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The Brauer—Kuroda formula for higher S-class numbers in
dihedral extensions of number fields

by

Luca CapuTO (Dublin)

1. General setting and statement of the main result. For a num-
ber field £ and a finite set of places S of F containing the archimedean
places, let (g be the Dedekind S-zeta function of E. For a complex num-
ber s, let (2(s)* denote the special value of (3 at s (i.e. the first nontrivial
coefficient of the Laurent expansion of ¢ g around s). Dedekind, inspired by
previous work of Dirichlet, proved the formula

S
(L1) sy = -k

WE
where h% is the class number of the ring (’)g of S-integers of F/, wg is the
order of the group of roots of unity of E, and R%, is the regulator of (O%)*.
There are conjectural analogues of this formula when 0 is replaced by
negative integers. More precisely, we recall the definition of motivic coho-
mology groups in terms of Bloch’s higher Chow groups:

HI (0%, Z(m)) := CH™(Spec(O3),2m — 7).

The Bloch—Kato conjecture, which is now a theorem of Rost, Voevodsky
and Weibel (the reader is referred to [We] for appropriate references on
this subject), implies that, for any integer m > 2, H' (0%, Z(m)) (resp.
H?(03,7Z(m))) is a finitely generated Z-module (resp. a finite abelian
group). Then the original Lichtenbaum conjecture (see [Li]) can be mod-
ified to the following conjecture [Kal 4.7.4]:

s
Rz,

hS
(1.2) Bl —m)* = (=1)Fn—2RE . m>2.
wE,m

Here h%,m is the order of H?(O%,Z(m)), w%ym is the order of the tor-
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218 L. Caputo

sion subgroup of H(O%,Z(m)) and R%’m is the (motivic) regulator of
HY(O3,Z(m)) (see Section. If S is a finite set of places of E containing S,
then the natural map

HY(OF, Z(m)) — H'(OF, Z(m)),

induced by the inclusion O% - O%, can be shown to be an isomorphism
which commutes with the motivic regulator map (whose definition and prop-
erties are recalled in Section . Then one can easily see that both w%jm and
RSE’ . are independent of S and therefore we shall denote them simply by
wE:m and REg ., respectively. Finally, tg ,, € N is given by

1 if m =1 mod 4,

N r1(E) +ro(E) if m =2 mod 4,
’ r1(E) if m = 3 mod 4,
ro(E) if m = 0 mod 4,

where 71 (E) (resp. r2(E)) is the number of real places (resp. complex places)
of E.

We now list some known facts about the Lichtenbaum conjecture and
motivic cohomology; for any further detail and proper attribution of the re-
sults we shall mention, we refer the reader to Kolster’s and Kahn’s excellent
surveys [Ko] and [Ka]. For the rest of the paper, m will denote an integer
greater than 1. We have

(1.3) HY(03,Z(m)) ® Q = Kop1(03) @ Q.

In particular, since the Z-rank of Ka,,—1(0O%) does not depend on S (see
[Sol), we get, thanks to Borel’s rank formula,

ri(E) +ro(E) if m > 2is odd,

1.4 kz H' (0%, Z :{
(1.4) rkz, H' (Og, Z(m)) ro(E) if m > 2 is even.

Finally, by the validity of the Bloch—-Kato conjecture, we also have
(15)  HI(O3,Z(m)) 5 = HL(O3[1/0), Zy(m))  for j =1,2,

where £ is any prime. Whenever a Galois action is defined on F, the above
isomorphisms are invariant under this action.

Using the main conjecture in Iwasawa theory (which is now a theorem
thanks to Wiles’s proof), the Lichtenbaum conjecture has been proved for
m > 2 even and F totally real abelian and it is also known to hold up to
powers of 2 for m > 2 even and F totally real. Moreover, it is known to hold
up to powers of 2 for E abelian and any m > 2.
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Now let p be an odd prime. Let D = D, denote the dihedral group of
order 2p; in particular

D={(ro|m™"=0?=1,01r0 =71).

Let L/k be a Galois extension of number fields such that Gal(L/k) = D (in
the rest of this paper we shall identify those groups). Let K (resp. K') be the
subfield of L fixed by (o) (resp. by (720)); in particular K’ = 7(K). Let F'
be the subfield of L fixed by (7) and set G = Gal(L/F) and A = Gal(F/k).

Let S be a finite set of places of L which is stable under the action
of D and contains the archimedean places (we shall consider only sets of
places containing the archimedean ones, so we will not further mention this
property). For any subfield E of L containing k, the set of places of E
which lie below those of S will be denoted by Sg or simply again by S if
no misunderstanding is possible. The existence of the nontrivial D-relation
(in the sense of [DD], see Definition 2.1 and Example 2.4 of that paper)

(1.6) {1} = 2(¢) = G+ 2D,
together with Artin formalism of L-functions, gives the following formula:
S 2
1.7 S(ey — S Ck () .
(17) G = G E

Considering the special value at 0 of (1.7) and using (1.1]), we get

(hi)®  wiwy  (RE)*Rp

(h)? wiwe  (RP)?RY

which is commonly referred to as the (classical) Brauer—Kuroda formula (for
dihedral extensions of order 2p). It can be shown that the w-factor is actually
trivial. More interestingly, the factor involving regulators can be expressed
as the index of a subgroup defined in terms of units of subextensions of

L/k (see [Bal, [Jal, [HK], [Le], ...). Considering special values at negative
integers and using ((1.2), we get of course, for any m > 2, a conjectural

analogue of (1.8]):

(1.9) BT = him

(1.8) h? = h3

(hiem)” (wgm)*wrm  (Rem)*Rem
(hg,m)2 (wam)QwF,m (Rk,m)QRL,m

(it is easy to see that indeed the signs appearing in cancel each other
out in (1.9): use for example Lemma 2.37 of [DD]).

