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1. General setting and statement of the main result. For a num-
ber field E and a finite set of places S of E containing the archimedean
places, let ζSE be the Dedekind S-zeta function of E. For a complex num-
ber s, let ζSE(s)∗ denote the special value of ζSE at s (i.e. the first nontrivial
coefficient of the Laurent expansion of ζSE around s). Dedekind, inspired by
previous work of Dirichlet, proved the formula

(1.1) ζSE(0)∗ = −
hSE
wE

RSE ,

where hSE is the class number of the ring OSE of S-integers of E, wE is the
order of the group of roots of unity of E, and RSE is the regulator of (OSE)×.

There are conjectural analogues of this formula when 0 is replaced by
negative integers. More precisely, we recall the definition of motivic coho-
mology groups in terms of Bloch’s higher Chow groups:

Hj(OSE ,Z(m)) := CHm(Spec(OSE), 2m− j).
The Bloch–Kato conjecture, which is now a theorem of Rost, Voevodsky
and Weibel (the reader is referred to [We] for appropriate references on
this subject), implies that, for any integer m ≥ 2, H1(OSE ,Z(m)) (resp.
H2(OSE ,Z(m))) is a finitely generated Z-module (resp. a finite abelian
group). Then the original Lichtenbaum conjecture (see [Li]) can be mod-
ified to the following conjecture [Ka, 4.7.4]:

(1.2) ζSE(1−m)∗ = (−1)tE,m
hSE,m

wSE,m
RSE,m, m ≥ 2.

Here hSE,m is the order of H2(OSE ,Z(m)), wSE,m is the order of the tor-
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sion subgroup of H1(OSE ,Z(m)) and RSE,m is the (motivic) regulator of
H1(OSE ,Z(m)) (see Section 3). If S′ is a finite set of places of E containing S,
then the natural map

H1(OSE ,Z(m))→ H1(OS′E ,Z(m)),

induced by the inclusion OSE ⊆ OS
′

E , can be shown to be an isomorphism
which commutes with the motivic regulator map (whose definition and prop-
erties are recalled in Section 3). Then one can easily see that both wSE,m and
RSE,m are independent of S and therefore we shall denote them simply by
wE,m and RE,m, respectively. Finally, tE,m ∈ N is given by

tE,m =


1 if m ≡ 1 mod 4,
r1(E) + r2(E) if m ≡ 2 mod 4,
r1(E) if m ≡ 3 mod 4,
r2(E) if m ≡ 0 mod 4,

where r1(E) (resp. r2(E)) is the number of real places (resp. complex places)
of E.

We now list some known facts about the Lichtenbaum conjecture and
motivic cohomology; for any further detail and proper attribution of the re-
sults we shall mention, we refer the reader to Kolster’s and Kahn’s excellent
surveys [Ko] and [Ka]. For the rest of the paper, m will denote an integer
greater than 1. We have

(1.3) H1(OSE ,Z(m))⊗Q ∼= K2m−1(OSE)⊗Q.

In particular, since the Z-rank of K2m−1(OSE) does not depend on S (see
[So]), we get, thanks to Borel’s rank formula,

(1.4) rkZH
1(OSE ,Z(m)) =

{
r1(E) + r2(E) if m ≥ 2 is odd,
r2(E) if m ≥ 2 is even.

Finally, by the validity of the Bloch–Kato conjecture, we also have

(1.5) Hj(OSE ,Z(m))⊗Z Z` ∼= Hj
ét(O

S
E [1/`],Z`(m)) for j = 1, 2,

where ` is any prime. Whenever a Galois action is defined on E, the above
isomorphisms are invariant under this action.

Using the main conjecture in Iwasawa theory (which is now a theorem
thanks to Wiles’s proof), the Lichtenbaum conjecture has been proved for
m ≥ 2 even and E totally real abelian and it is also known to hold up to
powers of 2 for m ≥ 2 even and E totally real. Moreover, it is known to hold
up to powers of 2 for E abelian and any m ≥ 2.
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Now let p be an odd prime. Let D = Dp denote the dihedral group of
order 2p; in particular

D = 〈τ, σ | τp = σ2 = 1, στσ = τ−1〉.

Let L/k be a Galois extension of number fields such that Gal(L/k) ∼= D (in
the rest of this paper we shall identify those groups). Let K (resp. K ′) be the
subfield of L fixed by 〈σ〉 (resp. by 〈τ2σ〉); in particular K ′ = τ(K). Let F
be the subfield of L fixed by 〈τ〉 and set G = Gal(L/F ) and ∆ = Gal(F/k).

Let S be a finite set of places of L which is stable under the action
of D and contains the archimedean places (we shall consider only sets of
places containing the archimedean ones, so we will not further mention this
property). For any subfield E of L containing k, the set of places of E
which lie below those of S will be denoted by SE or simply again by S if
no misunderstanding is possible. The existence of the nontrivial D-relation
(in the sense of [DD], see Definition 2.1 and Example 2.4 of that paper)

(1.6) {1} − 2〈σ〉 −G+ 2D,

together with Artin formalism of L-functions, gives the following formula:

(1.7) ζSL(s) = ζSF (s)
ζSK(s)2

ζSk (s)2
.

Considering the special value at 0 of (1.7) and using (1.1), we get

(1.8) hSL = hSF
(hSK)2

(hSk )2
·
w2
kwL

w2
KwF

·
(RSK)2RSF
(RSk )2RSL

,

which is commonly referred to as the (classical) Brauer–Kuroda formula (for
dihedral extensions of order 2p). It can be shown that the w-factor is actually
trivial. More interestingly, the factor involving regulators can be expressed
as the index of a subgroup defined in terms of units of subextensions of
L/k (see [Ba], [Ja], [HK], [Le], . . . ). Considering special values at negative
integers and using (1.2), we get of course, for any m ≥ 2, a conjectural
analogue of (1.8):

(1.9) hSL,m = hSF,m
(hSK,m)2

(hSk,m)2
·

(wk,m)2wL,m
(wK,m)2wF,m

·
(RK,m)2RF,m
(Rk,m)2RL,m

(it is easy to see that indeed the signs appearing in (1.2) cancel each other
out in (1.9): use for example Lemma 2.37 of [DD]).

