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1. Introduction. Let G(x) = cgx
g + cg−1x

g−1 + · · · + c1x + c0 ∈
Z[x] be an irreducible polynomial of degree g and discriminant D, and let
ρ(m) = ρG(m) denote the number of incongruent solutions to the congru-
ence G(n) ≡ 0 (mod m). Throughout, we assume that cg > 0 and ρ(p) 6= p
for all primes p. The question of how often G(x) represents primes is the
content of a conjecture by Bouniakowsky [2] and, more generally, by Schinzel
[13] and Bateman and Horn [1]:

Conjecture. Assuming the notation and hypotheses above, we have

#{1 ≤ n ≤ x : G(n) is prime} ∼ ΓG ·
x

log x
,

where

ΓG :=
1
g

∏
p prime

(
1− ρ(p)

p

)(
1− 1

p

)−1

.

The prime number theorem for primes in arithmetic progressions implies
that this conjecture is true when g = 1. Very little is known if g ≥ 2.

Remark. There have been fantastic recent results on the related prob-
lem for polynomials in two variables, such as x2 + y4 and x3 + 2y3, which
Friedlander and Iwaniec [5] and Heath-Brown [6] have shown to represent
primes infinitely often; in fact, they have obtained the asymptotic orders of
the sets of such primes.

Here we consider how frequently G(x) represents numbers that are “al-
most prime.” To this end, let Pr denote the set of squarefree positive inte-
gers with at most r distinct prime factors. The best general result along the
lines of the above conjecture asserts that a degree g polynomial G(x) rep-
resents Pg+1 infinitely often. For g ≤ 7, this is due to Kuhn [9], Wang [15],
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and Levin [11], and for general g this follows from work of Buhštab [3]
and Richert [12]. In the special case of G(x) = x2 + 1, a deep theorem
of Iwaniec [8] states that G(x) represents P2 infinitely often. To prove this,
Iwaniec obtained a new form of the error in the linear sieve, and he proved an
equidistribution result about the roots of the quadratic congruence x2+1 ≡ 0
(mod m). By generalizing Iwaniec’s result, we are able to obtain the follow-
ing theorem.

Theorem 1. If G(x) = c2x
2 + c1x+ c0 ∈ Z[x] is irreducible, with c2 > 0

and ΓG 6= 0, then there are infinitely many positive integers n such that
G(n) is in P2.

Remark. 1) If G(x) = c2x
2 + c1x+ c0 ∈ Z[x] is irreducible, with c2 > 0

and ΓG = 0, then, since ρG(p) ≤ 2 for all primes p, we must have ρG(2) = 2.
The polynomials G0(x) := G(2x)/2 and G1(x) := G(2x + 1)/2 are irre-
ducible, have integer coefficients, and satisfy ρG0(2) = ρG1(2) = 1. Theo-
rem 1 then shows that G(n) is 2P2 infinitely often.

2) The author, in unpublished work, has obtained conditions on higher
degree G(x) which would allow one to conclude that G(x) represents Pg
infinitely often. Unfortunately, these conditions are rather technical, and
there are no higher degree polynomials yet known to satisfy them.

To prove Theorem 1, we use the method employed by Iwaniec [8] to
consider arbitrary quadratic polynomials. In Section 2, we transform the
original problem into a sifting problem to which we can apply Iwaniec’s
linear sieve inequality. To obtain non-trivial cancellation in the resulting
error terms and deduce Theorem 1, we need a result on the distribution
of roots of G(x) to various moduli, which we prove in Section 3. To prove
this result for G(x) = x2 + 1, Iwaniec made use of the fact that
disc(x2 + 1) = −4 is negative, which allowed him to use the theory of
positive definite quadratic forms. It is here, therefore, that most of the ad-
ditional work in handling arbitary quadratic polynomials is necessary, to
account for the fact that the discriminant may be positive and also that
G(x) may not be monic. This equidistribution problem also provides the
obstruction for establishing the analogue of Theorem 1 for higher degree
polynomials.

2. Proof of Theorem 1. We assume from now on that G(x) is a fixed
irreducible quadratic polynomial with positive leading coefficent such that
ρ(2) 6= 2. We apply the method of Iwaniec [8] to obtain an estimate for

#{1 ≤ n < x : G(n) ∈ P2}.
We will introduce a weighted sum in Section 2.1 which will change the
problem into one of establishing estimates of sifting functions, which we
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study by using the linear sieve in Section 2.2. In Section 2.3, we then use
these estimates to complete the proof of Theorem 1.

2.1. A weighted sum. If we let

(2.1) A = Ax := {G(n) : 1 ≤ n < x},

we wish to estimate the sum ∑
a∈A∩P2

1.

To do so, we introduce a weight function w(n) and instead sum w(a). Let
λ be a real number such that 2 ≤ λ < 3, and assume x is sufficiently large
so that G(n) ≤ xλ for all n ≤ x. If n is a positive integer, let pn and ω(n)
denote the smallest prime divisor of n and the number of distinct prime
divisors of n, respectively. For a prime p < xλ/2 such that p |n, let

ωp(n) :=



1− log p
λ/2 log x

if p = pn,

log pn
λ/2 log x

if p > pn and p < xλ/4,

1− log p
λ/2 log x

if p > pn and p ≥ xλ/4,

then let

(2.2) w(n) := 1− λ/2
3− λ

∑
p|n, p<xλ/2

ωp(n).