In this paper we prove without using the Lichtenbaum conjecture
and actually in an algebraic way, i.e. we make no use of L-functions at all. To
begin with, thanks to the following lemma, the w-term in the above formula
is trivial, as in the classical case. As a matter of notation, if A is a ring and
M is an A-module, then tor4 (M) will denote the torsion submodule of M.
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LEMMA 1.1. Let S be a finite set of places of L which is invariant under

the action of Gal(L/k). Then
WLm = Wrm and  WEKp = Wkmn.
Proof. Recall that, for any number field £ and any prime ¢, we have
tors (Y (O, Z(m))) @7 Ze = torz, (HA(O31/4, Zu(m)))
=~ H(E,Q¢/Z¢(m))

(m > 2) and the latter has cardinality vy(kg(yg)™ — 1), where v, is the
(-adic valuation on Z, such that v,(¢) = 1, kg : I'y — Z; is the cyclotomic
character evaluated on I'y = Gal(E(u~)/F) and g is any topological

generator of I'g. Now, since L/k is not abelian, LN F(py ) = F'. This shows
that

ve(kr(vL)™ — 1) = ve(kp(yp)™ — 1),
since restriction maps I, isomorphically onto I'z. A similar argument ap-
plies to K and k. =

The proof of (1.9) is achieved by summing up the following two results
(which are proved respectively in Sections|2land , which may be interesting
in their own right.

ForMuLA 1.2. The following equality holds:

h3-\2

g —am 1S m

Wim =1"" hF:m(hS ) o
k,m

with Q = 1kz, Hp g — kg, Hg o, and

(Hm : Hem Him Hicr ) (H pn)? © Higm)
((FF,m)D : ﬁk,m)

where, for a number field E, we have set Hp;, = HY(03,Z,(m)) and

Hpm = Hgm/torz(Hgm).

ForMmuLA 1.3. With notation as in the previous statement,

p_amU _ (RK,m)2RF,m
" (Rk,m)QRL,m '

Note that indeed u,, and o, do not depend on S because HEg ,, does
not. It will turn out that, as in the classical case, u,, is a power of p.

We will divide the proof of Formula into two parts, studying sepa-
rately p-parts and ¢-parts for any prime ¢ # p (using then to glue all
parts together). It should be stressed that the proof for ¢-parts with ¢ # p is
really much easier: using just the fact that étale cohomology defines a coho-
mological Mackey functor (in the sense of Dress; see for example [Bo]) and
that D = D, is not ¢-hypoelementary, we get even more precise structural

m 9
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relations. On the other hand, the proof for p-parts uses mainly descent and
co-descent results for étale cohomology groups (which are described in [KM],
see also [Ko]). This is essentially the only piece of arithmetic information
which is needed (the rest of the proof being a technical algebraic computa-
tion), while any algebraic proof of the classical version of Formula (see
[Jal, [HK], [Le], ...) uses class field theory. The proof of Formula [1.2| given
here can probably be generalized without too much effort to metabelian
groups with commutator subgroup of order a power of p and index coprime
to p. However this approach seems not to be the best for the general case of
an arbitrary Galois group (see below).

In the last section we prove Formula[l.3] The translation of u,, in terms of
motivic regulators is done using methods from representation theory which
have been introduced by the Dokchitser brothers (see for example [DD]). In
particular, we closely follow the strategy of Bartel (see [Bal), who used Dok-
chitsers’ ideas to prove a statement analogous to ours in the classical case.

After completing the final draft of this paper, I was informed by both
A. Bartel and the referee about the existence of a preprint by D. Burns in
which he provides a proof of that is independent of the conjecture .
Burns’s result is much more general than ours (in particular (1.9)) is proved
for finite Galois extensions with arbitrary Galois group) and the strategy is
completely different. He directly proves without proving Formulas

and [1.3] separately.

Notation and standard results

e Throughout the paper, if A is a commutative ring and M is an A-
module, tor4 (M) denotes the torsion submodule of M. We will also
use the notation M for M /tor 4(M) without any specific mention of A,
since it will be clear from the context which is the ring we are consid-
ering. Finally, for any a € A, we set M[a] = {m € M | am = 0}.

e Let H be a finite group. We denote by Ng = >, .y h € A[H] the
norm element and by Iy C A[H| the augmentation ideal of the group
ring A[H] (again the reference to the ring is omitted). If B is an
A[H]-module, we use the notation

BY ={bc B|hb=>bforall hc H},
By = B/IyB,
B[Ng] ={b€ B | Nyb=0}.
If ¢ is a prime, A = Z, and H is a g-group for some prime ¢ # ¢, then
BH = NyB and B|Ngy|=IyB,

since B is uniquely ¢-divisible (being a Z;-module) and hence H-
cohomologically trivial.
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2. A formula relating higher class numbers and a higher units
index. In this section we prove Formula First we study the p-part of
the problem, which is the most delicate.

The natural number m > 2 will be fixed throughout the section. For any
number field F such that £k C F C L and any finite set S of places of L, we
set

Ubm = Ha(OB[1/p), Zp(m)) and  AF = HZ (OF[1/p], Zp(m)).

In fact, U g m does not depend on S (see Lemma ) so we shall denote
it simply by Ug,,. We also fix for this section a finite set 71" of places of L
such that

e T is stable under the action of D = Gal(L/k),
e T contains the ramified places of L/k,
e T contains the places above p.

Since T' and m are fixed for this section, we will also use the notation Ug
for Ug,, and Ag for AT . Both Ap and Ug are abelian groups; however,
because of their analogles with the ideal class group and the unit group
of E respectively, we are going to use multiplicative notation for them. In
particular, if g1 and go are elements of a group acting on the left on Ug, we
have u9192 = (u92)9 for any u € Ug (and similarly for Ag).