In this paper we prove (1.9) without using the Lichtenbaum conjecture
and actually in an algebraic way, i.e. we make no use of L-functions at all. To
begin with, thanks to the following lemma, the w-term in the above formula
is trivial, as in the classical case. As a matter of notation, if A is a ring and
M is an A-module, then torA(M) will denote the torsion submodule of M .
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Lemma 1.1. Let S be a finite set of places of L which is invariant under
the action of Gal(L/k). Then

wL,m = wF,m and wK,m = wk,m.

Proof. Recall that, for any number field E and any prime `, we have

torZ(H1(OSE ,Z(m)))⊗Z Z` ∼= torZ`(H
1
ét(OSE [1/`],Z`(m)))

∼= H0(E,Q`/Z`(m))

(m ≥ 2) and the latter has cardinality v`(κE(γE)m − 1), where v` is the
`-adic valuation on Z` such that v`(`) = 1, κE : ΓE → Z×` is the cyclotomic
character evaluated on ΓE = Gal(E(µ`∞)/E) and γE is any topological
generator of ΓE . Now, since L/k is not abelian, L∩F (µ`∞) = F . This shows
that

v`(κL(γL)m − 1) = v`(κF (γF )m − 1),

since restriction maps ΓL isomorphically onto ΓF . A similar argument ap-
plies to K and k.

The proof of (1.9) is achieved by summing up the following two results
(which are proved respectively in Sections 2 and 3), which may be interesting
in their own right.

Formula 1.2. The following equality holds:

hSL,m = p−αmhSF,m

(
hSK,m

hSk,m

)2

um,

with αm = rkZp HF,m − rkZp Hk,m, and

um =
(HL,m : HF,mHK,mHK′,m)((HF,m)∆ : Hk,m)

((HF,m)D : Hk,m)
,

where, for a number field E, we have set HE,m = H1(OSE ,Zp(m)) and
HE,m = HE,m/torZ(HE,m).

Formula 1.3. With notation as in the previous statement,

p−αmum =
(RK,m)2RF,m
(Rk,m)2RL,m

.

Note that indeed um and αm do not depend on S because HE,m does
not. It will turn out that, as in the classical case, um is a power of p.

We will divide the proof of Formula 1.2 into two parts, studying sepa-
rately p-parts and `-parts for any prime ` 6= p (using then (1.5) to glue all
parts together). It should be stressed that the proof for `-parts with ` 6= p is
really much easier: using just the fact that étale cohomology defines a coho-
mological Mackey functor (in the sense of Dress; see for example [Bo]) and
that D = Dp is not `-hypoelementary, we get even more precise structural
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relations. On the other hand, the proof for p-parts uses mainly descent and
co-descent results for étale cohomology groups (which are described in [KM],
see also [Ko]). This is essentially the only piece of arithmetic information
which is needed (the rest of the proof being a technical algebraic computa-
tion), while any algebraic proof of the classical version of Formula 1.2 (see
[Ja], [HK], [Le], . . . ) uses class field theory. The proof of Formula 1.2 given
here can probably be generalized without too much effort to metabelian
groups with commutator subgroup of order a power of p and index coprime
to p. However this approach seems not to be the best for the general case of
an arbitrary Galois group (see below).

In the last section we prove Formula 1.3. The translation of um in terms of
motivic regulators is done using methods from representation theory which
have been introduced by the Dokchitser brothers (see for example [DD]). In
particular, we closely follow the strategy of Bartel (see [Ba]), who used Dok-
chitsers’ ideas to prove a statement analogous to ours in the classical case.

After completing the final draft of this paper, I was informed by both
A. Bartel and the referee about the existence of a preprint by D. Burns in
which he provides a proof of (1.9) that is independent of the conjecture (1.2).
Burns’s result is much more general than ours (in particular (1.9) is proved
for finite Galois extensions with arbitrary Galois group) and the strategy is
completely different. He directly proves (1.9) without proving Formulas 1.2
and 1.3 separately.

Notation and standard results

• Throughout the paper, if A is a commutative ring and M is an A-
module, torA(M) denotes the torsion submodule of M . We will also
use the notation M for M/torA(M) without any specific mention of A,
since it will be clear from the context which is the ring we are consid-
ering. Finally, for any a ∈ A, we set M [a] = {m ∈M | am = 0}.
• Let H be a finite group. We denote by NH =

∑
h∈H h ∈ A[H] the

norm element and by IH ⊆ A[H] the augmentation ideal of the group
ring A[H] (again the reference to the ring is omitted). If B is an
A[H]-module, we use the notation

BH = {b ∈ B | hb = b for all h ∈ H},
BH = B/IHB,

B[NH ] = {b ∈ B | NHb = 0}.
If ` is a prime, A = Z` and H is a q-group for some prime q 6= `, then

BH = NHB and B[NH ] = IHB,

since B is uniquely q-divisible (being a Z`-module) and hence H-
cohomologically trivial.
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2. A formula relating higher class numbers and a higher units
index. In this section we prove Formula 1.2. First we study the p-part of
the problem, which is the most delicate.

The natural number m ≥ 2 will be fixed throughout the section. For any
number field E such that k ⊆ E ⊆ L and any finite set S of places of L, we
set

USE,m = H1
ét(OSE [1/p],Zp(m)) and ASE,m = H2

ét(OSE [1/p],Zp(m)).

In fact, USE,m does not depend on S (see Lemma 2.12) so we shall denote
it simply by UE,m. We also fix for this section a finite set T of places of L
such that

• T is stable under the action of D = Gal(L/k),
• T contains the ramified places of L/k,
• T contains the places above p.

Since T and m are fixed for this section, we will also use the notation UE
for UE,m and AE for ATE,m. Both AE and UE are abelian groups; however,
because of their analogies with the ideal class group and the unit group
of E respectively, we are going to use multiplicative notation for them. In
particular, if g1 and g2 are elements of a group acting on the left on UE , we
have ug1g2 = (ug2)g1 for any u ∈ UE (and similarly for AE).

Remark 2.1. Note that, if Q is a group of automorphisms of E of order 2
which acts trivially on k, then the restriction induces isomorphisms UEQ =
UQE and AEQ = AQE . In fact, k ⊆ EQ ⊆ L and E/EQ is a Galois extension.
Therefore, thanks to our hypotheses on T , OT

EQ
⊆ OTE is an étale Galois

extension. The above assertion then follows by the Hochschild–Serre spectral
sequence (see [NSW, Proposition 2.1.2 and Corollary 2.1.4]), together with
the fact that Ht(OT

EQ
,Zp(m)) is Q-cohomologically trivial for any t ≥ 0.

