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1. Introduction. A partition of a positive integer n is a non-increasing
sequence of positive integers whose sum is n. An overpartition λ of n is a
partition of n for which the first occurrence of a number may be overlined.
Let p(n) denote the number of overpartitions of n. Congruence properties
for p(n) have been extensively studied; see, for example, Fortin, Jacob and
Mathieu [6], Hirschhorn and Sellers [9], Kim [11], Lovejoy and Osburn [13],
and Mahlburg [14]. In this paper, we study arithmetic properties of the
number of overpartition pairs of n. An overpartition pair π of n is a pair of
overpartitions (λ, µ) such that the sum of all of the parts is n. Note that we
allow λ and µ to be the overpartition of zero. Let pp(n) denote the number
of overpartition pairs of n. Then the generating function for pp(n) is

(1.1)
∞∑
n=0

pp(n)qn =
(−q; q)2∞
(q; q)2∞

.

Here, we adopt the following standard q-series notation:

(a; q)∞ =
∞∏
k=1

(1− aqk−1).

Throughout this paper, we assume that |q| < 1.
Bringmann and Lovejoy [4] defined a rank for overpartition pairs to

investigate congruence properties of pp(n). Let NN(m,n) denote the number
of overpartition pairs of n with rankm, and let NN(r, t, n) denote the number
of overpartition pairs of n with rank congruent to r modulo t. The authors
of [4] obtained a bivariate generating function for NN(m,n) from which they
derived the following relation for 0 ≤ r ≤ 2:

NN(r, 3, 3n+ 2) =
pp(3n+ 2)

3
.
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This leads to the following Ramanujan-type congruence in the spirit of Ra-
manujan’s congruences on the partition function p(n) modulo 5 and 7 (see,
e.g., Berndt [3, Chapter 2]):

(1.2) pp(3n+ 2) ≡ 0 (mod 3).

Furthermore, by using the theory of Klein forms, Bringmann and Love-
joy [4] proved that there exist infinitely many Ramanujan-type congruences
for pp(n). Let l be an odd prime and let t be an odd number which is a
power of l or is relatively prime to l. Then for any positive integer j, there
are infinitely many non-nested arithmetic progressions An+B such that

(1.3) NN(r, t, An+B) ≡ 0 (mod lj)

for any 0 ≤ r ≤ t−1. Hence there are infinitely many non-nested arithmetic
progressions An+B satisfying

(1.4) pp(An+B) ≡ 0 (mod lj)

for any odd prime l and any positive integer j. For l = 2, using the theory of
modular forms, it is shown in [4] that (1.4) holds for any positive integer j.

However, the theory of Klein forms used to derive the congruence relation
(1.4) is not constructive and it does not give explicit arithmetic progressions
An+B in the statement. So it is still desirable to find explicit congruences
for pp(n). In this paper, we obtain some such congruences modulo 3 and 5.

For the case of modulo 3, we obtain a Ramanujan-type identity

(1.5)
∞∑
n=0

pp(3n+ 2)qn = 12
(q2; q2)6∞(q3; q3)6∞

(q; q)14
∞

,

which is analogous to Ramanujan’s identity (see, e.g., Berndt [3, Theo-
rem 2.3.4])

(1.6)
∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

.

Furthermore, we show that there are infinite families of congruences mod-
ulo 3 satisfied by pp(n). For example, for any α ≥ 1 and n ≥ 0,

(1.7) pp(9α(3n+ 1)) ≡ pp(9α(3n+ 2)) ≡ 0 (mod 3).

For the case of modulo 5, we obtain three Ramanujan-type congruences

(1.8) pp(20n+ 11) ≡ pp(20n+ 15) ≡ pp(20n+ 19) ≡ 0 (mod 5),

for any n ≥ 0. We also find infinite families of congruences modulo 5. For
example, for any α ≥ 1 and n ≥ 0,

(1.9) pp(5α(5n+ 2)) ≡ pp(5α(5n+ 3)) ≡ 0 (mod 5).
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Motivated by the work of Paule and Radu [17] on some strange congru-
ences, we obtain similar congruences for pp(n). For example, for any k ≥ 0,

pp(5 · 29k) ≡ 3(k + 1) (mod 5),(1.10)

pp(2 · 13k) ≡ 3(k + 1) (mod 9).(1.11)

To give combinatorial interpretations of the fact that pp(3n+2) is divis-
ible by 3, we find three ranks of overpartition pairs that serve this purpose.