REMARK 2.1. Note that, if @) is a group of automorphisms of F of order 2
which acts trivially on &, then the restriction induces isomorphisms Ugqe =
Ug and Apq = ACE?. In fact, k C E€ C L and E/EQ is a Galois extension.
Therefore, thanks to our hypotheses on T, OEQ C (’)g is an étale Galois
extension. The above assertion then follows by the Hochschild—Serre spectral
sequence (see [NSW, Proposition 2.1.2 and Corollary 2.1.4]), together with
the fact that H'(OLo,Zy(m)) is Q-cohomologically trivial for any ¢ > 0.

The following well-known result gives us the description of the G-descent
for Ug and Ap (recall that G = Gal(L/F)).

ProPOSITION 2.2 (Kolster-Movahhedi). The natural map Up — U¢ is
an isomorphism and the natural map Ap — Ag fits into the following exact
sequence:

0— HYG,U) — Ap — AY — H*(G,UL) — 0.
Proof. See [KM| Theorem 1.2], whose hypotheses are satisfied thanks to

the properties we required of T'. m

In the light of Remark [2.1]and Proposition we will often identify Uy,
Uk, U, and Up with their images in Ur. In the same way, we will identify
A and Ag with their images in Ayp. We now record the following easy
lemma which will be used repeatedly for the rest of this section.
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LEMMA 2.3. Let M be a_uniquely 2-divisible D-module. Then the Tate
isomorphisms H7 (G, M) = HI*2(G, M) are A-antiequivariant. In particu-
lar, for any j € Z, if H/(G, M) is finite, we have

B (D, M)| = |[H**(G, M)|/|H(D, M)|.
Proof. A standard application of the Hochschild—Serre spectral sequence
shows that the restriction induces isomorphisms
HY(D,M) = H/ (G, M)*.
Thus we only need to show that Tate’s isomorphism ﬁj(G, M)= Hi+2 (G,M)
is A-antiequivariant. Recall that the Tate isomorphism is given by the cup
product with a fixed generator x of H?(G,Z):
HY(G,M) — H*>(G, M), z—azUy.

The action of § € A on ﬁi(G, M) is J, in the notation of [NSW|, Chapter I,
§5], and this action is —1 on H%(G,Z) as can immediately be seen through
the isomorphism H?(G,Z) = H'(G,Q/Z) = Hom(G,Q/Z) (which comes
from the exact sequence 0 — Z — Q — Q/Z — 0 and the fact that Q is
G-cohomologically trivial, being uniquely p-divisible). Then, by Proposition
1.5.3 of [NSWI, 0.(zUx) = dxxUdx = —(d.x) U x, which gives the result. m

The next lemma gives a description of the subgroup AxAx: C Ar but
there is an analogous version for Ux Uy C Uy, (just replace A by U in the
statement).

LEMMA 2.4. The subgroup Ax A C Ar is a D-module and
p—2 _ p—2
AA =[] A% = [[ A
j=0 j=0

Moreover 1A, C AxAkr.

Proof. For the first assertion, see [HK|, Lemma 1]. For the last one, see
[Lel Lemma 3.4]. u

We now start the proof of the p-part of Formula

LEMMA 2.5. Define t: Ax @& Axr — Ay as t(a,d’) = aa’. Then there is
an exact sequence

0— H%D,A) —» Ax & Agr = A — Ho(G, Ar)/Ho(G, Ar)? — 0.

Proof. It is easy to see that the map Ker: — HY(D,Ap) given by
(a,a’) — a is indeed an isomorphism. As for the cokernel of ¢, note that

AgIgAp)/IgArL = (AL/IgAL) ™) = (AL /IgAL)) = AkIgAL/IGAL.

Therefore

Ho(G,ApL)? = (Ap/IGAL)? = Ak A IgAL IgAL = Ag Ak /I AL,
since I¢A;, C Ax Ak by Lemma[2.4] =
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LEMMA 2.6. The following equality holds:

H?(D,Up)| - | Ayl
H(D,Ap)| = | ’ .

Proof. Take A-invariants of the exact sequence in the statement of Pro-
position the sequence stays exact. We also see that (Ag)A = AE
and A? >~ Aj (by Remark . Furthermore, using the Hochschild—Serre
spectral sequence, we find H/(G,Ur)? = H’(D,Uyr) for j > 0, because
HI(G,Up) is A-cohomologically trivial (being uniquely 2-divisible). m

The next lemma describes the G-codescent for Aj.

LEMMA 2.7. The corestriction map induces isomorphisms Ho(G, Ar)
= AF and HQ(G, AL)A = Ak

Proof. For the first isomorphism use [KM) Proposition 1.3]. Since core-
striction commutes with conjugation, the second isomorphism follows from
the first and Remark 2.7] =

In what follows, we shall rewrite the orders of H'(D,Uy) and H*(D, Uy,)
in terms of certain units indexes. We first quote a simple lemma which has
already been used by Lemmermeyer (see [Lel Section 5]).

LEMMA 2.8. Let f: B — B’ be a homomorphism of abelian groups and
let C be a subgroup of B. Then there is an exact sequence
0 — (C +Ker f)/C — B/C L £(B)/f(C) — 0.

In particular, if f(C) is of finite index in f(B) and Ker f N C is of finite
index in Ker f, then C' is of finite index in B and

(B:C)=(f(B): f(C))- (Ker f:KerfnC).
Proof. Clear. n
REMARK 2.9. Applying the preceding lemma with B = B’ = Uy, f =
Ng and C = UgUg/Up, we get
(U, : UxUg'Up)
= (NgUyr, : No(UgUg'Ur)) - (UL[Ng] : Up[Ng) NUg Uk Up).

