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To Professors K. Győry and A. Pethő

1. Products of consecutive terms of Lucas sequences and
powers. Let α and β be complex nonzero numbers with α/β not a root
of 1 such that r := α+ β and s := −αβ are nonzero coprime integers. Then
the sequence {un}n≥0 of general term

(1.1) un :=
αn − βn

α− β
for all n ≥ 0

is called the Lucas sequence of roots α and β. It consists of integers. It was
shown in [LS] that the equation

(1.2) un+1 · · ·un+k = yt

has only finitely many positive integer solutions (n, k, y, t) with t ≥ 2 and
prime, which are furthermore effectively computable. Moreover, the method
of proof of this result from [LS] makes it possible to actually find all such
solutions immediately once we know all solutions of the equation

(1.3) un = yt in integers n ≥ 1, y ≥ 1, and t ≥ 2 prime.

Indeed, let n1, . . . , nr be all indices n participating in solutions to equation
(1.3). Let P (m) be the largest prime factor of a nonzero integer m with the
convention that P (±1) = 1. For any prime number p, let z(p) be the order
of appearance of p in {un}n≥1, that is, the smallest positive integer k such
that p |uk. It is known that z(p) exists for all primes p coprime to s, while
primes p dividing s never appear in the factorization of any un for n ≥ 1.

Put

(1.4) P1 := max{3, P (n1), . . . , P (nr)}.
A particular case of the main result in [LS] is the following.
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Main Theorem 1.1. All solutions of the equation

(1.5) un+1 · · ·un+k = byt

with n ≥ k ≥ 2, and t ≥ 2 prime, and z(p) ≤ k for all primes p dividing b
have the property that P ((n+ 1)(n+ 2) · · · (n+ k)) ≤ P1.

Proof. Put p := P ((n+ 1)(n+ 2) · · · (n+ k)). Since n ≥ k, a well-known
theorem of Sylvester asserts that p > k. Let i0 ∈ {1, . . . , k} be the unique
index such that p |n+i0, and write n+i0 =: pam with some positive integers
a and m, where p - m. Observe that p is coprime to n + i for all i 6= i0 in
{1, . . . , k}. Assume also that p > P1 and we shall see that this leads to a
contradiction. Rewrite equation (1.5) as

(1.6) upa

(
un+i0

upa

) ∏
i 6=i0

1≤i≤k

un+i = byt.

The argument following (2.1) on page 301 in [LS] shows that upa is coprime
to the remaining factors on the left-hand side of (1.6) above. Let us go
quickly through this argument. Since gcd(ua, ub) = ugcd(a,b) for all positive
integers a and b, it follows that gcd(upa , un+i) = ugcd(pa,n+i) = u1 = 1 for
all i 6= i0 in {1, . . . , k}. Furthermore, it is well-known that if q is a prime
factor dividing both upa and un+i0/upa , then q | (n + i0)/pa = m. Thus,
q |m. If q divides the discriminant ∆ := r2 + 4s of {un}n≥1, then q |uq,
and since also q |upa , it follows that q = p, but then q cannot divide m.
Thus, q does not divide ∆, so q ≡ ±1 (mod z(q)). Since also q |upa , it
follows that p | z(q). Hence, q ≡ ±1 (mod p), and since p ≥ 5, we see that
q ≥ 2p − 1 > p, so again q cannot divide m. This shows that indeed upa is
coprime to the remaining factors on the left-hand side of (1.6). Observe that
since p > k, the number upa is also clearly coprime to b since b is divisible
only by primes q having z(q) ≤ k. Hence, upa = yt1 for some divisor y1 of y,
therefore pa ∈ {n1, . . . , nr}, which contradicts the fact that p > P1.

In [LS], it was shown that equation (1.2) has no solutions in the particular
case when the Lucas sequence is the sequence {Fn}n≥1 of Fibonacci numbers.
The interesting feature of that proof is that all solutions of equation (1.3) for
this sequence, i.e., all the perfect powers of exponent > 1 in the Fibonacci
sequence, were not yet known at the time [LS] was written, thus the proof
from [LS] does not make use of this information. Since now we know thanks
to work of Bugeaud, Mignotte and Siksek [BMS] that the set of solutions n
to equation (1.3) for the case of the Fibonacci numbers is {1, 2, 6, 12}, we
deduce that Theorem 1.1 has the following immediate corollary.