Remark. The weights w(n) are the same weights that Iwaniec used,
which are due to Richert (unpublished, see [8]). Laborde [10] developed
weights which would yield a slightly better implied constant for the asymp-
totic #(A ∩ P2) � x/log x, but since we have suppressed the constant, we
choose to use Richert’s weights to maintain continuity with Iwaniec.

We require a lemma due to Iwaniec [8, Lemma 1], which asserts that the
weight function w(n) detects P2 for squarefree n.

Lemma 1 (Iwaniec). If n ≤ xλ and w(n) > 0, then n has at most two
distinct prime factors.

By Lemma 1, for any z ≤ xλ/4 we have

#{a ∈ A : a ∈ P2} ≥
∑
a∈A

(a,P (z))=1
a squarefree

w(a),

where P (z) =
∏
p<z p. If z = xγ for some γ > 0, there are few non-squarefree
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a ∈ A such that (a, P (z)) = 1, as∑
n<x

(G(n),P (z))=1
G(n) not squarefree

1� xλ/2z−1/2 + x2/3(log x)4/3,

which we obtain by Iwaniec’s argument for x2 + 1 and an application of the
square sieve [4, Theorem 2.3.5]. Hence, we consider the sum

(2.3) W (A, z) =
∑
a∈A

(a,P (z))=1

w(a),

with the goal of showing that W (A, z) � x/log x. For any positive integer
q, let

Aq := {a ∈ A : a ≡ 0 (mod q)}.

Following Iwaniec, we can write W (A, z) in terms of the sifting functions

(2.4) S(Aq, u) := #{a ∈ Aq : (a, P (u)) = 1},

namely

W (A, z) = S(A, z) +
λ/2

3− λ

[ ∑
z≤p<xλ/4

∑
z≤p1<p

log p/p1

λ/2 log x
S(App1 , p1)

(2.5)

−
∑

z≤p<xλ/4

((
1− 2

log p
λ/2 log x

)
S(Ap, p) +

log p
λ/2 log x

S(Ap, z)
)

−
∑

xλ/4<p<xλ/2

(
1− log p

λ/2 log x

)
S(Ap, z)

]
.

2.2. The linear sieve. We have reduced the problem to that of ob-
taining a lower bound for the function W (A, z) defined by (2.3), and by
(2.4) and (2.5) this reduces to the problem of obtaining good estimates for
the sifting functions S(Aq, u). We recall the following linear sieve inequality
[8, Lemma 2].

Lemma 2 (Iwaniec). Let q ≥ 1, u ≥ 2, M ≥ 2, and N ≥ 2. For any
η > 0 we have

S(Aq, u) ≤ V (u)x
ρ(q)
q

(F (s) + E) + 2η
−7
R(Aq;M,N),

S(Aq, u) ≥ V (u)x
ρ(q)
q

(f(s)− E)− 2η
−7
R(Aq;M,N),
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where s = logMN/log u, E � ηs2 + η−8e−s(logMN)−1/3, and

V (u) =
∏
p<u

(
1− ρ(p)

p

)
.

The functions F (s) and f(s) are the continuous solutions of the system of
differential-difference equations

sf(s) = 0 if 0 < s ≤ 2,

sF (s) = 2eC if 0 < s ≤ 3,
(sf(s))′ = F (s− 1) if s > 2,
(sF (s))′ = f(s− 1) if s > 3,

where C is Euler’s constant. The error term R(Aq;M,N) has the form

(2.6) R(Aq;M,N) =
∑

m<M,n<N,mn|P (u)

ambnr(Aq;mn),

where

r(Aq; d) := |A[q,d]| −
ρ([q, d])

[q, d]
x,

and the coefficients am and bn are real numbers, bounded by 1 in absolute
value, and supported on squarefree values of m and n.

The functions F (s) and f(s) both tend to 1 monotonically as s → ∞,
F (s) from above and f(s) from below. Thus, we wish to choose M and N so
that s is large, but we do so at the expense of increasing the size of the error
term R(Aq;M,N). Consequently, we are mainly concerned with bounding
R(Aq;M,N) for large values of M and N .

Lemma 3. With notation as in Lemma 2, for any ε > 0 we have∑
m<x1−8ε

∣∣∣∣ ∑
n<xγ0−γ1ε

(n,m)=1

bnr(A;mn)
∣∣∣∣� x1−ε,

where γ0 := 1−α0
2(1+β0) and γ1 := 4α0

1+β0
, where α0 and β0 are defined in Lemma 4.

Before we prove Lemma 3, we state a result whose proof we postpone
until Section 3 (see Lemma 8).

Lemma 4. Let q be a squarefree number, d an odd divisor of q, µ an
integer prime to d, and ω a root of G(x) modulo d. Furthermore, let M <
M1 < 2M and 0 ≤ α < β < 1. Let P (M1,M ; q, d, µ, ω, α, β) denote the
number of pairs of integers m,Ω such that M < m < M1, (m, q) = 1,
m ≡ µ (mod d), α ≤ Ω/mq < β, G(Ω) ≡ 0 (mod mq), and Ω ≡ ω (mod d).
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Then there are constants A(q) > 0, α0 < 1 and β0 such that, for every ε > 0,

P (M1,M ; q, d, µ, ω, α, β) = (β − α)(M1 −M)ρ
(
q

d

)
A(q)
φ(d)

+O(Mα0+εqβ0+ε).

Proof of Lemma 3. Let

B(x;m,N) :=
∑

n<N, (n,m)=1

bnr(A;mn).

Our initial task will be to bound B(x;m,N) by using Lemma 4. By the
Cauchy–Schwarz inequality, we get

(2.7)
∑

M<m<2M

|B(x;m,N)| ≤M1/2
( ∑
M<m<2M

B(x;m,N)2
)1/2

.