Note that UxUg Ur is indeed of finite index in Uy, because Ng(UxUk'UF)
is of finite index in NgUy, (since both are of finite index in Up = Uf), and
that Ur[Ng] N UgUgk Up, which contains IUr, by Lemma is of finite
index in UL [Ng].

Recall (see Section [1)) that M[p] is the kernel of multiplication by p on
the Z,-module M.

LEMMA 2.10. We have
|H'(D,UpL)| = |UL[NG]/(UL[Ne] N Uk Uk Up)| - | 16U - Up[pl/ 16Uy - Uk[p]]
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and

\Ur /Up|
H*(D,Up)| = .
(D, Ul \Uk/UY| - INeUL/Na(Ux Uk Ur)|

Proof. Let us prove the first assertion. The norm map
U % Ny U, = U = Ug
gives a map Up[Np| — Ur[Ng] N UxUgk'Up. Consider the induced map
N :UL[Np] — (UL[Ng) NUgUxUr)/1cUL - Ug[p].

Note that indeed Ur[p] C UL[Ng] (since Ng is raising to the pth power
on Up) and IqUy, C UgUg (see Lemma. We also have IoUr, C Ker N,
since, for any u € Uy,

(2'1) u(1+o)(177) — T u(l*T_l)(T € IaU;.
Then N induces a map
(2.2) UL[ND]/I(;UL — (UL[NG] N UKUK/UF)/IgUL . UF[p]

and we claim that this map fits into an exact sequence

0 — Ker N/IgUy, — UL[Np]/IcUy
— (UL[N(;} M UKUK/UF)/I(;UL . UF[p] — 0.
The only nontrivial thing to prove is the surjectivity of the map in (2.2]).
Take v € Uk, u' € Ugs and v € Up such that Ng(uu'v) = 1. We can find
t,t' € U, such that 119 = u and (#)'*7° = «/. Then

(2.3) 1 = Ng(uu'v) = Np(tt')Ng(v) = Np(tt')vP.
In particular vP € UE = Uj. Note that
(2.4) UpNUL = Uy,

(the surjective map Up LN UI{Z stays surjective after taking A-invariants,
since Uplp] is A-cohomologically trivial being uniquely 2-divisible). Hence
there exists w € Uy such that vP = wP, which implies v = wvg for some
vo € Up[p]. Therefore

N(tt’wl/Q) = wu'v mod IgUL - Up[p)

and the fact that tt'w'/? € UL[Np] is exactly (2.3)). This proves that the
above short sequence is exact.
Now consider the map

(2.5) Ker N/IcU, =% (IcUy - Uplpl /IcUL)2.
It is clearly surjective since (IgUr-Ur[p|/IgUL)? = Na(IgUr-Ur[p)/IcUL),

and not only Up[p] € UL[Np], but actually Ur[p] C Ker N. As for the kernel,
note that IpUy, C Ker N (since IoUp C Ker N and (1+0)(1 —0) =0) and

we claim that the kernel of the map in (2.5)) is IpUp/IgUr. Define Y =
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{u € Uy | ut*® € IgUL}. Note that IgU, C Y (by (2.1)) and Y/IgU,
equals the kernel of (2.5)). Now, if u € Y, then there exists v € U, such that

and, in particular,

w? =o' e IpUL.

Hence u € IpU; and, since clearly IpUyr C Y, we have in fact equality.
Thus we have shown that there is an exact sequence

0 — IpUL/IcUL — Ker N/IcU, % (IcUy - Uplpl/IcUL)2 — 0.
Moreover

(IUL - Urlp]/1cUL)? = (Up[p/IcUL N Urlp)® = Uklp]/1cUL N Uklp)
IcUL - Uglp]/IcUL.

I

Then

(UL[Ng] : UL[Ng] N Uk Uk UF)
_ (UL[Ng] : 1cUL - Ur[p])
(UL[Ng] NUkUg'Up : IqUL, - Up[p])
(IgUL - Urp] : IgUL) - (UL[Np] : Ker N)
|H=Y(G,Up)|(Ker N : IpUy)
(IqUr - Ufplp] : IcUL) - (UL|Np] : IpUL)
H NG, U (IgUr-Uglp) : IgUL) |HY(D,U.)|

~|H-(D,Uy)| (cUL-Urlpl: IcUL) — (IcUL - Urlp] : IgUL - Uklp))

by Lemma [2.3] Hence the first assertion of Lemma 2.10 is proved.

We now prove the second assertion (this part is actually the same as the
last part of the proof of [Lel Theorem 2.4]). Note that NoUx = NpUp, =
NgUgr; in particular NogUyg C Uf) = Uj. Therefore

(Up : U}ZNGUK)
(Up : NqUp)

(NgUL . Ng(UKUK/UF)) = (NgUL : UlgNgUK) =

(Ur : Up)
(UﬁNgUK . Ufi) . (UF : NgUL)
(Up : U}) - (URU, : URNqUK)

(ULU : UL) - (Up : NqUp)
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Now
UpUk Up) (UkiUpﬂUk)
ULU, : UPLNaUy) = ( = a
(UpUk : UpNaUx) (UPNqUk : UB) — (NgUg : UR N NgUg)
(Ui - UY)
= PR (U NoU
(NG’UK Up) ( k G K)a

because of (2.4) and
Ulf = NqU, C Uf; NNqUk = UgﬂNDUL - UgﬂUk = U]f.
Therefore, using once more ([2.4)),

| _ (Ur : UR)(Uy : NoUk)
(NeUr : Na(UkUk'Ur)) = (Uy : Uk)(U NGUL)
DU Wr U (Up:UR)

|H(G,UL)| (U : U”) (U - UD)|HA(D,UL)|’
thanks to Lemma and HY(G,Ur) = H%(G,Uy). =

Recall (see Section that M is our notation for the torsion-free quotient
of the Z,-module M.