This paper is organized as follows. In Section 2, we obtain two Ramanu-
jan-type identities and some Ramanujan-type congruences modulo 5 and 64.
In Section 3, we give three combinatorial interpretations for the congru-
ence (1.2). Section 4 gives infinite families of congruences modulo 3 and 5.
In Section 5, we obtain congruences modulo 9 which are similar to the con-
gruences of Paule and Radu for the number of broken 2-diamond partitions.

2. Ramanujan-type identities and congruences. In this section,
we establish two Ramanujan-type identities and derive some congruence
relations modulo 5 and 64.

Theorem 2.1. We have
∞∑
n=0

pp(3n+ 2)qn = 12
(q2; q2)6∞(q3; q3)6∞

(q; q)14
∞

,(2.1)

∞∑
n=0

pp(4n+ 3)qn = 32
(q2; q2)20

∞
(q; q)22

∞
.(2.2)

To prove the above identities, we recall two Ramanujan’s theta functions:

ϕ(q) =
∞∑

n=−∞
qn

2
, ψ(q) =

∞∑
n=0

qn(n+1)/2.

The following two identities are due to Gauss (see, e.g., Berndt [3, p. 11]):

ϕ(−q) =
(q; q)2∞

(q2; q2)∞
, ψ(q) =

(q2; q2)2∞
(q; q)∞

.

As shown by Hirschhorn and Sellers [8], the generating function of p(n) is
∞∑
n=0

p(n)qn =
1

ϕ(−q)
.

This implies that the generating function of pp(n) equals

(2.3)
∞∑
n=0

pp(n)qn =
1

ϕ(−q)2
.

The following dissection formula of Hirschhorn and Sellers [8] plays a
key role in the proof of Theorem 2.1.
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Lemma 2.1. Let

A(q) =
(q; q)∞(q6; q6)2∞

(q2; q2)∞(q3; q3)∞
.

Then

1
ϕ(−q)

=
ϕ(−q9)
ϕ(−q3)4

(ϕ(−q9)2 + 2qϕ(−q9)A(q3) + 4q2A(q3)2)(2.4)

=
1

ϕ(−q4)4
(ϕ(q4)3 + 2qϕ(q4)2ψ(q8)

+ 4q2ϕ(q4)ψ(q8)2 + 8q3ψ(q8)3).

Proof of Theorem 2.1. Substituting the 3-dissection formula (2.4)
into (2.3), we see that

(2.5)
∞∑
n=0

pp(n)qn =
ϕ(−q9)2

ϕ(−q3)8
(ϕ(−q9)2 + 2qϕ(−q9)A(q3) + 4q2A(q3)2)2.

Choosing those terms for which the powers of q are of the form 3n+ 2, we
find that
∞∑
n=0

pp(3n+ 2)q3n+2 =
ϕ(−q9)2

ϕ(−q3)8
(8q2ϕ(−q9)2A(q3)2 + 4q2ϕ(−q9)2A(q3)2)

= 12q2A(q3)2
ϕ(−q9)4

ϕ(−q3)8
.

Dividing both sides by q2 and replacing q3 by q, we obtain
∞∑
n=0

pp(3n+ 2)qn = 12A(q)2
ϕ(−q3)4

ϕ(−q)8
.

This yields (2.1). Similarly,
∞∑
n=0

pp(n)qn =
1

ϕ(−q4)8
(ϕ(q4)3 + 2qϕ(q4)2ψ(q8)

+ 4q2ϕ(q4)ψ(q8)2 + 8q3ψ(q8)3)2.

Choosing the terms for which the powers of q are of the form 4n+3, we find
that
∞∑
n=0

pp(4n+ 3)q4n+3 =
1

ϕ(−q4)8
(16q3ϕ(q4)3ψ(q8)3 + 16q3ϕ(q4)3ψ(q8)3)

= 32q3
ϕ(q4)3ψ(q8)3

ϕ(−q4)8
.
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Dividing both sides by q3 and replacing q4 by q, we deduce that

(2.6)
∞∑
n=0

pp(4n+ 3)qn = 32
ϕ(q)3ψ(q2)3

ϕ(−q)8
,

which is equivalent to (2.2). This completes the proof.