Since we have

B(x;m,N) =
∑

0≤v<m
G(v)≡0 (modm)

∑
n<N

(n,m)=1

bn

( ∑
k<x

k≡v (modm)
G(k)≡0 (modn)

1− x

m

ρ(n)
n

)
,

the Cauchy–Schwarz inequality implies that

B(x;m,N)2

≤ ρ(m)
∑

0≤v<m
G(v)≡0 (modm)

[ ∑
n<N

(n,m)=1

bn

( ∑
k<x

k≡v (modm)
G(k)≡0 (modn)

1− x

m

ρ(n)
n

)]2

�M ε
∑

0≤v<m
G(v)≡0 (modm)

[ ∑
n<N

(n,m)=1

bn

( ∑
k<x

k≡v (modm)
G(k)≡0 (modn)

1− x

m

ρ(n)
n

)]2

.

Expanding the square on the right-hand side and reintroducing the sum
over m, we get

(2.8)
∑

M<m<2M

B(x;m,N)2

�M ε(W (x;M,N)− 2xV (x;M,N) + x2U(M,N)),

where

(2.9) W (x;M,N)

:=
∑

M<m<2M

∑
0≤v<m

G(v)≡0 (modm)

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

∑
k1,k2<x

k1≡k2≡v (modm)
G(k1)≡G(k2)≡0 (modn)

1,
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(2.10) V (x;M,N)

:=
∑

M<m<2M

∑
0≤v<m

G(v)≡0 (modm)

1
m

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

ρ(n2)
n2

∑
k<x

k≡v (modm)
G(k)≡0 (modn1)

1,

and

(2.11)

U(M,N) :=
∑

M<m<2M

∑
0≤v<m

G(v)≡0 (modm)

1
m2

∑
n1,n2<N

(n1n2,m)=1

bn1bn2

ρ(n1)ρ(n2)
n1n2

.

We will estimate W (x;M,N), V (x;M,N), and U(M,N) separately with
the goal of showing that their main terms cancel in the expression (2.8).
Our main tools to this end are Lemma 4 and partial summation. We follow
the method of Iwaniec [8, proof of Proposition 1] closely, with more effort
being necessary only in the estimation of W (x;M,N). Consequently, for
U(M,N) and V (x;M,N) we state only the results, noting that they follow
in the same fashion as the estimate of W (x;M,N) we provide below. In
particular, the required estimate for U(M,N) is

(2.12)

U(M,N) =
1

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)
n1n2

A([n1, n2]) +O(Mα0−2+εN2β0+ε),

and the required estimate for V (x;M,N) is

V (x;M,N) =
x

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)
n1n2

A([n1, n2])(2.13)

+O(xε + xMα0−2+εN2β0+ε).

Following Iwaniec’s method for W (x;M,N) as far as we can, we obtain

W (x;M,N) =
∑

n1,n2<N

bn1bn2T
∗(n1, n2;x,M) +O(x1+ε),

where to define T ∗(n1, n2;x,M) we need to first define the integers c and d.
For integers l1, l2 < x/M , let 0 ≤ c < [n1, n2] be the solution to

c ≡ l1
(

mod
n1

(n1, n2)

)
,

c ≡ l2
(

mod
n2

(n1, n2)

)
,

c ≡ l1 (mod (n1, n2)),
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and let

d :=
(n1, n2)

(n1, n2, l1 − l2)
.

With the above definitions, we have

(2.14) T ∗(n1, n2;x,M)

:=
∑

l1,l2<x/M
l1≡l2 (mod (2,n1,n2))

∑
0≤µ<d
(µ,d)=1

∑
0≤v<d

G(µl1+v)≡0 (mod d)
G(µl2+v)≡0 (mod d)

∑
M<m<M1, (m,n1n2)=1

m≡µ (mod d), cm≤Ω<(c+1)m
Ω≡µl1+v (mod d)

G(Ω)≡0 (modm[n1,n2])

1,

where M1 = min(2M,x/l1, x/l2). The innermost sum in (2.14) is precisely

P

(
M1,M ; [n1, n2], d, µ, µl1 + v,

c

[n1, n2]
,
c+ 1

[n1, n2]

)
,

so Lemma 4 implies that

T ∗(n1, n2;x,M) =
A([n1, n2])ρ([n1, n2])

[n1, n2]

∑
l1,l2<x/M

l1≡l2 (mod (2,n1,n2))

M1 −M
ρ(d)φ(d)

∑
µ,v

1

(2.15)

+O(x2Mα0−2+εN2β0+ε).

The sum
∑

µ,v 1 is counting the number of integers µ and v modulo
d such that (µ, d) = 1 and G(µl1 + v) ≡ G(µl2 + v) ≡ 0 (mod d). This
is the same as the number of choices of µl1 + v and µl2 + v such that
G(µl1 + v) ≡ G(µl2 + v) ≡ 0 (mod d) and their difference, µ(l1 − l2), is
invertible modulo d. Since d is squarefree and the number of solutions is
multiplicative in d, there are exactly ρ(d)ψ(d) ways of doing this, where
ψ(d) is the multiplicative function defined by ψ(p) := ρ(p) − 1 for each
prime p. Hence, the sum in (2.15) is equal to

φ((n1, n2))−1
∑

l1,l2<x/M
l1≡l2 (mod (2,n1,n2))

φ((n1, n2, l1− l2))ψ
(

(n1, n2)
(n1, n2, l1 − l2)

)
(M1−M).