The following well-known result gives us the description of the G-descent
for UE and AE (recall that G = Gal(L/F )).

Proposition 2.2 (Kolster–Movahhedi). The natural map UF → UGL is
an isomorphism and the natural map AF → AGL fits into the following exact
sequence:

0→ H1(G,UL)→ AF → AGL → H2(G,UL)→ 0.

Proof. See [KM, Theorem 1.2], whose hypotheses are satisfied thanks to
the properties we required of T .

In the light of Remark 2.1 and Proposition 2.2, we will often identify UK ,
UK′ , Uk and UF with their images in UL. In the same way, we will identify
AK and AK′ with their images in AL. We now record the following easy
lemma which will be used repeatedly for the rest of this section.



The Brauer–Kuroda formula 223

Lemma 2.3. Let M be a uniquely 2-divisible D-module. Then the Tate
isomorphisms Ĥj(G,M) ∼= Ĥj+2(G,M) are ∆-antiequivariant. In particu-
lar, for any j ∈ Z, if Ĥj(G,M) is finite, we have

|Ĥj(D,M)| = |Ĥj+2(G,M)|/|Ĥj+2(D,M)|.
Proof. A standard application of the Hochschild–Serre spectral sequence

shows that the restriction induces isomorphisms

Ĥj(D,M) ∼= Ĥj(G,M)∆.

Thus we only need to show that Tate’s isomorphism Ĥj(G,M)∼=Ĥj+2(G,M)
is ∆-antiequivariant. Recall that the Tate isomorphism is given by the cup
product with a fixed generator χ of H2(G,Z):

Ĥ i(G,M)→ Ĥ i+2(G,M), x 7→ x ∪ χ.
The action of δ ∈ ∆ on Ĥ i(G,M) is δ∗ in the notation of [NSW, Chapter I,
§5], and this action is −1 on H2(G,Z) as can immediately be seen through
the isomorphism H2(G,Z) ∼= H1(G,Q/Z) = Hom(G,Q/Z) (which comes
from the exact sequence 0 → Z → Q → Q/Z → 0 and the fact that Q is
G-cohomologically trivial, being uniquely p-divisible). Then, by Proposition
1.5.3 of [NSW], δ∗(x∪χ) = δ∗x∪ δ∗χ = −(δ∗x)∪χ, which gives the result.

The next lemma gives a description of the subgroup AKAK′ ⊆ AL but
there is an analogous version for UKUK′ ⊆ UL (just replace A by U in the
statement).

Lemma 2.4. The subgroup AKAK′ ⊆ AL is a D-module and

AKAK′ =
p−2∏
j=0

Aτ
j

K =
p−2∏
j=0

Aτ j(K).

Moreover IGAL ⊆ AKAK′.
Proof. For the first assertion, see [HK, Lemma 1]. For the last one, see

[Le, Lemma 3.4].

We now start the proof of the p-part of Formula 1.2.

Lemma 2.5. Define ι : AK ⊕ AK′ → AL as ι(a, a′) = aa′. Then there is
an exact sequence

0→ H0(D,AL)→ AK ⊕AK′
ι−→ AL → H0(G,AL)/H0(G,AL)∆ → 0.

Proof. It is easy to see that the map Ker ι → H0(D,AL) given by
(a, a′) 7→ a is indeed an isomorphism. As for the cokernel of ι, note that

AK′IGAL/IGAL = (AL/IGAL)〈τ
2σ〉 = (AL/IGAL)〈σ〉 = AKIGAL/IGAL.

Therefore
H0(G,AL)∆ = (AL/IGAL)∆ = AKAK′IGAL/IGAL = AKAK′/IGAL,

since IGAL ⊆ AKAK′ by Lemma 2.4.
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Lemma 2.6. The following equality holds:

|H0(D,AL)| = |H
2(D,UL)| · |Ak|
|H1(D,UL)|

.

Proof. Take ∆-invariants of the exact sequence in the statement of Pro-
position 2.2: the sequence stays exact. We also see that (AGL )∆ = ADL
and A∆F

∼= Ak (by Remark 2.1). Furthermore, using the Hochschild–Serre
spectral sequence, we find Hj(G,UL)∆ = Hj(D,UL) for j ≥ 0, because
Hj(G,UL) is ∆-cohomologically trivial (being uniquely 2-divisible).

The next lemma describes the G-codescent for AL.

Lemma 2.7. The corestriction map induces isomorphisms H0(G,AL)
∼= AF and H0(G,AL)∆ ∼= Ak.

Proof. For the first isomorphism use [KM, Proposition 1.3]. Since core-
striction commutes with conjugation, the second isomorphism follows from
the first and Remark 2.1.

In what follows, we shall rewrite the orders of H1(D,UL) and H2(D,UL)
in terms of certain units indexes. We first quote a simple lemma which has
already been used by Lemmermeyer (see [Le, Section 5]).

Lemma 2.8. Let f : B → B′ be a homomorphism of abelian groups and
let C be a subgroup of B. Then there is an exact sequence

0→ (C + Ker f)/C → B/C
f→ f(B)/f(C)→ 0.

In particular, if f(C) is of finite index in f(B) and Ker f ∩ C is of finite
index in Ker f , then C is of finite index in B and

(B : C) = (f(B) : f(C)) · (Ker f : Ker f ∩ C).

Proof. Clear.

Remark 2.9. Applying the preceding lemma with B = B′ = UL, f =
NG and C = UKUK′UF , we get

(UL : UKUK′UF )
= (NGUL : NG(UKUK′UF )) · (UL[NG] : UL[NG] ∩ UKUK′UF ).

Note that UKUK′UF is indeed of finite index in UL because NG(UKUK′UF )
is of finite index in NGUL (since both are of finite index in UF = UGL ), and
that UL[NG] ∩ UKUK′UF , which contains IGUL by Lemma 2.4, is of finite
index in UL[NG].

Recall (see Section 1) that M [p] is the kernel of multiplication by p on
the Zp-module M .

Lemma 2.10. We have

|H1(D,UL)| = |UL[NG]/(UL[NG] ∩UKUK′UF )| · |IGUL ·UF [p]/IGUL ·Uk[p]|
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and

|H2(D,UL)| =
|UF /UpF |

|Uk/Upk | · |NGUL/NG(UKUK′UF )|
.