LEMMA 2.11. We have
IcUL,NUFp[p| = IcULNUr  and IgUL NUkp] = IcUL N Uy.
Furthermore, there is an isomorphism
IeUL,NUp 2 T5 [T,
which is A-antiequivariant. In particular, it induces an isomorphism
IcUL NUp/IcUL N Uy 2 TY JUn = UL [T

Proof. The first assertion follows from the fact that G acts trivially on
Ur and U, and therefore
IcUNUp CULINg)NUf = Up[p] and IqUpNUy C UL[Ng]NUy = Ug[p).
Now consider the map

¢: IcU,NUp — Uf/ﬁ}?

defined by ¢(u'~") = wmod U for any u € Uy, such that u'~" € Up (u is
the class of u in Up). First of all, the definition of ¢ does not depend on the
choice of u: namely, if v!~7 = u'~7, then vuil € UL = Up. Of course, the

image of ¢ is contained in (Ur/Ur)¢ = U; / Ur (this last equality comes
from HY(G,Ur) = Hom(G,Up) = 0 since Up is a free Z,-module with
trivial G-action). Moreover ¢ is clearly a homomorphism. To see that it is
injective, suppose that ¢(u'~7) = 1 mod Up. This means that there exist
¢ € tor(Ur) and v € Up such that u = v¢. But since tor(Ur) = tor(Ur)
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by Lemma this implies ©'~7 = 1. Hence ¢ is injective. To prove the

surjectivity of ¢, choose an element uw € Uf. This means u™ = u& for some
¢ € tor(Ug). Then we have u'~" € tor(Uy) = tor(Up) C Ur and ¢(u'~7) =
7 mod Up.

The map ¢ is A-antiequivariant; in other words, if  generates A, we
have

(2.6) ¢((u'7)) = p(u')7?
for any u'~" € IqUr N Up. In fact,
(ulfT)é _ uJ(l*T) _ u(lfﬂ"l)a (1 T)(Z,L o ‘r')a'

Therefore — o
d((u'™7)%) = ui=0 77 mod Up.

Hence, in order to verify (2.6)), we have to check that
V= u(zf;(? Ti)O'JrO' (= UF = UE

Now
N S [ o mho+(1-r"Yo _ ( -7y (P ) +o

( ) p—1)o+o _ (ul—T)pO' _ 17
since u'~" € Up N IgU; (which means that 7 acts trivially on it) and

it has order p by the first assertion of the lemma. This proves that ¢ is
A-antiequivariant. To get the last claim of the lemma note that

(IcU, NUR)? = IgU, NUp N U, = IgU, N U
and, since uniquely 2-divisible modules are A-cohomologically trivial,
TS /U2 =T /U4 and Up =T,
Therefore ¢ induces an isomorphism
IcUL N Up/IcUL N Uy 2 T2 [T

The following two lemmas will allow us to get results for finite sets of
places which are more general than our fixed T

LEMMA 2.12 (Soulé). Let S be any subset of T which is stable under the
action of D and let S" be the union of S and the set of places of L above p.
Then, for any subfield E of L containing k,

H (OF[1/p], Zp(m)) = HY (OF, Zp(m)) = HY (B, Zy(m))
and there is an exact sequence
0 — HZ(Op[1/p), Zp(m)) — HE (O, Zy(m))
- EB Hélt(OE/[w)Zp(m -1))—0
we(T~S)E
where O/l is the residue field of E at w.
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Proof. See [Sol, Proposition 1]. m

LEMMA 2.13. With notation as in Lemma for any m’ > 1, the
function

(2.7) pH)= ] [HA(OLH/l, Zp(m"),
we(T~\S")  u

which is defined on the set of subgroups of D and takes values in N, is trivial
on D-relations (in the sense of [DD| Section 2.3]).

Proof. The function defined in ([2.7)) is actually a product over v in
(T S, of functions ¢, defined by

po(H) = [ |H&(Ops/lw, Zy(m"))].
wlvin LH
For any v as above, let f, be the absolute inertia index of v and ¢, the
rational prime below v. Consider the function v, : N — N defined by
Golf) = HY (s, Zy(m)).
Then, if D, denotes a decomposition group of v in L/k, we have

B [Dy : 1)
wu(H) = H wv<[HﬁDg:HﬂLﬂ>'

x€H\D/D,

In particular ¢, is trivial on D-relations by [DD, Theorem 2.36(f)], and
therefore the same holds for ¢. =

The next proposition can be seen as the p-part of Formula

PROPOSITION 2.14. Let S be a finite set of places of L which is stable
under the action of D. Then

| |A§(,m|2 (UL,m : UK,mUK’7mUF,m)
" |Ag,m|2 ((UL,m)D : Uk,m) ’

where o, = tkz, Upm — tkz, Ugm = tkz Hppm — kg Hy g 15 as in For-

mula L2l

Proof. First we prove the proposition in the case where S = T'. Thanks
to Lemma [2.11] we have

ALl = po | AT

7m| -

(IgUr - Uplp] : IgUL - Uglp]) = (ézgi .. (él,:[[pp]] :: ;ggj))

(Up[p] :IgULﬂUF[p]) (Up[p] :IgULﬂUF)

(Uk[p] IcUL N Uk[p]) - (Uk[p] IcU N Uk)
(Urlp] : Uklp]) (UFp] : Uklp))

(IGULﬁUpingLﬂUk) (Ufﬁk)
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Therefore

(UF Up)
- =p*(U U
where o, = rkZ Urm — rkzp Uk m =1kg Hp, —1kg H  (the last equality

comes from ) is as in Formula u Now con81der the exact sequence of
Lemma we get, using all the preceding lemmas and Remark [2.9

| Ak [?[Ho(G, Ap)| [H (D, Up)|

| Akl [Ho(G, AL)2| [H2(D,Up)|

|AK|2 (UL : UFUKUK/)(IgUL . UF[ ] : IGUL . Uk[p])(Uk Up)

| Ag|? (Ur : UR)