Since ρ(p) = 0, 1, or 2, we must have ψ(p) = 0,±1. We first note that if
ψ(p) = −1 for some p | [n1, n2], then ρ(p) = 0 and so T ∗(n1, n2;x,M) would
then be 0. We therefore assume ψ(p) 6=−1 and evaluate T ∗(n1, n2;x,M).

Let n | (n1, n2) be maximal such that ψ(n) = 1, and let n0 = (n1, n2)/n.
Since

ψ

(
(n1, n2)

(n1, n2, l1 − l2)

)
= ψ

(
n0

(n0, l1 − l2)

)
,
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it follows that ψ((n1, n2)/(n1, n2, l1 − l2)) = 0 unless n0 | (l1− l2). Hence, we
consider

1
φ((n1, n2))

∑
l1,l2<x/M

l1≡l2 (modn0)

φ((n1, n2, l1 − l2))
ψ((n1, n2, l1 − l2)/n0)

(M1 −M),

which, by using the fact that (n1, n2, l1 − l2) = n0(n, l1 − l2), is given by
1

φ(n)

∑
l1,l2<x/M

l1≡l2 (modn0)

φ((n, l1 − l2))(M1 −M).

We now have, letting ξ := µ ∗ φ,∑
0<l1<l2

l1≡l2 (modn0)

φ((n, l1 − l2)) =
∑

0<l1<l2
l1≡l2 (modn0)

∑
t|(n,l1−l2)

ξ(t)

=
l2
n0

∑
t|n

ξ(t)
t

+O(φ(n))

=
l2φ(n)ρ(n)

n0n
+O(φ(n)),

where the last equality follows from the evaluation of
∑

t|n ξ(t)/t on primes.
We are thus led to consider∑

l2<x/M

l2

(
min

(
2M,

x

l2

)
−M

)
=

x2

4M
+O(x).

Inserting these estimates into (2.15), we now see that

T ∗(n1, n2;x,M) =
x2

2M

(
A([n1, n2])

ρ([n1, n2])
n1n2

ρ(n)
)

+O

(
xN ε ρ(n1)ρ(n2)

n1n2
+ x2Mα0−2+εN2β0+ε

)
.

Hence, we have

W (x;M,N) =
x2

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)
n1n2

ρ(n)
ρ((n1, n2))

A([n1, n2])

+O(x1+ε + x2Mα0−2+εN2+2β0+ε).

Since primes p |n0 satisfy ψ(p) = 0 and hence ρ(p) = 1, it follows that
ρ((n1, n2)) = ρ(n). This implies the required estimate

W (x;M,N) =
x2

2M

∑
n1,n2<N

bn1bn2

ρ(n1)ρ(n2)
n1n2

A([n1, n2])(2.16)

+O(x1+ε + x2Mα0−2+εN2+2β0+ε).
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Inserting the estimates (2.12), (2.13), and (2.16) into (2.8), we see that the
main terms cancel, and we obtain

(2.17)
∑

M<m<2M

B(x;m,N)2 � (x+ x2Mα0−2N2+2β0)xεM εN ε.

Returning to the statement of the lemma, let N = xγ0−γ1ε. With this
choice of N , it suffices to show for any M < x1−8ε that∑

M<m<2M

|B(x;m,N)| � x1−3ε/2.

If M < x1−γ0−ε, the trivial estimate

|B(x;m,N)| ≤ ρ(m)
∑
n<N

ρ(n)� ρ(m)N

yields the desired result.
If M > x1−γ0−ε, we use the estimate (2.17) in (2.7), and obtain∑

M<m<2M

|B(x;m,N)| � ((Mx)1/2 + xM (α0−1)/2N1+β0)xεM εN ε � x1−3ε/2

by our choice of M < x1−8ε and N = xγ0−γ1ε.

Armed with Lemma 3, we are now able to acquire the desired estimate
for the sifting functions S(Aq, u).

Lemma 5. If z < xλ/2r, then for any ε > 0 and x sufficiently large, we
have∑
q<x1−ε

(q,P (zq))=1

cqS(Aq, zq)

< V (z)x
( ∑

q<x1−ε

(q,P (zq))=1

cq
ρ(q)
q
F

(
(1 + γ0) log x− log q

log zq

)
log z
log zq

+Olog z(ε)
)
,

with γ0 as defined in Lemma 3, provided that for each q, z ≤ zq < xλ/2r and
0 ≤ cq ≤ 1.

This lemma is essentially the same as Proposition 2 in [8], so we present
it without proof. We obtain a lower bound for the sum in Lemma 5 by
replacing F with f .

2.3. Proof of Theorem 1. With Lemma 5 at our disposal, we obtain
a lower bound for the size of the set

{1 ≤ n < x : G(n) ∈ P2}.
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We wish to apply Lemmas 2 and 5 to equation (2.5) to obtain a lower
bound for W (A, z). We may do this for each term in (2.5) but the short sum∑

x1−ε≤p<x

(
1− log p

λ/2 log x

)
S(Ap, z).

However, in this case, we make the estimate

S(Ap, z)�
x

p log(x/p)
,

yielding the bound O(εx/log x). For notational convenience, set

α := 1 + γ0 and γ :=
log z
log x

.

By partial summation, we obtain

W (A, z) > V (z)x
(
f

(
α

γ

)
+
[ 1/2�

γ

u�

γ

u− t
1

γ

t
f

(
α− u− t

t

)
dt

t

du

u

−
1/2�

γ

(
(1−2u)

γ

u
F

(
α− u
u

)
+uF

(
α− u
γ

))
du

u

−
1�

1/2

(1− u)F
(
α− u
γ

)
du

u

]
− ε
)

=: V (z)x(W − ε),

where we have let λ tend to 2, which is permitted by continuity. Since
ΓG 6= 0, we have V (z) � log−1 x by Mertens’ Theorem and we wish to show
that W > 0.