In view of Theorem 2.1, it can be seen that pp(3n + 2) and pp(4n + 3)
are divisible by 4. In fact, for all n ≥ 1, pp(n) is divisible by 4, since

∞∑
n=0

pp(n)qn ≡
(

1 + 2
∞∑
n=0

(−q)n2
)2
∞∑
n=0

pp(n)qn (mod 4)

= ϕ(−q)2 1
ϕ(−q)2

= 1.

In fact, Keister, Sellers and Vary [10] have shown that, for n ≥ 1,

pp(n) ≡
{

4 (mod 8) if n is a square or twice a square,
0 (mod 8) otherwise.

Recently, Kim [12] has given a combinatorial proof of the above fact and
studied arithmetic properties of pp(n) modulo powers of 2.

With the aid of (2.2) and the following relation for any prime p:

(2.7) (q; q)p∞ ≡ (qp; qp)∞ (mod p),

we are led to the following congruence relations modulo 5 and 64.

Corollary 2.1. For any non-negative integer n,

pp(8n+ 7) ≡ 0 (mod 64),(2.8)

pp(20n+ 11) ≡ 0 (mod 5),(2.9)

pp(20n+ 15) ≡ 0 (mod 5),(2.10)

pp(20n+ 19) ≡ 0 (mod 5).(2.11)

Proof. From (2.2) and (2.7) with p = 2, we have
∞∑
n=0

pp(4n+ 3)
32

qn ≡ (q2; q2)20
∞

(q2; q2)11
∞
≡ (q2; q2)9∞ (mod 2).

This yields congruence (2.8) by equating the coefficients of q2n+1 for n ≥ 0.
Again by (2.2) and (2.7) with p = 5, we see that

(2.12)
∞∑
n=0

pp(4n+ 3)qn ≡ 2
(q10; q10)4∞
(q5; q5)4∞

· 1
(q; q)2∞

(mod 5).
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Let p−2(n) be defined by
∞∑
n=0

p−2(n)qn =
1

(q; q)2∞
.

It has been shown by Ramanathan [18] that for n ≥ 0,

p−2(5n+ 2) ≡ p−2(5n+ 3) ≡ p−2(5n+ 4) ≡ 0 (mod 5).

Combining (2.12) and the above three congruences, we obtain the congru-
ence relations (2.9), (2.10) and (2.11). This completes the proof.

3. Three ranks for overpartition pairs. In this section, we give three
combinatorial interpretations for the fact that pp(3n+ 2) is divisible by 3.

The first rank of an overpartition pair π = (λ, µ), denoted r1(π), is de-
fined to be n1(λ) − n1(µ), where n1(λ) denotes the number of parts of an
overpartition λ. As usual, let R1(m,n) denote the number of overpartition
pairs of n with r1(π) = m and let R1(s, t, n) denote the number of over-
partition pairs of n with r1(π) ≡ s (mod t). By symmetry, we see that
R1(m,n) = R1(−m,n), and so R1(s, t, n) = R1(t − s, t, n). It is easy to
derive the bivariate generating function for R1(m,n), that is,

(3.1)
∞∑

m=−∞

∞∑
n=0

R1(m,n)zmqn =
(−qz; q)∞
(qz; q)∞

· (−q/z; q)∞
(q/z; q)∞

.

Here we adopt the convention that the overpartition pair of 0 has rank zero.
This convention is also valid for the other two ranks that will be introduced
in this section. The following theorem shows that the rank r1(π) leads to a
classification of overpartition pairs of 3n+ 2 into three equinumerous sets.

Theorem 3.1. For 0 ≤ s ≤ 2, we have

(3.2) R1(s, 3, 3n+ 2) = pp(3n+ 2)/3.