Proof. Let us prove the first assertion. The norm map

UL
1+σ−−→ N〈σ〉UL = U

〈σ〉
L = UK

gives a map UL[ND]→ UL[NG] ∩ UKUK′UF . Consider the induced map

N : UL[ND]→ (UL[NG] ∩ UKUK′UF )/IGUL · UF [p].

Note that indeed UF [p] ⊆ UL[NG] (since NG is raising to the pth power
on UF ) and IGUL ⊆ UKUK′ (see Lemma 2.4). We also have IGUL ⊆ KerN ,
since, for any u ∈ UL,

(2.1) u(1+σ)(1−τ) = u1−τ · u(1−τ−1)σ ∈ IGUL.
Then N induces a map

(2.2) UL[ND]/IGUL → (UL[NG] ∩ UKUK′UF )/IGUL · UF [p]

and we claim that this map fits into an exact sequence

0→ KerN/IGUL → UL[ND]/IGUL
→ (UL[NG] ∩ UKUK′UF )/IGUL · UF [p]→ 0.

The only nontrivial thing to prove is the surjectivity of the map in (2.2).
Take u ∈ UK , u′ ∈ UK′ and v ∈ UF such that NG(uu′v) = 1. We can find
t, t′ ∈ UL such that t1+σ = u and (t′)1+τ2σ = u′. Then

(2.3) 1 = NG(uu′v) = ND(tt′)NG(v) = ND(tt′)vp.

In particular vp ∈ UDL = Uk. Note that

(2.4) Uk ∩ UpF = Upk

(the surjective map UF
p−→ UpF stays surjective after taking ∆-invariants,

since UF [p] is ∆-cohomologically trivial being uniquely 2-divisible). Hence
there exists w ∈ Uk such that vp = wp, which implies v = wv0 for some
v0 ∈ UF [p]. Therefore

N(tt′w1/2) = uu′v mod IGUL · UF [p]

and the fact that tt′w1/2 ∈ UL[ND] is exactly (2.3). This proves that the
above short sequence is exact.

Now consider the map

(2.5) KerN/IGUL
1+σ−−→ (IGUL · UF [p]/IGUL)∆.

It is clearly surjective since (IGUL·UF [p]/IGUL)∆ = N∆(IGUL·UF [p]/IGUL),
and not only UF [p] ⊆ UL[ND], but actually UF [p] ⊆ KerN . As for the kernel,
note that IDUL ⊆ KerN (since IGUL ⊆ KerN and (1 + σ)(1− σ) = 0) and
we claim that the kernel of the map in (2.5) is IDUL/IGUL. Define Y =
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{u ∈ UL | u1+σ ∈ IGUL}. Note that IGUL ⊆ Y (by (2.1)) and Y/IGUL
equals the kernel of (2.5). Now, if u ∈ Y , then there exists v ∈ UL such that

u1+σ = v1−τ

and, in particular,

u2 = v1−τu1−σ ∈ IDUL.

Hence u ∈ IDUL and, since clearly IDUL ⊆ Y , we have in fact equality.
Thus we have shown that there is an exact sequence

0→ IDUL/IGUL → KerN/IGUL
1+σ−−→ (IGUL · UF [p]/IGUL)∆ → 0.

Moreover

(IGUL · UF [p]/IGUL)∆ ∼= (UF [p]/IGUL ∩ UF [p])∆ = Uk[p]/IGUL ∩ Uk[p]
∼= IGUL · Uk[p]/IGUL.

Then

(UL[NG] : UL[NG] ∩ UKUK′UF )

=
(UL[NG] : IGUL · UF [p])

(UL[NG] ∩ UKUK′UF : IGUL · UF [p])

=
(UL[NG] : IGUL)

(IGUL · UF [p] : IGUL) · (UL[ND] : KerN)

=
|Ĥ−1(G,UL)|(KerN : IDUL)

(IGUL · UF [p] : IGUL) · (UL[ND] : IDUL)

=
|Ĥ−1(G,UL)|
|Ĥ−1(D,UL)|

· (IGUL · Uk[p] : IGUL)
(IGUL · UF [p] : IGUL)

=
|H1(D,UL)|

(IGUL · UF [p] : IGUL · Uk[p])

by Lemma 2.3. Hence the first assertion of Lemma 2.10 is proved.
We now prove the second assertion (this part is actually the same as the

last part of the proof of [Le, Theorem 2.4]). Note that NGUK = NDUL =
NGUK′ ; in particular NGUK ⊆ UDL = Uk. Therefore

(NGUL : NG(UKUK′UF )) = (NGUL : UpFNGUK) =
(UF : UpFNGUK)

(UF : NGUL)

=
(UF : UpF )

(UpFNGUK : UpF ) · (UF : NGUL)

=
(UF : UpF ) · (UpFUk : UpFNGUK)

(UpFUk : UpF ) · (UF : NGUL)
.
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Now

(UpFUk : UpFNGUK) =
(UpFUk : UpF )

(UpFNGUK : UpF )
=

(Uk : UpF ∩ Uk)
(NGUK : UpF ∩NGUK)

=
(Uk : Upk )

(NGUK : Upk )
= (Uk : NGUK),

because of (2.4) and

Upk = NGUk ⊆ UpF ∩NGUK = UpF ∩NDUL ⊆ UpF ∩ Uk = Upk .

Therefore, using once more (2.4),

(NGUL : NG(UKUK′UF )) =
(UF : UpF )(Uk : NGUK)
(Uk : Upk )(UF : NGUL)

=
|Ĥ0(D,UL)|
|Ĥ0(G,UL)|

(UF : UpF )
(Uk : Upk )

=
(UF : UpF )

(Uk : Upk )|H2(D,UL)|
,

thanks to Lemma 2.3 and Ĥ0(G,UL) ∼= Ĥ2(G,UL).

Recall (see Section 1) that M is our notation for the torsion-free quotient
of the Zp-module M .

Lemma 2.11. We have

IGUL ∩ UF [p] = IGUL ∩ UF and IGUL ∩ Uk[p] = IGUL ∩ Uk.
Furthermore, there is an isomorphism

IGUL ∩ UF ∼= U
G
L/UF ,

which is ∆-antiequivariant. In particular, it induces an isomorphism

IGUL ∩ UF /IGUL ∩ Uk ∼= U
D
L /U

∆
F = U

D
L /Uk.

Proof. The first assertion follows from the fact that G acts trivially on
UF and Uk and therefore

IGUL∩UF ⊆ UL[NG]∩UF = UF [p] and IGUL∩Uk ⊆ UL[NG]∩Uk = Uk[p].