We observe that W decreases monotonically as α increases from 1, so we
wish to find γ < 1/2 such that W |α=1 > 0. However, we will not immediately
substitute α = 1 into the above formula. Instead, we will choose γ = α/6
and take the limit as α tends to 1 from the right. Using

sF (s) = 2eC
(

1 +
s−1�

2

log(u− 1)
du

u

)
if 3 ≤ s ≤ 5, and

sf(s) = 2eC
(

log(s− 1) +
s−1�

3

t−1�

2

log(u− 1)
du

u

dt

t

)
if 4 ≤ s ≤ 6, we obtain
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W =
αeC

3

(
log
(

5
6
α

)
− α− 1

α
log(α− 1)

−
4�

2

[
t log

(
6(t+ 1)
5(t+ 2)

)
+ (t+ 1) log

(
1− t

5

)]
log(t− 1)
t(t+ 1)

dt

)
.

Upon taking the limit α→ 1+, we see that

W1 =
eC

3

(
log
(

5
6

)
−

4�

2

[
t log

(
6(t+ 1)
5(t+ 2)

)
+ (t+ 1) log

(
1− t

5

)]
log(t− 1)
t(t+ 1)

dt

)
,

which a numerical computation reveals to be positive.

3. An equidistribution result for the congruence G(x) ≡ 0
(modm). Here we prove Lemma 4, an equidistribution result for the roots of
the congruence G(x) ≡ 0 (mod m), where G(x) is any irreducible quadratic
polynomial. The proof of Theorem 1 is complete once this lemma is proved.
Before we can do this, however, we need a result concerning the Dirichlet
series L(ψ, s) :=

∑∞
m=1 ψ(m)/ms, where ψ = ρ ∗ µ and ρ(m) is the number

of incongruent solutions to G(x) ≡ 0 (mod m).

Lemma 6. The series L(ψ, s) converges to a positive real number at
s = 1.

Proof. If D is the discriminant of G(x), then, by Hensel’s Lemma, we
can express the Euler product for L(ψ, s) as

L(ψ, s) = λD(s)
∏
p-D

(
1 +

ψ(p)
ps

)
=: λD(s)L0(ψ, s),

where λD(s) is the product arising from primes p |D. Since it is a finite
product, it will have no bearing on the convergence of L(ψ, 1). Thus, we are
only concerned with the convergence of L0(ψ, 1). Assuming that s is tending
to 1 in the half-plane <(s) > 1, we have

log(L0(ψ, s)) =
∑
p-D

log
(

1 +
ψ(p)
ps

)
=
∑
p-D

ψ(p)
ps

+O

(∑
p-D

1
p2<(s)−ε

)

=
∑
p-D

ψ(p)
ps

+O(1).

Since ρ(p) can be interpreted Galois-theoretically and depends only on the
conjugacy class C of Frobp in Gal(G), we have, letting Gal(G)# denote the
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set of conjugacy classes of Gal(G) and recalling that ψ(p) = ρ(p)− 1,∑
p-D

ψ(p)
ps

=
∑

C∈Gal(G)#

(ρ(C)− 1)
∑

Frobp∈C
p−s

=
∑

C∈Gal(G)#

(ρ(C)− 1)
#C

#Gal(G)
log
(

1
s− 1

)
+ θ(s),

where θ(s) is holomorphic for <(s) ≥ 1. The last equality follows from the
Chebotarev Density Theorem (for example, see Proposition 1.5 of [14]). The
value of ρ(C) is the number of roots of G(x) in C fixed by elements of C, so
letting Fix(C) (resp. Fix(σ), for σ ∈ Gal(G)) be the number of fixed points
of an element of C (resp. the number of fixed points of σ), we have∑

C∈Gal(G)#

#C · (ρ(C)− 1) =
∑

C∈Gal(G)#

#C · Fix(C)−#Gal(G)

=
∑

σ∈Gal(G)

Fix(σ)−#Gal(G) = 0,

by Burnside’s Lemma. Hence, we see that log(L0(ψ, s)) = O(1) as s tends
to 1. Thus, the infinite product converges and L0(ψ, 1) exists, whence L(ψ, 1)
does as well. The fact that L(ψ, 1) is positive and real comes immediately
from its Euler product and the definition of ψ(m).

We will also need a lemma of Iwaniec [8, Lemma 7] on the approximation
of the characteristic function χI(t) of the interval I := [α, β) ⊆ [0, 1) by
Fourier series.

Lemma 7 (Iwaniec). Let 2∆ < β−α < 1−2∆. There exist two functions
A(t) and B(t) such that

|χI(t)−A(t)| = B(t)

and
A(t) = β − α+

∑
h6=0

Ahe(ht), B(t) = ∆+
∑
h6=0

Bhe(ht),

with Fourier coefficients Ah and Bh satisfying

(3.1) |Ah|, |Bh| ≤ min
(

1
|h|
,
∆−2

|h|3

)
=: Ch.