Proof. Substituting z = ξ = e2πi/3 into (3.1) and using the symmetry
relation R1(1, 3, n) = R1(2, 3, n), we find that

(3.3)
∞∑
n=0

(R1(0, 3, n)−R1(1, 3, n))qn

=
(−qξ; q)∞(−qξ2; q)∞

(qξ; q)∞(qξ2; q)∞
=

(−q3; q3)∞
(q3; q3)∞

· (q; q)∞
(−q; q)∞

=
(−q3; q3)∞
(q3; q3)∞

∞∑
n=−∞

(−1)nqn
2
.

Here the second equality follows from the identity

(1− x3) = (1− x)(1− xξ)(1− xξ2).
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Equating the coefficients of q3n+2 on both sides of (3.3), and observing that
there are no squares congruent to 2 modulo 3, we conclude that

R1(0, 3, 3n+ 2) = R1(1, 3, 3n+ 2),

and so

R1(0, 3, 3n+ 2) = R1(1, 3, 3n+ 2) = R1(2, 3, 3n+ 2) = pp(3n+ 2)/3.

We now introduce the second rank r2. Let π = (λ, µ) be an overpartition
pair. Define

(3.4) r2(π) = n2(λ)− n2(µ),

where n2(λ) denotes the number of overlined parts of an overpartition λ.
Similarly, let R2(m,n) denote the number of overpartition pairs of n with
r2(π) = m and let R2(s, t, n) denote the number of overpartition pairs of n
with r2(π) ≡ s (mod t). Then we have the following relation.

Theorem 3.2. For n ≥ 0, we have

(3.5) R2(0, 3, 3n+ 2) ≡ R2(1, 3, 3n+ 2) ≡ R2(2, 3, 3n+ 2) (mod 3).

Proof. It is routine to check that

(3.6)
∞∑

m=−∞

∞∑
n=0

R2(m,n)zmqn =
(−qz; q)∞

(q; q)∞
· (−q/z; q)∞

(q; q)∞
.

Using the fact that R2(1, 3, n) = R2(2, 3, n) and setting z = ξ = e2πi/3

in (3.6), we find

(3.7)
∞∑
n=0

(R2(0, 3, n)−R2(1, 3, n))qn

=
(−qξ; q)∞(−qξ2; q)∞

(q; q)2∞
=

(−q3; q3)∞
(q; q)∞(q2; q2)∞

=
(−q3; q3)∞

(q; q)3∞

∞∑
n=−∞

(−q)n2 ≡ (−q3; q3)∞
(q3; q3)∞

∞∑
n=−∞

(−q)n2
(mod 3).

Since there are no squares congruent to 2 modulo 3, we see that

R2(0, 3, 3n+ 2)−R2(1, 3, 3n+ 2) ≡ 0 (mod 3),

and hence the proof is complete.

It is worth mentioning that Andrews, Lewis and Lovejoy [1] investigated
the arithmetic properties of the number PD(n) of partitions of n with des-
ignated summands, whose generating function is given by (3.7), that is,

∞∑
n=0

PD(n)qn =
(q6; q6)∞

(q; q)∞(q2; q2)∞(q3; q3)∞
.
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For example, it has been shown that PD(3n+ 2) is divisible by 3. It should
also be mentioned that Chan [5] studied the number a(n) given by

∞∑
n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
,

and derived a Ramanujan-type identity for a(3n+ 2), that is,

(3.8)
∞∑
n=0

a(3n+ 2)qn = 3
(q3; q3)3∞(q6; q6)3∞
(q; q)4∞(q2; q2)4∞

.

From (3.7) and (3.8), we get the following formula.

Corollary 3.1. We have

(3.9)
∞∑
n=0

(R2(0, 3, 3n+ 2)−R2(1, 3, 3n+ 2))qn = 3
(q3; q3)3∞(q6; q6)3∞
(q; q)5∞(q2; q2)3∞

.

Finally, we turn to the third rank r3 of an overpartition pair π = (λ, µ),
which is defined by

(3.10) r3(π) = n3(λ)− n3(µ),

where n3(λ) denotes the number of non-overlined parts of an overpartition λ.
Similarly, let R3(m,n) denote the number of overpartition pairs of n with
r3(π) = m and let R3(s, t, n) denote the number of overpartition pairs of n
with r3(π) ≡ s (mod t). Then we have the following relation.