Ak|* (UL UFUKUK/)

A @y T

To get the statement for any S, note that, by Lemma [2.13] and the second
assertion of Lemma the function

AT,
A5y ]

|ALl =

= |Ap|

p—am |AF| ‘

H—

is trivial on the relation (1.6)). =

We now deal with the general proof of Formula We are going to
use the language and some results of the theory of cohomological Mackey
functors; instead of recalling definitions we prefer to directly refer the reader
o [Bol, Section 1]. The next result is essentially a consequence of the fact
that D = D, is not ¢-hypoelementary (a group is ¢-hypoelementary if it has
a normal /-subgroup with cyclic quotient) if ¢ is any prime different from p.

PROPOSITION 2.15. Let £ be a rational prime different from p. Let S be
a finite set of places of L which is stable under the action of D = Gal(L/k).
Then there is an isomorphism of abelian groups

HE(OL[1/4), Ze(m)) © HE(OF[L/€), Ze(m))®?
= HE (OF(1/0), Ze(m) © Hg (OF[1/4], Ze(m)®?
Proof. Note that the function which assigns to any subgroup H of D
the abelian group H, ;(Of u|1/4],Ze(m)) is a cohomological Mackey functor

on D. Since ¢ # p, D = D, is not f-hypoelementary, which allows us to
apply Theorem 1.8 of [Bo] to conclude. m

Together with Formula and a generalization of a result of Brauer
(see [Ba, Theorem 5.1]), the fact that D = D, is not {-hypoelementary if
£ # p can also be used to give a proof of the next lemma. Here we give
another proof which shows that one can prove Formula without using
Formula 1.3
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LEMMA 2.16. Let S be a finite set of places of L which is stable under
the action of D = Gal(L/k). Then the number u,, is a power of p. More
precisely the following equality holds:

(UL,m : UK,mUK’,mUF,m)
(ULm)? : Ukm)
o (HL,m : HF,mHK,mHK’,m)((FF,m)A :Fk,m)
((HL,m)D : Hk,m)
where Hg ,, = H* ((9%, Z(m)) for any subfield E of L containing k.

(2.8)

= Um,

Proof. Note that, thanks to (1.5, in (2.8) the greatest power of p di-
viding the right-hand side equals the left-hand side. Then what remains to
show is that, for any fixed prime ¢ # p,

(VL : VKVK/VFX(VF)D Vk)

(2.9) (V1) : V)

=1,

where
Vi = Hi (OF[1/4), Zy(m)).

But this can be proved using Lemma The details are as follows: first of
all

(2.10) (VL : VKVK/VF)
= (NGvL : Ng(VKVK/VF)) . (VL[NG'] : VL[Ng] N VKVK/VF) =1,

since

e Ng(Vy) = VF = Vi (because Vj, is G-cohomologically trivial and an
appropriate version of Remark applies);

e N¢(Vr) = VE = Vi (because G acts trivially on Vi and Vp is uniquely
p-divisible);

o VL[Ng| = IV C VkVk (because Vi, is G-cohomologically trivial
and an appropriate version of Lemma holds).

Moreover VS = Vp (because torz,(Vy) is G-cohomologically trivial and
VE = Vp), showing that (2.9) holds. =

The proof of Formula is then achieved, because (|1.5)) allows us to glue

together Propositions and and Lemma, Note that, if Hp,, has
no p-torsion, then wy, = (Hrm : Hx mHg' ;mHrm) (this follows easily from

Lemma [2.11]).
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3. Computations with regulators. In this section we prove Formula
translating the higher units index

(HL,m : HF,mHK,mHK’,m)((FF,m)A : Fk,m)
(Hrm)? : Hym)
of Formula in terms of motivic regulators, whose definition and basic

properties we now briefly review (we refer the reader to [Nel §1]). Recall from
Sectionthat, if £ is any number field, we have set Hp ,, = H'(O%, Z(m)).

Let m > 2 be a natural number. If X(E) = Hom(F,C) is the set of
complex embeddings of E, the mth regulator map we shall consider is a
homomorphism

Uy —

PEm : HEm — @ (27Ti)m_1]R.
BeX(E)

This map is obtained by composing the natural map Hg ,, — Hpg ,;, ®Q with
the Beilinson regulator map Kom-1(0r)®Q — Dgex (g (2m1)™ IR via the
isomorphism ([1.3)). Moreover, the image of p is contalned in the subgroup
of Pse X( E)(2m')m_1]R which is fixed by complex conjugation:

PEm : HE,m - ( @ (27Ti)m_1R>+
BeX(E)

The kernel of p is exactly the torsion subgroup of Hg,, and, thanks to
Borel’s theorem (and the fact that Beilinson’s regulator map is twice Borel’s
regulator map, see [BG|), we know that p induces an isomorphism

Hpnmok=( @ @ri)" k)"

peX(E)

Then the mth regulator of E, denoted REg ,,, is the covolume of the lattice
peEm(HEm) as a subset of the real vector space (@BeX(E)(27Ti)m_1R)+.
Finally, thanks to the functorial properties of the Beilinson regulator, if a
Galois action is defined on E, then p is invariant under this action.