Armed with Lemmas 6 and 7, we now prove the main result of this
section, which is a generalization of Iwaniec’s Lemma 4 of [8], and is the
precise statement of our Lemma 4. For a squarefree integer q we define

(3.2) A(q) :=
φ(q)
q

L(ψ, 1)
Lq(ψ, 1)

,

where φ(n) is Euler’s totient function,
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(3.3) Lq(ψ, 1) :=
∏
p|q

(
1 +

ψ(p)
p

+ · · ·+ ψ(prp)
prp

)
,

and rp is the smallest integer such that ψ(pk) = 0 for all k > rp. We note that
rp exists as a consequence of Hensel’s Lemma because G(x) is irreducible.

Lemma 8. Let q be a squarefree number, d an odd divisor of q, µ an
integer prime to d, and ω a root of G(x) modulo d. Furthermore, let M <
M1 < 2M and 0 ≤ α < β < 1. Let P (M1,M ; q, d, µ, ω, α, β) denote the
number of pairs of integers m,Ω such that M < m < M1, (m, q) = 1,
m ≡ µ (mod d), α ≤ Ω/mq < β, G(Ω) ≡ 0 (mod mq), and Ω ≡ ω (mod d).
Then there are constants α0 < 1 and β0 such that, for every ε > 0,

P (M1,M ; q, d, µ, ω, α, β) = (β − α)(M1 −M)ρ
(
q

d

)
A(q)
φ(d)

+O(Mα0+εqβ0+ε).

Proof. By Lemma 7, we have

(3.4) P (M1,M ; q, d, µ, ω, α, β)

= (β − α)
∑

M<m<M1, (m,q)=1,m≡µ (mod d)
0≤Ω<mq,G(Ω)≡0 (modmq), Ω≡ω (mod d)

1

+O

(
ρ(q)∆M +

∑
h6=0

Ch

∣∣∣∣ ∑
M<m<M1, (m,q)=1,m≡µ (mod d)

0≤Ω<mq,G(Ω)≡0 (modmq), Ω≡ω (mod d)

e

(
hΩ

mq

)∣∣∣∣).
By the Chinese Remainder Theorem, the sum in the main term above is
given by

ρ

(
q

d

) ∑
M<m<M1

(m,q)=1
m≡µ (mod d)

ρ(m) = ρ

(
q

d

) ∑
a≤T

(a,q)=1

ψ(a)
∑

M/a<b<M1/a,(b,q/d)=1
b≡µā (mod d)

1

+ ρ

(
q

d

) ∑
b<2M1/2

(b,q)=1

∑
max(M/b,T )<a<M1/b
a≡µb̄ (mod d), (a,q/d)=1

ψ(a).

If (a,D) = 1, then ψ(a) =
(
D
a

)
µ(a)2. Hence,

ρ

(
q

d

) ∑
M<m<M1

(m,q)=1
m≡µ (mod d)

ρ(m)

= ρ

(
q

d

) ∑
a≤T, (a,q)=1

ψ(a)
(
φ

(
q

d

)
M1 −M

aq
+O

(
φ

(
q

d

)))
+O(ρ(q)φ(q)M1/2+ε)
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= ρ

(
q

d

)
φ

(
q

d

)
M1 −M

q

∑
a≤T

(a,q)=1

ψ(a)
a

+O(ρ(q)φ(q)T 1+ε)+O(ρ(q)φ(q)M1/2+ε)

= ρ

(
q

d

)
φ

(
q

d

)
M1 −M

q

L(ψ, 1)
Lq(ψ, 1)

+O

(
ρ(q)φ(q)

(
M
φ(q)
q
T−1+ε + T 1+ε +M1/2+ε

))
.

By choosing T = M1/2, we see that the error above is O(M1/2+εq1+ε).
We now estimate the error term in (3.4), which is

O

(
ρ(q)∆M +

∑
h6=0

Ch

∣∣∣∣ ∑
M<m<M1, (m,q)=1,m≡µ (mod d)

0≤Ω<mq,G(Ω)≡0 (modmq), Ω≡ω (mod d)

e

(
hΩ

mq

)∣∣∣∣).
We will bound the above sum by an estimate of the form

(3.5)
∑

M<m<M1, (m,q)=1,m≡µ (mod d)
0≤Ω<mq,G(Ω)≡0 (modmq), Ω≡ω (mod d)

e

(
hΩ

mq

)

�Mα2+εqβ2+ε
∑
h6=0

Ch(1 + hMα3+εqβ3+ε)τ(h)

�Mα2+εqβ2+ε

(
1 +

Mα3+εqβ3+ε

∆

)
(log∆)2,

where α2 < 1, α3 < 1 − α2, and β2 and β3 are real numbers, and the last
equality has come from (3.1).

If α3 < 0, we take ∆ = Mα3qβ3 , to deduce that the error in equation
(3.4) is

O(M1+α3+εqβ3+ε +Mα2+εqβ2+ε),

in which case we may take α0 = max(1/2, α2, 1+α3) and β0 = max(1, β2, β3).
If α3 ≥ 0, we take ∆ = M (α2+α3−1)/2qβ3 to find that the error in (3.4) is

O(M (1+α2+α3)/2+εqβ3+ε +M (1+α2+α3)/2+εqβ2+ε),

and we may take α0 = max(1/2, (1 + α2 + α3)/2) and β0 = max(1, β2, β3).
Thus, it only remains to establish (3.5).