Theorem 3.3. For 0 ≤ s ≤ 2, we have

(3.11) R3(s, 3, 3n+ 2) = pp(3n+ 2)/3.

Proof. It is easy to derive that

(3.12)
∞∑

m=−∞

∞∑
n=0

R3(m,n)zmqn =
(−q; q)2∞

(qz; q)∞(q/z; q)∞
.

Using the fact that R3(1, 3, n) = R3(2, 3, n) and setting z = ξ = e2πi/3

in (3.12), we find that
∞∑
n=0

(R3(0, 3, n)−R3(1, 3, n))qn =
(−q; q)2∞

(qξ; q)∞(q/ξ; q)∞

=
(−q; q)2∞(q; q)∞

(q3; q3)∞
=

1
(q3; q3)∞

∞∑
n=0

qn(n+1)/2.

Note that there are no triangular numbers that are congruent to 2 modulo 3.
It follows that

R3(0, 3, 3n+ 2) = R3(1, 3, 3n+ 2).

Since R3(1, 3, 3n+ 2) = R3(2, 3, 3n+ 2), the proof is complete.
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To conclude this section, we have the following theorem.

Theorem 3.4. Let l be an odd prime, and let t be an odd number which is
a power of l or is relatively prime to l. Then for any positive integer j, there
are infinitely many non-nested arithmetic progressions An+B such that

(3.13) R3(r, t, An+B) ≡ 0 (mod lj)

for any 0 ≤ r ≤ t− 1.

Proof. Note that the generating function for R3(s, t, n) can be written
as a linear combination of certain modular forms similar to the case for
NN(r, t, n). Suppose that t is an odd integer and 0 ≤ s < t. Let ζt = e2πi/t

and define the rank of the overpartition pair of 0 to be 0. Then
∞∑
n=0

R3(s, t, n)qn =
1
t

t−1∑
k=0

ζ−kst R3(ζkt ; q),

where

R3(z; q) =
(−q; q)2∞

(qz; q)∞(q/z; q)∞
.

Observe that R3(ζkt ; q) differs from R(ζkt ; q) (see Bringmann and Lovejoy
[4, Proposition 2.4]) only by a factor 4

(1+ζk
t )(1+ζ−k

t )
. Hence the argument of

Bringmann and Lovejoy for (1.3) can be carried over to deduce (3.13).

4. Infinite families of congruences modulo 3 and 5. In this section,
we obtain a formula for pp(3n) modulo 3 based on the number of represen-
tations of n as a sum of two squares. We further derive a formula for pp(5n)
modulo 5 in connection with the number of representations of n in the form
x2 +5y2. As consequences, we give infinite families of congruences modulo 3
and 5.

Theorem 4.1. If the prime factorization of n is given by

(4.1) n = 2a
r∏
i=1

pvi
i

s∏
j=1

q
wj

j ,

where pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4), then

(4.2) pp(3n) ≡ (−1)n
r∏
i=1

(1 + vi)
s∏
j=1

1 + (−1)wj

2
(mod 3).

Proof. First, it is easy to see that

ϕ(−q)3 ≡ ϕ(−q3) (mod 3) and ϕ(−q) = ϕ(−q9) + qB(q3),
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where B(q) is an infinite series in q with integer coefficients. Hence,
∞∑
n=0

pp(n)qn =
ϕ(−q)
ϕ(−q)3

≡ ϕ(−q)
ϕ(−q3)

(mod 3) =
ϕ(−q9) + qB(q3)

ϕ(−q3)
.

Extracting the terms q3n for n ≥ 0, and replacing q3 by q, we find that
∞∑
n=0

pp(3n)qn ≡ ϕ(−q3)
ϕ(−q)

≡ ϕ(−q)2 (mod 3).(4.3)

Let r2(n) denote the number of representations of n as a sum of two squares.
So we have

(4.4) ϕ(−q)2 =
∞∑
n=0

(−1)nr2(n)qn.

From (4.3) and (4.4) it follows that

(4.5) pp(3n) ≡ (−1)nr2(n) (mod 3).

Given the prime factorization of n in the form of (4.1), it is well known that
(see, e.g., Berndt [3] or Grosswald [7])

(4.6) r2(n) = 4
r∏
i=1

(1 + vi)
s∏
j=1

1 + (−1)wj

2
.