Now consider the map

φ : IGUL ∩ UF → U
G
L/UF

defined by φ(u1−τ ) = u mod UF for any u ∈ UL such that u1−τ ∈ UF (u is
the class of u in UL). First of all, the definition of φ does not depend on the
choice of u: namely, if v1−τ = u1−τ , then vu−1 ∈ UGL = UF . Of course, the
image of φ is contained in (UL/UF )G = U

G
L/UF (this last equality comes

from H1(G,UF ) = Hom(G,UF ) = 0 since UF is a free Zp-module with
trivial G-action). Moreover φ is clearly a homomorphism. To see that it is
injective, suppose that φ(u1−τ ) = 1 mod UF . This means that there exist
ζ ∈ tor(UL) and v ∈ UF such that u = vζ. But since tor(UL) = tor(UF )
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by Lemma 1.1, this implies u1−τ = 1. Hence φ is injective. To prove the
surjectivity of φ, choose an element u ∈ UGL . This means uτ = uξ for some
ξ ∈ tor(UL). Then we have u1−τ ∈ tor(UL) = tor(UF ) ⊆ UF and φ(u1−τ ) =
u mod UF .

The map φ is ∆-antiequivariant; in other words, if δ generates ∆, we
have

(2.6) φ((u1−τ )δ) = φ(u1−τ )−δ

for any u1−τ ∈ IGUL ∩ UF . In fact,

(u1−τ )δ = uσ(1−τ) = u(1−τ−1)σ = u(1−τ)(
Pp−2
i=0 τ

i)σ.

Therefore
φ((u1−τ )δ) = u(

Pp−2
i=0 τ

i)σ mod UF .

Hence, in order to verify (2.6), we have to check that

v := u(
Pp−2
i=0 τ

i)σ+σ ∈ UF = UGL .

Now
v1−τ−1

= u(1−τ−1)(
Pp−2
i=0 τ

i)σ+(1−τ−1)σ = (u1−τ )σ(
Pp−2
i=0 τ

−i)+σ

= (u1−τ )(p−1)σ+σ = (u1−τ )pσ = 1,

since u1−τ ∈ UF ∩ IGUL (which means that τ acts trivially on it) and
it has order p by the first assertion of the lemma. This proves that φ is
∆-antiequivariant. To get the last claim of the lemma note that

(IGUL ∩ UF )∆ = IGUL ∩ UF ∩ Uk = IGUL ∩ Uk
and, since uniquely 2-divisible modules are ∆-cohomologically trivial,

(UGL/UF )∆ = U
D
L /U

∆
F and U

∆
F = Uk.

Therefore φ induces an isomorphism

IGUL ∩ UF /IGUL ∩ Uk ∼= U
D
L /Uk.

The following two lemmas will allow us to get results for finite sets of
places which are more general than our fixed T .

Lemma 2.12 (Soulé). Let S be any subset of T which is stable under the
action of D and let S′ be the union of S and the set of places of L above p.
Then, for any subfield E of L containing k,

H1
ét(OSE [1/p],Zp(m)) ∼= H1

ét(OTE ,Zp(m)) ∼= H1
ét(E,Zp(m))

and there is an exact sequence

0→ H2
ét(OSE [1/p],Zp(m))→ H2

ét(OTE ,Zp(m))

→
⊕

w∈(TrS′)E

H1
ét(OE/lw,Zp(m− 1))→ 0

where OE/lw is the residue field of E at w.
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Proof. See [So, Proposition 1].

Lemma 2.13. With notation as in Lemma 2.12, for any m′ ≥ 1, the
function

(2.7) ϕ(H) =
∏

w∈(TrS′)
LH

|H1
ét(OLH/lw,Zp(m′))|,

which is defined on the set of subgroups of D and takes values in N, is trivial
on D-relations (in the sense of [DD, Section 2.3]).

Proof. The function defined in (2.7) is actually a product over v in
(T r S′)k of functions ϕv defined by

ϕv(H) =
∏

w|v inLH

|H1
ét(OLH/lw,Zp(m′))|.

For any v as above, let fv be the absolute inertia index of v and `v the
rational prime below v. Consider the function ψv : N→ N defined by

ψv(f) = |H1
ét(F`fv+f

v
,Zp(m′))|.

Then, if Dv denotes a decomposition group of v in L/k, we have

ϕv(H) =
∏

x∈H\D/Dv

ψv

(
[Dv : Iv]

[H ∩Dx
v : H ∩ Ixv ]

)
.

In particular ϕv is trivial on D-relations by [DD, Theorem 2.36(f)], and
therefore the same holds for ϕ.

The next proposition can be seen as the p-part of Formula 1.2.

Proposition 2.14. Let S be a finite set of places of L which is stable
under the action of D. Then

|ASL,m| = p−αm |ASF,m|
|ASK,m|2

|ASk,m|2
(UL,m : UK,mUK′,mUF,m)

((UL,m)D : Uk,m)
,

where αm = rkZp UF,m − rkZp Uk,m = rkZHF,m − rkZHk,m is as in For-
mula 1.2.

Proof. First we prove the proposition in the case where S = T . Thanks
to Lemma 2.11, we have

(IGUL · UF [p] : IGUL · Uk[p]) =
(IGUL · UF [p] : IGUL)
(IGUL · Uk[p] : IGUL)

=
(UF [p] : IGUL ∩ UF [p])
(Uk[p] : IGUL ∩ Uk[p])

=
(UF [p] : IGUL ∩ UF )
(Uk[p] : IGUL ∩ Uk)

=
(UF [p] : Uk[p])

(IGUL ∩ UF : IGUL ∩ Uk)
=

(UF [p] : Uk[p])

(UDL : Uk)
.
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Therefore
(UF : UpF )
(Uk : Upk )

= pαm(UF [p] : Uk[p]),

where αm = rkZp UF,m− rkZp Uk,m = rkZH
1
F,m− rkZH

1
k,m (the last equality

comes from (1.5)) is as in Formula 1.2. Now consider the exact sequence of
Lemma 2.5: we get, using all the preceding lemmas and Remark 2.9,

|AL| =
|AK |2|H0(G,AL)| |H1(D,UL)|
|Ak| |H0(G,AL)∆| |H2(D,UL)|

= |AF |
|AK |2

|Ak|2
(UL : UFUKUK′)(IGUL · UF [p] : IGUL · Uk[p])(Uk : Upk )

(UF : UpF )

= p−αm |AF |
|AK |2

|Ak|2
(UL : UFUKUK′)

(UDL : Uk)
.