We begin by removing the condition that (m, q) = 1 by Möbius inversion:∑
M<m<M1, (m,q)=1,m≡µ (mod d)

0≤Ω<qm,G(Ω)≡0 (modmq), Ω≡ω (mod d)

e

(
hΩ

mq

)

=
∑
l|q/d

µ(l)
∑

qM<E<qM1, E≡µq (mod dq), E≡0 (mod lq)
0≤Ω<E,G(Ω)≡0 (modE), Ω≡ω (mod d)

e

(
hΩ

E

)
.
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We will estimate the inner sum by using the theory of quadratic forms, a
method originally due to Hooley [7]. If c2 and E are relatively prime, there is
a bijection between roots of G(Ω) ≡ 0 (mod E) and quadratic forms [E, y, z]
of discriminant D, given explicitly by Ω = y−c1

2 c2, where 0 ≤ c2 < E is the
inverse of c2 modulo E. To apply this correspondence, therefore, we first
take out the part of E not relatively prime to c2, getting∑
qM<E<qM1,E≡µq (mod dq)

E≡0 (mod lq), 0≤Ω<E
G(Ω)≡0 (modE), Ω≡ω (mod d)

e

(
hΩ

E

)

=
∑∗

f≤T
(f,c1)=1

∑
0≤u<fc2
(u,c2)=1

∑
0≤v<f

G(v)≡0 (mod f)
v≡ω (mod (d,f))

e

(
hvū

f

)∑∗

E,Ω

e

(
hΩf̄

E

)
+O((qM)1+εT−1+ε),

where the star on the first summation indicates that f is composed only
of primes dividing c2, and furthermore, ū is the inverse of u modulo fc2,
f̄ is the inverse of f modulo E, T is a parameter to be specified later,
and the star on the innermost summation indicates that E and Ω satisfy
qM/f < E < qM1/f , fE ≡ 0 (mod lq), fE ≡ µq (mod dq), E ≡ u
(mod fc2), 0 ≤ Ω < E, Ω ≡ ω (mod d/(d, f)), and G(Ω) ≡ 0 (mod E).

We are now able to use the bijection between roots of quadratic congru-
ences and quadratic forms. From the explicit construction described above,
we have∑∗

E,Ω

e

(
hΩf̄

E

)
=
∑∗

[E,y,z]

e

(
hfc2(y − c1)

2E

)
=
∑∗

[E,y,z]

e

(
h(y − c1)

2fc2E
− hū(y − c1)

2fc2

)
,

where we have transferred the congruence conditions on Ω to conditions
on y. Now, suppose the form [E, y, z] is equivalent to [a, 2b+ c1, c] under the
action of Γ 0(fc2). In other words, there is an

( α β
γ δ

)
∈ Γ 0(fc2) such that(

α γ

β δ

)(
a (2b+ c1)/2

(2b+ c1)/2 c

)(
α β

γ δ

)
=
(
E y/2
y/2 z

)
,

where

Γ 0(fc2) =
{(

α β

γ δ

)
∈ SL2(Z) : β ≡ 0 (mod fc2)

}
.

Then

E = aα2 + (2b+ c1)αγ + cγ2 =: Eα,γ ,(3.6)
y = 2aαβ + (2b+ c1)(αδ + βγ) + 2cγδ.(3.7)
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Hence,
y − c1

2
= aαβ + cγδ + b(αδ + βγ) + c1βγ,

from which it follows that

α
y − c1

2
= βEα,γ + cγ + bα.

Thus,

h(y − c1)
2fc2E

− hū(y − c1)
2fc2

=
hβ

fc2α
+
h(cγ + bα)
fc2αEα,γ

− hū(βEα,γ + cγ + bα)
fc2α

≡ h((fc2fc2 − 1)cūγ − fc2fc2γ̄)
fc2α

+
h(cγ + bα)
fc2αEα,γ

− hbū

fc2
(mod 1)

=:
h((fc2fc2 − 1)cūγ − fc2fc2γ̄)

fc2α
+ hφα,γ ,

where γ̄ and fc2 are the inverses modulo α of γ and fc2, respectively. To
simplify notation, we write θα,γ for the quantity on the right-hand side
above. We note that we may obtain a similar expression for θα,γ with γ in
the denominator. With this notation, we have

(3.8)
∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑′

Q=[a,2b+c1,c]

∑∗

α,γ

e(θα,γ),

where the outer sum runs over a set of representatives of quadratic forms
Q = [a, 2b + c1, c] of discriminant D under the action of Γ 0(fc2), and the
inner sum runs over coprime integers α and γ such that qM/f < aα2 +
(2b + c1)αγ + cγ2 < qM1/f , restricted to one representation of the form
(3.6) and (3.7), and satisfying

(3.9)

fEα,γ ≡ 0 (mod lq),
fEα,γ ≡ µq (mod dq),
Eα,γ ≡ u (mod fc2),(

1− ūEα,γ
c2

)
(cγ + bα)− αω ≡ 0

(
mod

d

(d, f)

)
.

If either α or γ is fixed, then the number of simultaneous solutions to these
congruences, cG, is bounded by (q, c)τ(q)(fc2)1/2. Since c = O(1) if G(x) is
monic, we see that cG is O(qε) if G(x) is monic and O(q1+εf1/2) otherwise.

Returning to (3.8), we now break into two cases, depending on the sign
of D. If D is negative, then the forms [a, 2b+ c1, c] are positive definite, and
we may write

(3.10)
∑∗

E,Ω

e

(
hΩf̄

E

)
=

∑′

Q=[a,2b+c1,c]

1
|ΓQ|

∑∗

α,γ

e(θα,γ),
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where the summation over α and γ is no longer restricted to one represen-
tation of (3.6) and (3.7) and ΓQ is the isotropy subgroup of Q in Γ 0(fc2).
We consider this case completely before handling the indefinite case, D > 0.