Combining (4.5) and (4.6), we get (4.2).

Theorem 4.2. Assume that p is prime with p ≡ 3 (mod 4), and s is an
integer with 1 ≤ s < p. Then for any α ≥ 0 and n ≥ 0, we have

(4.7) pp(3p2α+1(pn+ s)) ≡ 0 (mod 3).

In particular, setting p = 3 we have, for any α ≥ 1 and n ≥ 0,

pp(9α(3n+ 1)) ≡ 0 (mod 3),(4.8)
pp(9α(3n+ 2)) ≡ 0 (mod 3).(4.9)

Proof. Recall that r2(n) = 0 if and only if there exists a prime congruent
to 3 modulo 4 that has an odd exponent in the canonical factorization of n.
It can be seen that

r2(p2α+1(pn+ s)) = 0,

since p is not a factor of pn+ s. By (4.5) we obtain (4.7).

Theorem 4.3. Let R(n, x2 + 5y2) denote the number of representations
of n by the quadratic form x2 + 5y2. Then for any n ≥ 0,

(4.10) pp(5n) ≡ (−1)nR(n, x2 + 5y2) (mod 5).
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Proof. It is easy to see that ϕ(−q)8 is a modular form of weight 4 on
Γ0(2), where

Γ0(2) =
{(

a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod 2)

}
.

For the background on modular forms, see Ono [16]. Now ϕ(−q)8|T5 is also
a modular form of weight 4 on Γ0(2). Here T5 is the Hecke operator which
acts on

ϕ(−q)8 :=
s∑

n=0

r(n)qn

defined by

ϕ(−q)8|T5 =
∞∑
n=0

r(5n)qn +
∞∑
n=0

125r(n)q5n.

By Sturm’s theorem (see [16, p. 40]), we have

ϕ(−q)8|T5 ≡ ϕ(−q)8 (mod 5),
and so

(4.11)
∞∑
n=0

r(5n)qn ≡ ϕ(−q)8 (mod 5).

On the other hand,

ϕ(−q)8 = ϕ(−q)10 · 1
ϕ(−q)2

≡ ϕ(−q5)2
∞∑
n=0

pp(n)qn (mod 5).

Considering the terms for which the powers of q are multiples of 5, and
replacing q5 by q, we deduce that

(4.12)
∞∑
n=0

r(5n)qn ≡ ϕ(−q)2
∞∑
n=0

pp(5n)qn (mod 5).

Combining (4.11) and (4.12), we deduce that
∞∑
n=0

pp(5n)qn ≡ ϕ(−q)6 ≡ ϕ(−q)ϕ(−q5) (mod 5).

The formula for R(n, x2 + 5y2) due to Berkovich and Yesilyurt [2] leads
to the following formula for pp(5n) modulo 5.

Theorem 4.4. If the prime factorization of n is given by

(4.13) n = 2a5b
r∏
i=1

pvi
i

s∏
j=1

q
wj

j ,

where pi ≡ 1, 3, 7, or 9 (mod 20) and qj ≡ 11, 13, 17, or 19 (mod 20), then

(4.14) pp(5n) ≡ (−1)n(1 + (−1)a+t)
r∏
i=1

(1 + vi)
s∏
j=1

1+(−1)wj

2
(mod 5),

where t is the number of prime factors of n, counting multiplicity, that are
congruent to 3 or 7 modulo 20.
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Proof. Given the prime factorization of n in the form of (4.13), it is
known that (see Berkovich and Yesilyurt [2, Corollary 3.3])

(4.15) R(n, x2 + 5y2) = (1 + (−1)a+t)
r∏
i=1

(1 + vi)
s∏
j=1

1 + (−1)wj

2
.

Combining (4.10) and (4.15), we get (4.14).

As consequences, we have the following congruences.

Corollary 4.1. Let p be a prime with p ≡ 11, 13, 17, or 19 (mod 20).
Then for any odd positive integer t and any positive integer n that is not
divisible by p,

(4.16) pp(5ptn) ≡ 0 (mod 5).