REMARK 3.1. If E/FE’ is a finite extension, then the natural map Hgs ,
Hpg , is injective and, if E/E’ is also Galois, then HE/ HGal(E/E) is

an isomorphism. This can be seen as follows: using and Lemma -,
it remains to check that the restriction

H'(E', Zg(m)) — H'(E, Zy(m))

is injective for any prime ¢. It is easy to see that it is enough to prove
the injectivity of the above map when E/E’ is Galois. In that case the
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Hochschild—Serre spectral sequence gives an exact sequence
0 — HYGal(E/E"), H'(E, Zi(m))) — H'(E',Z¢(m))
— H%Gal(E/E'), H'(E,Z¢(m))) — H*(Gal(E/E"), H*(E, Zs(m)))
which allows us to conclude because H(E,Z;(m)) = 0 (since m # 0). In
what follows, Hgr ,, will be identified with its image in Hg ,,.

To translate u,, in terms of regulators, we are going to use the technique
of regulator costants, introduced by the Dokchitser brothers. We first define
a scalar product on Hg ,, in the following way: denote by (—, —)p .~ the
standard scalar product on CXE). Then, for u, v € Hg p,, we set

(U, ) Bm = (PEm (W), PEm(V))E 0o
It is immediate to see that (—, —)g , is a Z-bilinear map on Hg , X Hg
which takes values in R. Now, if E/E’ is a finite extension and u,v € Hpr .,
we have

(3.1) (U, V) g = [E : E'{u,v) grm
To see this, consider the commutative diagram

PE,m N
Hpm — (Bpex(r)(2mi) 'R)*

I I

P ’'m N —
HE’,m =, (@ﬁ’GX(E’)(zﬂ-Z) 1R)+

where the left vertical arrow is the natural map induced by the inclusion
E’' C E and the right vertical map is the diagonal embedding, i.e.

{xﬁl}ﬁIGX(El) — {i,@}ﬁeX(E) Where iﬁ = me,.

Now we have

{zg} Avp Do = Z Tpys

B'EX(E)
{2} A Ece = Y D Esis=I[E:E] Y apys,
BeX(E') BB BreX(E)

and therefore (3.1]) is true.
Note also that, if E/E’ is Galois, then (—, —) g ,, is invariant with respect

to the Galois action. Finally, the regulator map being trivial on torz(HEg ),
(—, —)Em defines a Z-bilinear map on H g p,.

Next we recall the definition of the regulator (or Dokchitser) constant
in our particular case (see [DD| Definition 2.13 and Remark 2.27] or [Bal,
Definition 2.5]).

DEFINITION 3.2. Let M be a Z[D]-module which is Z-free of finite rank.
Let (-, ) be a D-invariant nondegenerate Z-bilinear pairing on M with values
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in R. Then the regulator constant of M is
B det({—, —)) det(|D|" (-, =), )
det(|G~1 (=, =), )det([(o) [~ (=, =)

We will be interested in the case where M = HL,m and we will use
(—, —)1,m to compute its regulator constant. We have already observed that
(—, —)r,m is Galois invariant, and Proposition below shows that it is
nondegenerate, Ry, ,, being a positive real number.

For any subfield E of L containing k, set

AEm = |c0ker(FE7m — Ff’jﬁf“’;))y

C(M)

X
5 €Q~.

Mio)

It is immediate to see that
(3.2) Mg = [ker(H(Gal(L/E), torz(Hg,)) — H (Gal(L/E), Hg )|

and sometimes this description will be useful: for example it shows instantly
that Ag p, is well-defined (i.e. the order of the above kernel is indeed finite).

The following result is similar to [Bal, Lemma 2.12 and Proposition 2.15];
we sketch the proof since there are slight differences from the proof given
in that paper. Recall that r1(E) (resp. r2(E)) is the number of real places
(resp. complex places) of the number field E.

LEMMA 3.3. We have
det((-, ) pm) = (—1)™'2)2FIRE,

and

2 2 2
RLvak,m )‘F,m)‘K,m >

2 2
RF1mRK7m AL7mAk7m

C(Hpm) = (
Proof. The determinant of
+ +
(— —)oo ( @ (271'2')"171]1%) X ( @ (27m')m71R) — R
BEX(E) BeX(E)

is easily seen to be ((—1)™~12)"2(E), Then the first assertion follows by
well-known properties of scalar products and the definition of Rg .

The proof of the second claim follows from the fact that, for any subgroup
Jof D,

A2 et(117 M= “amlgy ) = det((=, =11 )

(this follows easily from (3.2)) and (3.1]), see also the proof of Proposition 2.15
in [Ba]) and the fact that the function

J e ((~1)m i)

defined on the set of subgroups of D and taking values in N, is trivial on
relations (see [DDl Example 2.37]). m
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The preceding lemma shows that the regulator constant of H, , is re-
lated to regulators. The next one shows that it is also related to a higher
unit index. First we need some notation: we denote by 1p the trivial Q[D]-
module (and in general, if D’ is a subgroup of D, by 1p the trivial Q[D’]-
module), by £ the Q[D]-module given by the sign, and by w an irreducible
(p—1)-dimensional Q[D]-module (which is unique up to isomorphism). As is
well-known, Ko(Q[D]) is a torsion-free Z-module of rank 3 which is spanned
by 1p, € and w. We denote by (—,—) the symmetric scalar product on
Ko(Q[D]) for which the basis {1p,e,w} is orthonormal.

LEMMA 3.4 (Bartel). With the notation above, we have

C(H 1) V2 = p Mm@ Ao =<= 2 ).
Proof. See [Bal, Lemma 4.8]. u
LEMMA 3.5. The following equality holds:

(Rkm)*REm o~ =) =(20)=G AFmAm
~oRml B e (H Hy o Hy O HY ) e
(Rk,m)2RL,m p ( L7m L,m L,m L7m) )\% - s

where quy, = tky Hpp — vky Hy i the same as in Formula .
Proof. Thanks to Lemmas [3.3] and we only have to show that
<HL,m ® @, 1p —¢ —w) = —20,.