To get the statement for any S, note that, by Lemma 2.13 and the second
assertion of Lemma 2.12, the function

H 7→
|AT

LH ,m
|

|AS
LH ,m

|

is trivial on the relation (1.6).

We now deal with the general proof of Formula 1.2. We are going to
use the language and some results of the theory of cohomological Mackey
functors; instead of recalling definitions we prefer to directly refer the reader
to [Bo, Section 1]. The next result is essentially a consequence of the fact
that D = Dp is not `-hypoelementary (a group is `-hypoelementary if it has
a normal `-subgroup with cyclic quotient) if ` is any prime different from p.

Proposition 2.15. Let ` be a rational prime different from p. Let S be
a finite set of places of L which is stable under the action of D = Gal(L/k).
Then there is an isomorphism of abelian groups

H2
ét(OSL[1/`],Z`(m))⊕H2

ét(OSk [1/`],Z`(m))⊕2

∼= H2
ét(OSF [1/`],Z`(m))⊕H2

ét(OSK [1/`],Z`(m))⊕2.

Proof. Note that the function which assigns to any subgroup H of D
the abelian group H2

ét(OSLH [1/`],Z`(m)) is a cohomological Mackey functor
on D. Since ` 6= p, D = Dp is not `-hypoelementary, which allows us to
apply Theorem 1.8 of [Bo] to conclude.

Together with Formula 1.3 and a generalization of a result of Brauer
(see [Ba, Theorem 5.1]), the fact that D = Dp is not `-hypoelementary if
` 6= p can also be used to give a proof of the next lemma. Here we give
another proof which shows that one can prove Formula 1.2 without using
Formula 1.3.
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Lemma 2.16. Let S be a finite set of places of L which is stable under
the action of D = Gal(L/k). Then the number um is a power of p. More
precisely the following equality holds:

(2.8)
(UL,m : UK,mUK′,mUF,m)

((UL,m)D : Uk,m)

=
(HL,m : HF,mHK,mHK′,m)((HF,m)∆ : Hk,m)

((HL,m)D : Hk,m)
= um,

where HE,m = H1(OSE ,Z(m)) for any subfield E of L containing k.

Proof. Note that, thanks to (1.5), in (2.8) the greatest power of p di-
viding the right-hand side equals the left-hand side. Then what remains to
show is that, for any fixed prime ` 6= p,

(2.9)
(VL : VKVK′VF )((V F )D : V k)

((V L)D : V k)
= 1,

where

VE = H1
ét(OSE [1/`],Z`(m)).

But this can be proved using Lemma 2.8. The details are as follows: first of
all

(2.10) (VL : VKVK′VF )
= (NGVL : NG(VKVK′VF )) · (VL[NG] : VL[NG] ∩ VKVK′VF ) = 1,

since

• NG(VL) = V G
L = VF (because VL is G-cohomologically trivial and an

appropriate version of Remark 2.1 applies);
• NG(VF ) = V p

F = VF (because G acts trivially on VF and VF is uniquely
p-divisible);

• VL[NG] = IGVL ⊆ VKVK′ (because VL is G-cohomologically trivial
and an appropriate version of Lemma 2.4 holds).

Moreover V G
L = V F (because torZ`(VL) is G-cohomologically trivial and

V G
L = VF ), showing that (2.9) holds.

The proof of Formula 1.2 is then achieved, because (1.5) allows us to glue
together Propositions 2.14 and 2.15 and Lemma 2.16. Note that, if HF,m has
no p-torsion, then um = (HL,m : HK,mHK′,mHF,m) (this follows easily from
Lemma 2.11).
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3. Computations with regulators. In this section we prove Formula
1.3, translating the higher units index

um =
(HL,m : HF,mHK,mHK′,m)((HF,m)∆ : Hk,m)

((HL,m)D : Hk,m)

of Formula 1.2 in terms of motivic regulators, whose definition and basic
properties we now briefly review (we refer the reader to [Ne, §1]). Recall from
Section 1 that, if E is any number field, we have set HE,m = H1(OSE ,Z(m)).

Let m ≥ 2 be a natural number. If X(E) = Hom(E,C) is the set of
complex embeddings of E, the mth regulator map we shall consider is a
homomorphism

ρE,m : HE,m →
⊕

β∈X(E)

(2πi)m−1R.

This map is obtained by composing the natural map HE,m → HE,m⊗Q with
the Beilinson regulator map K2m−1(OE)⊗Q→

⊕
β∈X(E)(2πi)

m−1R via the
isomorphism (1.3). Moreover, the image of ρ is contained in the subgroup
of
⊕

β∈X(E)(2πi)
m−1R which is fixed by complex conjugation:

ρE,m : HE,m →
( ⊕
β∈X(E)

(2πi)m−1R
)+
.

The kernel of ρ is exactly the torsion subgroup of HE,m and, thanks to
Borel’s theorem (and the fact that Beilinson’s regulator map is twice Borel’s
regulator map, see [BG]), we know that ρ induces an isomorphism

HE,m ⊗ R ∼=
( ⊕
β∈X(E)

(2πi)m−1R
)+
.

Then the mth regulator of E, denoted RE,m, is the covolume of the lattice
ρE,m(HE,m) as a subset of the real vector space (

⊕
β∈X(E)(2πi)

m−1R)+.
Finally, thanks to the functorial properties of the Beilinson regulator, if a
Galois action is defined on E, then ρ is invariant under this action.

Remark 3.1. If E/E′ is a finite extension, then the natural mapHE′,m→
HE,m is injective and, if E/E′ is also Galois, then HE′,m → H

Gal(E/E′)
E,m is

an isomorphism. This can be seen as follows: using (1.5) and Lemma 2.12,
it remains to check that the restriction

H1(E′,Z`(m))→ H1(E,Z`(m))

is injective for any prime `. It is easy to see that it is enough to prove
the injectivity of the above map when E/E′ is Galois. In that case the
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Hochschild–Serre spectral sequence gives an exact sequence

0→ H1(Gal(E/E′), H0(E,Z`(m)))→ H1(E′,Z`(m))

→ H0(Gal(E/E′), H1(E,Z`(m)))→ H2(Gal(E/E′), H0(E,Z`(m)))

which allows us to conclude because H0(E,Z`(m)) = 0 (since m 6= 0). In
what follows, HE′,m will be identified with its image in HE,m.

