {x1, . . . , xn} since
mS−1 = {y1, . . . , yn}. Since

(xi, xj) =
m

[m/xi,m/xj ]
=
xixj
m
·
(
m

xi
,
m

xj

)
,

we get

(Se) = 1/me ·D · ((mS−1)e) ·D, [Se] = 1/me ·D · [(mS−1)e] ·D,
where D = diag(xe1, . . . , x

e
n). We deduce that

(2) (Se)−1[Se] = D−1((mS−1)e)−1[(mS−1)e]D.

Clearly it follows from maxy∈S{|LS(y)|}=1that maxy∈mS−1{|GmS−1(y)|}
= 1. So Theorem 2.5(i) applied to the set mS−1 gives (Se)−1[Se] = D−1CD,
where C = (cij) is defined after Lemma 2.4. Hence the (i, j) entry of the
matrix D−1CD is

xej
xei
cij =

xej
xei

yej
(yi, yj)e

δij =
xejy

e
j

xeiy
e
i

yei
(yi, yj)e

δij =
yei

(yi, yj)e
δij ∈ Z

since δij is an integer. This implies that (Se)−1[Se] ∈Mn(Z) as required.
(ii) It is known [31] that there is an lcm-closed setSwith maxx∈S{|LS(x)|}

= 2 such that (Se)−1[Se] 6∈ M|S|(Z). For r ≥ 3, let p1 < · · · < pr be primes
and m = p1 · · · pr. Set S = {m,m/p1, . . . ,m/pr, 1}. Then S is lcm-closed
and mS−1 = {1, p1, . . . , pr, p1 · · · pr} is gcd-closed. By (2) and replacing S
by mS−1 in the proof of Theorem 2.5(ii), we get

−1 < ((Se)−1[Se])22 = (((mS−1)e)−1[(mS−1)e])22 = − σ

br+2
< 0,

where σ and br+2 are as above. So (Se)−1[Se] 6∈Mr+2(Z) as desired.

Remark. Given any integer e ≥ 1. It is an open question to find neces-
sary and sufficient conditions on an lcm-closed set S with maxx∈S{|LS(x)|}
≥ 2 so that the power GCD matrix (Se) divides the power LCM matrix [Se]
in M|S|(Z).

4. Remarks on the finite arithmetic progression case. The re-
nowned Dirichlet theorem states that the arithmetic progression contains
infinitely many primes if the first term and the common difference are co-
prime, while the Green–Tao theorem [11] says that the set of primes contains
arbitrarily long arithmetic progressions. Farhi [9] and Hong–Feng [20] inves-
tigated the non-trivial lower bounds for the least common multiple of finite
arithmetic progressions. Ligh [25] raised the problem of computing the de-
terminants of Smith matrices on a finite arithmetic progression which is
still open. We are interested in the divisibility of Smith matrices on a finite
arithmetic progression. We can easily check that if S = {2, 2+q, 2+2q} and
(2, q) = 1, then for all integer e ≥ 1, we have (Se)−1[Se] ∈M3(Z). But the set
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S = {4, 7, 10} gives (S)−1[S] 6∈M3(Z). Now fix an integer e ≥ 1. We do not
know how to characterize the arithmetic progression S = {a+b, . . . , a+nb},
where (a, b) = 1, such that (Se)−1[Se] ∈Mn(Z). This problem remains open.
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