The lemma is then an immediate consequence of the following remarks.
First, note that

Imd?), 1y =1p +e+2 and Indflg=1p+e

as Q[D]-modules. Then, using Frobenius reciprocity (and Remark [3.1)), we
get

rky, Hym = 1kz HDy = (Hpm ® Q, 1p),
rky Hp = thg HY = (Hp,m @ Q,Indg 1¢),
tkg Hpn = tkg HY') = (Hpm @ Q. Indf, 101y).
Finally, using (1.4)), we get
tky Hp m = p - tkz Hpm,
since every infinite prime of F' splits completely in L/F. =

In order to get the proof of Formula we need to compare the right-
hand side of the formula of Lemma with wu,,. For this we need some
results about Ag .

LEMMA 3.6. Let Q be any of the subgroups of order 2 in D and let M be a
finitely generated Zo-module on which D acts. For any j > 1, the restriction
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induces isomorphisms
HY(D,M) = H(Q, M).
Proof. First note that H’(D, M) is an abelian 2-group since M is a
finitely generated Zso-module. Therefore the restriction map
(3.3) HY(D,M) — HY(Q, M)

is injective since @ is a 2-Sylow subgroup of D (see [CElL Theorem 10.1 in
Chapter XII]). Furthermore, by the description of the image of the restriction
given in |[CElL Theorem 10.1 in Chapter XII|, we see that the map in is
in fact bijective, since () has trivial intersection with any of its conjugates
different from @ itself (in the language of [CE], any element of H7(Q, M) is
stable). m

LeEMMA 3.7. The following equality holds:

)\K,m
)\k,m

)‘va)\%(,m
2
)\k,m

Proof. Using the notation introduced in Section [2, we have, thanks to
(2.10) and Lemma
(HL,m : HK,mHK’,mHF,m) = (UL,m : UK,mUK’,mUF,m)
= (UL,m : UK,mUK/,mﬁF,m)-
With similar arguments, it is easy to prove that we also have
— —(0) =(120)=G — — — —=G
(HL,m : H< ) >HL,m) = (UL,m : UK,mUK/,mUL,m)'

Lm** Lm
Furthermore, A\g ., is a power of 2, and if, for a prime ¢, (A, )¢ denotes the
exact power of £ dividing Ay ,,, then we have

P — (2 —G
(HL7m : HEUJZYLHET)Z>HL,m) = (HL,m : HK,mHK’,mHF,m)

()\k,m)Q = )\K,m

(use (3.2) and Lemma applied to M = torz(Hpm) ® Zo and M =
Hrp, ym ® Zg). Thus it remains to check that

)\F,m
(/\k,m)p .

- —_ 7G —_ —_ —_
(34) (UK,WUK'7mUL,m : UK,mUK’,mURm) =
Note that
UkmUk UL UkmU k' U ) = (UL + (kU k1m0 pm) ).

In the rest of the proof we drop the subscript m. Note that Ap = 1 or
p (since torz,(Ur) is cyclic; see the proof of Lemm and (A\g)p < Ap
(this is easily shown using for example ) Since (3.4) is trivially true if
Uf = U, we shall suppose that Uf £Up, ie. A\p =p.

Suppose first that IcUp N Uy # IgUL NUp (which is equivalent to Ap =
(Ak)p = p by Lemma . Let u € Uy, be such that the class of [u] € Uy is
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nontrivial in Uf /Up; then u™~! = ¢ generates IgUr, N Up, which is cyclic
of order p (note that we also have u” ~! = ¢~!). Then u!*® € Ux C
UKUK/ UF and

(ul-i—a)r—l _ o, (=1)(1+0) _ ur—l

U( u(’T—l)O’ _ uT—luU(T*I—l) _ Cl—a _ CQ

because o acts as —1 on IoUr, N Up (the latter being different from IqUr N
Uy by assumption). This shows at once that [u]'*? € (UxUr/Ur)® but
[u]'t9 ¢ UF (since o acts trivially on Uf /UFp by Lemma and [u] ¢ Up)
and therefore U(L; = (UgUUp)% (since Uf /U F has order p).

Now suppose that IoUr, N U, = IqUp, N Up; then we have to show that
(UxUgUp)® = Up. First of all we observe that

(3.5) UpNU,=Uy.
In fact, of course Uﬁ NU; D Ulf. Conversely, if u € Ug and u? € Uy, then
wP™=1) = 1. In particular u™~! € IqU, NULp] = IqU, NUp = IgUL N U,
(use Lemmas [1.1| and , which implies that

ua(rfl) — L

But we also have

o(r—1) _ T’l—l)a |

u U( =Uu

because u € Ug. Hence we get u™ = u. Therefore u € UrnN QK = U/Land
hence UY, MU, C UF, which proves (3.5). Now any element in (UgU U )%
can be written as [uv”w] with u,v € Ux and w € U satisfying
(wv™w)" € tor(Up).
Actually (uv™w)™ ! = (™)1 = ¢ € Up[p] (from IgU, NU, = IgU, NUE
and Lemma . This implies that
uP™ uP

vPT - pp7? € Uk

2
wP \T7 P

<Up7'2> - P2’

A quick calculation now gives (uv)? = (uwv)P™ . This means that (uv)? €
Urp NUg = Ug. Then (wv)? € UL NUy, = UL thanks to (3.5). So u = v iz
with z € Uy (recall that Ug[p] = Uk[p] by Lemma[L.1)) and therefore

T T—1
(ww)™ = (") = () Uil

v

In particular

This implies
vPT
o eUpnIgUL =Uplp|NIgUyL,
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which means that v™ /v € torz,(Uz) € Up. Then § = 1 and [uv"w] € Up.
This concludes the proof. m

Collecting all the results we have proved so far, we get the proof of
Formula and therefore that of the higher Brauer—-Kuroda relation ((1.9).
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