To translate um in terms of regulators, we are going to use the technique
of regulator costants, introduced by the Dokchitser brothers. We first define
a scalar product on HE,m in the following way: denote by 〈−,−〉E,∞ the
standard scalar product on C|X(E)|. Then, for u, v ∈ HE,m, we set

〈u, v〉E,m = 〈ρE,m(u), ρE,m(v)〉E,∞.
It is immediate to see that 〈−,−〉E,m is a Z-bilinear map on HE,m ×HE,m

which takes values in R. Now, if E/E′ is a finite extension and u, v ∈ HE′,m,
we have

(3.1) 〈u, v〉E,m = [E : E′]〈u, v〉E′,m.
To see this, consider the commutative diagram

HE,m
ρE,m−−−−→ (

⊕
β∈X(E)(2πi)

m−1R)+x x
HE′,m

ρE′,m−−−−→ (
⊕

β′∈X(E′)(2πi)
m−1R)+

where the left vertical arrow is the natural map induced by the inclusion
E′ ⊆ E and the right vertical map is the diagonal embedding, i.e.

{xβ′}β′∈X(E′) 7→ {x̃β}β∈X(E) where x̃β = xβ|E′ .

Now we have

〈{xβ′}, {yβ′}〉E′,∞ =
∑

β′∈X(E′)

xβ′yβ′ ,

〈{x̃β}, {ỹβ}〉E,∞ =
∑

β′∈X(E′)

∑
β|β′

x̃β ỹβ = [E : E′]
∑

β′∈X(E′)

xβ′yβ′ ,

and therefore (3.1) is true.
Note also that, if E/E′ is Galois, then 〈−,−〉E,m is invariant with respect

to the Galois action. Finally, the regulator map being trivial on torZ(HE,m),
〈−,−〉E,m defines a Z-bilinear map on HE,m.

Next we recall the definition of the regulator (or Dokchitser) constant
in our particular case (see [DD, Definition 2.13 and Remark 2.27] or [Ba,
Definition 2.5]).

Definition 3.2. Let M be a Z[D]-module which is Z-free of finite rank.
Let 〈·, ·〉 be a D-invariant nondegenerate Z-bilinear pairing on M with values
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in R. Then the regulator constant of M is

C(M) =
det(〈−,−〉) det(|D|−1〈−,−〉|

MD
)2

det(|G|−1〈−,−〉|
MG

)det(|〈σ〉|−1〈−,−〉|
M〈σ〉

)2
∈ Q×.

We will be interested in the case where M = HL,m and we will use
〈−,−〉L,m to compute its regulator constant. We have already observed that
〈−,−〉L,m is Galois invariant, and Proposition 3.3 below shows that it is
nondegenerate, RL,m being a positive real number.

For any subfield E of L containing k, set

λE,m = |coker(HE,m → H
Gal(L/E)
L,m )|.

It is immediate to see that

(3.2) λE,m = |ker(H1(Gal(L/E), torZ(HE,m))→ H1(Gal(L/E), HE,m))|
and sometimes this description will be useful: for example it shows instantly
that λE,m is well-defined (i.e. the order of the above kernel is indeed finite).

The following result is similar to [Ba, Lemma 2.12 and Proposition 2.15];
we sketch the proof since there are slight differences from the proof given
in that paper. Recall that r1(E) (resp. r2(E)) is the number of real places
(resp. complex places) of the number field E.

Lemma 3.3. We have

det(〈·, ·〉E,m) = ((−1)m−12)r2(E)R2
E,m

and

C(HL,m) =
(
RL,mR

2
k,m

RF,mR2
K,m

λF,mλ
2
K,m

λL,mλ2
k,m

)2

.

Proof. The determinant of

〈−,−〉∞ :
( ⊕
β∈X(E)

(2πi)m−1R
)+
×
( ⊕
β∈X(E)

(2πi)m−1R
)+
→ R

is easily seen to be ((−1)m−12)r2(E). Then the first assertion follows by
well-known properties of scalar products and the definition of RE,m.

The proof of the second claim follows from the fact that, for any subgroup
J of D,

λ2
LJ ,m det(|J |−1〈−,−〉L,m|HJ

L,m
) = det(〈−,−〉LJ ,m)

(this follows easily from (3.2) and (3.1), see also the proof of Proposition 2.15
in [Ba]) and the fact that the function

J 7→ ((−1)m−12)r2(LJ ),

defined on the set of subgroups of D and taking values in N, is trivial on
relations (see [DD, Example 2.37]).
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The preceding lemma shows that the regulator constant of HL,m is re-
lated to regulators. The next one shows that it is also related to a higher
unit index. First we need some notation: we denote by 1D the trivial Q[D]-
module (and in general, if D′ is a subgroup of D, by 1D′ the trivial Q[D′]-
module), by ε the Q[D]-module given by the sign, and by ω an irreducible
(p−1)-dimensional Q[D]-module (which is unique up to isomorphism). As is
well-known, K0(Q[D]) is a torsion-free Z-module of rank 3 which is spanned
by 1D, ε and ω. We denote by 〈−,−〉 the symmetric scalar product on
K0(Q[D]) for which the basis {1D, ε, ω} is orthonormal.

Lemma 3.4 (Bartel). With the notation above, we have

C(HL,m)−1/2 = p〈HL,m⊗Q,1D−ε−ω〉/2(HL,m : H〈σ〉L,mH
〈ω2σ〉
L,m H

G
L,m).

Proof. See [Ba, Lemma 4.8].

Lemma 3.5. The following equality holds:

(RK,m)2RF,m
(Rk,m)2RL,m

= p−αm(HL,m : H〈σ〉L,mH
〈τ2σ〉
L,m H

G
L,m)

λF,mλ
2
K,m

λ2
k,m

,

where αm = rkZHF,m − rkZHk,m is the same as in Formula 1.2.

Proof. Thanks to Lemmas 3.3 and 3.4, we only have to show that

〈HL,m ⊗Q, 1D − ε− ω〉 = −2αm.