Corollary 4.2. Let p be a prime with p ≡ 1 or 9 (mod 20). Then for
any positive integer k,

(4.17) pp(5pk) ≡ 3(k + 1) (mod 5).

Based on Theorem 4.4, we get two infinite families of congruences mod-
ulo 5.

Theorem 4.5. For any α ≥ 1 and n ≥ 0,

pp(5α(5n+ 2)) ≡ 0 (mod 5),(4.18)
pp(5α(5n+ 3)) ≡ 0 (mod 5).(4.19)

Proof. Considering the possible residues of x2 + 5y2 modulo 5, we find
that

R(5n+ 2, x2 + 5y2) = R(5n+ 3, x2 + 5y2) = 0.

In light of (4.10), we deduce that

pp(25n+ 10) ≡ (−1)5n+2R(5n+ 2, x2 + 5y2) ≡ 0 (mod 5),(4.20)

pp(25n+ 15) ≡ (−1)5n+3R(5n+ 3, x2 + 5y2) ≡ 0 (mod 5).(4.21)

Observe that formula (4.14) for pp(5n) modulo 5 is independent of the
exponent of 5 in the factorization of n. This means that, for α ≥ 1,

(4.22) pp(5n) ≡ pp(5αn) (mod 5).

Combining (4.20), (4.21) and (4.22), we obtain (4.18) and (4.19).

5. Further congruences for overpartition pairs. In this section, we
find some congruences for pp(n) modulo 9 which are similar to the congru-
ences for the number of broken 2-diamond partitions obtained by Paule and
Radu [17]. Let us begin with the congruences modulo 9.
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Theorem 5.1. For any prime p with p ≡ 1 (mod 12), we have

(5.1) pp((3n+ 2)p) ≡ pp(2p)
3

pp(3n+ 2) (mod 9)

for all positive integers n such that 3n+ 2 6≡ 0 (mod p).

To prove the above theorem, we need the following lemma which is a
special case of Newman’s [15, Theorem 3].

Lemma 5.1. For each prime p with p ≡ 1 (mod 12) and for all positive
integers n,

(5.2) b

(
np+

2p− 2
3

)
+ p4b

(
n

p
− 2

p− 1
3p

)
= b

(
2p− 2

3

)
b(n),

where b(n) is defined by
∞∑
n=0

b(n)qn = (q; q)4∞(q2; q2)6∞.

Since the equality is derived by equating coefficients of series in q, it is
safe to assume that b(t) = 0 if t is not a non-negative integer.

Proof of Theorem 5.1. By (2.1), we see that
∞∑
n=0

pp(3n+ 2)
3

qn ≡ (q; q)4∞(q2; q2)6∞ (mod 3).

From the definition of b(n), we deduce that, for n ≥ 0,

(5.3)
pp(3n+ 2)

3
≡ b(n) (mod 3).

On the other hand, for those prime p with p ≡ 1 (mod 12) and those n such
that 3n+ 2 is not a multiple of p, it follows that b

(
n
p − 2p−1

3p

)
= 0. Thus, by

Lemma 5.1 we obtain

(5.4) b

(
np+

2p− 2
3

)
= b

(
2p− 2

3

)
b(n).

Substituting (5.3) into (5.4), we get
1
3

pp(3np+ 2p) ≡ 1
9

pp(2p)pp(3n+ 2) (mod 3),

as required.

Next, we use Lemma 5.1 to obtain the following congruence in the spirit
of Paule and Radu [17].

Theorem 5.2. For any k ≥ 0, we have

(5.5) pp(2 · 13k) ≡ 3(k + 1) (mod 9).
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Proof. Let p be a prime with p ≡ 1 (mod 12). Setting n = 2(pk+1− 1)/3
in (5.2) and using (5.3), we get

1
3

pp(2pk+2) +
1
3

pp(2pk) ≡ 1
9

pp(2p)pp(2pk+1) (mod 3).

When p = 13, since pp(26) ≡ 6 (mod 9), we deduce that

(5.6) pp(2 · 13k+2) + pp(2 · 13k) ≡ 2pp(2 · 13k+1) (mod 9).

Given the initial conditions pp(2) ≡ 3 (mod 9) and pp(26) ≡ 6 (mod 9), by
iteration of (5.6), we reach (5.5).
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