Since the number of reduced forms is finite, we are primarily concerned
with estimating ∑∗

α,γ

e(θα,γ) =
∑∗

|γ|<|α|

e(θα,γ) +
∑∗

|α|<|γ|

e(θα,γ).

These two sums can be handled in the same way, so we will only provide
details for the first. In this case, we have

(3.11)
∣∣∣ ∑∗

|γ|<|α|

e(θα,γ)
∣∣∣

� cG
∑
α

sup
λ,Λ

∣∣∣∣ ∑∗

γ≡λ (modΛ)

e

(
h((fc2fc2 − 1)cūγ − fc2fc2γ̄)

fc2α
+ hφα,γ

)∣∣∣∣.
We will use partial summation to handle this inner sum. To do so, we note
that

(3.12) φα,γ − φα,γ+1 �
max(|a|, |b|, |c|)
|α|qM

.

We will also need the following estimate for incomplete Kloosterman sums,
which can be derived from Weil’s bound via the method of completion.

Lemma 9. If u, v, and s are integers and if 0 < r2 − r1 < 2s, then, for
any integers λ and Λ, we have∑

r1<r<r2, (r,s)=1
r≡λ (modΛ)

e

(
ur + vr̄

s

)
� s1/2+ε(u, v, s)1/2.

Now, by using Lemma 9 and (3.12) with partial summation in (3.11), we
deduce that∣∣∣∑∗

|γ|<|α|

e(θα,γ)
∣∣∣� cGq

1/4+εM1/4+εf1/4

(
1 +

hmax(|a|, |b|, |c|)
qM

)∑
α

(α, h)1/2

� cGq
3/4+εM3/4+εf−1/4+ε

(
1 +

hmax(|a|, |b|, |c|)
qM

)
τ(h).

We obtain the same estimate for
∑∗
|α|<|γ| .

If G(x) is monic, then max(|a|, |b|, |c|)� |D|1/2 = O(1) by the theory of
reduced forms for SL2(Z) (= Γ 0(1)). Since the number of reduced forms is
finite and depends only on the discriminant, we then have∑∗

E,Ω

e

(
hΩ

E

)
= O

(
q3/4+εM3/4+ε

(
1 +

h

qM

)
τ(h)

)
.

The same estimate holds for
∑

m,Ω e
(
hΩ
mq

)
, establishing (3.5).
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If G(x) is not monic, by considering the coset representatives of Γ 0(fc2)
in SL2(Z), which can be taken modulo fc2, we obtain max(|a|, |b|, |c|) =
O(f2), from which it follows that∑∗

E,Ω

e

(
hΩ

E

)
� q7/4+εM3/4+εf1/4+εHD(fc2)

(
1 +

hf2

qM

)
τ(h),

where HD(fc2) denotes the number of reduced forms of discriminant D with
respect to the action of Γ 0(fc2). By again considering the coset representa-
tives of Γ 0(fc2) in SL2(Z), we see that

HD(fc2) ≤ HD(1)[SL2(Z) : Γ 0(fc2)]� f1+ε.
Hence,∑
m,Ω

e

(
hΩ

mq

)
� (qM)1+εT−1+ε + q7/4+εM3/4+ετ(h)

×
∑∗

f≤T

∑
(u,fc2)=1

ρ(f)HD(fc2)f1/4+ε

(
1 +

hf2

qM

)
� (qM)1+εT−1+ε + q7/4+εM3/4+εT 9/4+ετ(h)

(
1 +

hT 2

qM

)∑∗

f≤T
1

� (qM)1+εT−1+ε + q7/4+εM3/4+εT 9/4+ετ(h)
(

1 +
hT 2

qM

)
,

where, on the last line, we have used the fact that there are O(T ε) values of
f ≤ T whose prime divisors all divide c2. Upon choosing T = q−3/13M1/13,
we see that (3.5) holds, with∑

m,Ω

e

(
hΩ

mq

)
� q16/13+εM12/13+ε(1 + hq−19/13M−11/13)τ(h).

We now consider the indefinite case (i.e. when D > 0). To deduce (3.5)
from the sum in (3.8), we apply the theory of Pell-type equations. If D ≡ 0
(mod 4), let

u2 − D

4
v2 = 1

be chosen such that τ := u + v
√
D/4 is minimal with τ > 1. If τm =

um + vm
√
D/4, let k = kfc2 be the smallest positive integer such that

vk ≡ 0 (mod fc2). If D ≡ 1 (mod 4), let

u2 + uv − D − 1
4

v2 = 1

be chosen such that τ := u + v
(

1+
√
D

2

)
is minimal with τ > 1. If τm =

um + vm
(

1+
√
D

2

)
, we again let k be the smallest positive integer such that

vk ≡ 0 (mod fc2).
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With this notation, since we may take a > 0, there is a unique represen-
tative of (3.6) and (3.7) satisfying α > 0 and

− 2a(τk − 1)
b+ (τk + 1)

√
D
α < γ ≤ 2a(τk − 1)

(τk + 1)
√
D − b

α.

We apply the same techniques as in the positive definite case and find that∑∗

E,Ω

e

(
hΩ

E

)
� cGq

3/4+εM3/4+εf9/4+εHD(fc2)
(

1 +
hf2

qM

)
τ(h),

from which we derive that∑
m,Ω

e

(
hΩ

mq

)
� q3/4+εM3/4+ε

(
1 +

h

qM

)
τ(h)

if G(x) is monic, and∑
m,Ω

e

(
hΩ

mq

)
� q8/7+εM20/21+ε(1 + hq−9/7M−18/21)τ(h)

if G(x) is not monic. This establishes (3.5).
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