The lemma is then an immediate consequence of the following remarks.
First, note that

IndD{1} 1{1} = 1D + ε+ 2ω and IndDG 1G = 1D + ε

as Q[D]-modules. Then, using Frobenius reciprocity (and Remark 3.1), we
get

rkZHk,m = rkZH
D
L,m = 〈HL,m ⊗Q, 1D〉,

rkZHF,m = rkZH
G
L,m = 〈HL,m ⊗Q, IndDG 1G〉,

rkZHL,m = rkZH
{1}
L,m = 〈HL,m ⊗Q, IndD{1} 1{1}〉.

Finally, using (1.4), we get

rkZHL,m = p · rkZHF,m,

since every infinite prime of F splits completely in L/F .

In order to get the proof of Formula 1.3, we need to compare the right-
hand side of the formula of Lemma 3.5 with um. For this we need some
results about λE,m.

Lemma 3.6. Let Q be any of the subgroups of order 2 in D and let M be a
finitely generated Z2-module on which D acts. For any j ≥ 1, the restriction
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induces isomorphisms

Hj(D,M) ∼= Hj(Q,M).

Proof. First note that Hj(D,M) is an abelian 2-group since M is a
finitely generated Z2-module. Therefore the restriction map

(3.3) Hj(D,M)→ Hj(Q,M)

is injective since Q is a 2-Sylow subgroup of D (see [CE, Theorem 10.1 in
Chapter XII]). Furthermore, by the description of the image of the restriction
given in [CE, Theorem 10.1 in Chapter XII], we see that the map in (3.3) is
in fact bijective, since Q has trivial intersection with any of its conjugates
different from Q itself (in the language of [CE], any element of Hj(Q,M) is
stable).

Lemma 3.7. The following equality holds:

(HL,m : H〈σ〉L,mH
〈τ2σ〉
L,m H

G
L,m)

λF,mλ
2
K,m

λ2
k,m

= (HL,m : HK,mHK′,mHF,m)
λK,m
λk,m

.

Proof. Using the notation introduced in Section 2, we have, thanks to
(2.10) and Lemma 1.1,

(HL,m : HK,mHK′,mHF,m) = (UL,m : UK,mUK′,mUF,m)

= (UL,m : UK,mUK′,mUF,m).

With similar arguments, it is easy to prove that we also have

(HL,m : H〈σ〉L,mH
〈τ2σ〉
L,m H

G
L,m) = (UL,m : UK,mUK′,mU

G
L,m).

Furthermore, λK,m is a power of 2, and if, for a prime `, (λk,m)` denotes the
exact power of ` dividing λk,m, then we have

(λk,m)2 = λK,m

(use (3.2) and Lemma 3.6 applied to M = torZ(HL,m) ⊗ Z2 and M =
HL,m ⊗ Z2). Thus it remains to check that

(3.4) (UK,mUK′,mU
G
L,m : UK,mUK′,mUF,m) =

λF,m
(λk,m)p

.

Note that

(UK,mUK′,mU
G
L,m : UK,mUK′,mUF,m) = (UGL,m : (UK,mUK′,mUF,m)G).

In the rest of the proof we drop the subscript m. Note that λF = 1 or
p (since torZp(UF ) is cyclic; see the proof of Lemma 1.1) and (λk)p ≤ λF
(this is easily shown using for example (3.2)). Since (3.4) is trivially true if
U
G
L = UF , we shall suppose that UGL 6= UF , i.e. λF = p.

Suppose first that IGUL ∩Uk 6= IGUL ∩UF (which is equivalent to λF =
(λk)p = p by Lemma 2.11). Let u ∈ UL be such that the class of [u] ∈ UL is
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nontrivial in U
G
L/UF ; then uτ−1 = ζ generates IGUL ∩ UF , which is cyclic

of order p (note that we also have uτ
−1−1 = ζ−1). Then u1+σ ∈ UK ⊆

UKUK′UF and

(u1+σ)τ−1 = u(τ−1)(1+σ) = uτ−1u(τ−1)σ = uτ−1uσ(τ−1−1) = ζ1−σ = ζ2

because σ acts as −1 on IGUL ∩UF (the latter being different from IGUL ∩
Uk by assumption). This shows at once that [u]1+σ ∈ (UKUK′UF )G but
[u]1+σ /∈ UF (since σ acts trivially on UGL/UF by Lemma 2.11 and [u] /∈ UF )
and therefore UGL = (UKUK′UF )G (since UGL/UF has order p).

Now suppose that IGUL ∩ Uk = IGUL ∩ UF ; then we have to show that
(UKUK′UF )G = UF . First of all we observe that

(3.5) UpK ∩ Uk = Upk .

In fact, of course UpK ∩ Uk ⊇ Upk . Conversely, if u ∈ UK and up ∈ Uk, then
up(τ−1) = 1. In particular uτ−1 ∈ IGUL ∩ UL[p] = IGUL ∩ UF = IGUL ∩ Uk
(use Lemmas 1.1 and 2.11), which implies that

uσ(τ−1) = uτ−1.

But we also have
uσ(τ−1) = u(τ−1−1)σ = uτ

−1−1

because u ∈ UK . Hence we get uτ
2

= u. Therefore u ∈ UF ∩ UK = Uk and
hence UpK ∩Uk ⊆ U

p
k , which proves (3.5). Now any element in (UKUK′UF )G

can be written as [uvτw] with u, v ∈ UK and w ∈ UF satisfying

(uvτw)τ−1 ∈ tor(UL).

Actually (uvτw)τ−1 = (uvτ )τ−1 = ξ ∈ Uk[p] (from IGUL ∩ Uk = IGUL ∩ UF
and Lemma 1.1). This implies that

upτ

vpτ
=

up

vpτ2 ∈ UK′ .

In particular (
up

vpτ2

)τ2σ

=
up

vpτ2 .

A quick calculation now gives (uv)p = (uv)pτ
2
. This means that (uv)p ∈

UF ∩ UK = Uk. Then (uv)p ∈ UpK ∩ Uk = Upk thanks to (3.5). So u = v−1z
with z ∈ Uk (recall that Uk[p] = UK [p] by Lemma 1.1) and therefore

(uvτw)τ−1 = (uvτ )τ−1 =
(
vτ

v

)τ−1

= ξ ∈ Uk[p].

This implies
vpτ

vp
∈ UF ∩ IGUL = UF [p] ∩ IGUL,
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which means that vτ/v ∈ torZp(UL) ⊆ UF . Then ξ = 1 and [uvτw] ∈ UF .
This concludes the proof.

Collecting all the results we have proved so far, we get the proof of
Formula 1.3 and therefore that of the higher Brauer–Kuroda relation (1.9).
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