Corollary 1.2. Equation (1.5) has no solutions with n ≥ k ≥ 2 for
the case of the Fibonacci sequence.
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Proof. Indeed, since the set of solutions to equation (1.3) is {1, 2, 6, 12},
Theorem 1.1 tells us that if k ≥ 2, then P ((n + 1) · · · (n + k)) ≤ 3. Thus,
putting x := n + k and y := n + k − 1, we find that x − y = 1 and
P (xy) ≤ 3. Hence, {x, y} = {3γ , 2δ}, where 3γ − 2δ = ±1. The largest
solution of the above Diophantine equation is 32 − 23 = 1. Thus, x ≤ 9,
and now a computation by hand convinces us that there is no solution to
equation (1.5) with n ≥ k ≥ 2.

Recall that given a Lucas sequence {un}n≥1, the u-binomial coefficient
is defined as [

m

k

]
:=

um−k+1 · · ·um
u1 · · ·uk

.

Since
[
m
k

]
u

=
[

m
m−k

]
u
, and we are interested only in these quantities as

integers, we shall assume that m ≥ 2k, therefore n := m−k ≥ k. In [MT], it
was shown that the Fibonomial coefficient is never a perfect power. However,
writing this as

Fn+1 · · ·Fn+k−1 = byt, where b := F1 · · ·Fk,
the result from [MT] is easily seen to be an immediate consequence of Corol-
lary 1.2. Moreover, Corollary 1.2 can be used to deal with other Lucas se-
quences also. In what follows, we give two examples.

Take first the Pell sequence {Pn}n≥1, which is the Lucas sequence with
roots α := 1+

√
2 and β := 1−

√
2. The only solutions of equation (1.3) have

n ∈ {1, 7} (see [C] and [P]). Hence, Theorem 1.1 tells us that all solutions
of equation (1.5) for this sequence have P ((n+ 1) · · · (n+ k)) ≤ 7. Putting
x := n + k, y := n + k − 1, we get x − y = 1 and P (xy) ≤ 7. All solutions
of this particular Diophantine equation appear in [A] (see also Chapter 6 of
de Weger’s Ph.D. dissertation [W]). These give us certain possibilities, the
largest one being x = 4375. If P (x − 2) > 7, then k = 2. This means that
Pn+1Pn+2/P2 is a perfect power. Since P2 = 2, and Pn is even if and only if
n is, it follows that if we put m ∈ {n, n + 1} such that m is odd, then Pm
is a perfect power, therefore m ≤ 7. Thus, either x ≤ 8, or P (x − 2) ≤ 7.
The positive integers x with P (x(x − 1)(x − 2)) ≤ 7 are x = 50, 16, and
x ∈ [3, 10], and one checks by hand that these do not lead to any convenient
solution either. Hence, we record the following corollary.

Corollary 1.3. The only solution of the equation
[
m
k

]
P

= yt with
m ≥ 2k ≥ 2 and t ≥ 2 is (m, k) = (7, 1).

More generally, let D ≥ 3, and let α := v1 +
√
Du1 and β := v1−

√
Du1,

where (v1, u1) is the minimal solution in positive integers of the Pell equation
v2 − Du2 = 1. Let {un}n≥1 be the Lucas sequence of roots α and β. The
numbers un are precisely all the possible positive integer solutions u in the
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Pell equation v2 − Du2 = 1. All perfect powers in the sequence {un}n≥1

for all 2 ≤ D ≤ 100 appear in Theorem 7.1 in [B]. A careful inspection of
this list of solutions from [B] reveals that all solutions of equation (1.3) for
these sequences have n ∈ {1, 2}, therefore again if n ≥ k ≥ 2 is a solution of
(1.5), then with x := n + k and y := n + k − 1, we have P (xy) ≤ 3. Thus,
again x ≤ 9, and now a quick check convinces us that there is no convenient
solution with k ≥ 2 to these Diophantine equations. We record this result
as follows.

Corollary 1.4. Let {un}n≥1 be the Lucas sequence consisting of the
components u of the positive integer solutions (v, u) to the Pell equation
v2−Du2 = 1. Then, for 2 ≤ D ≤ 100, all solutions of the equation

[
m
k

]
u

= yt

with m ≥ 2k ≥ 2 and t ≥ 2 prime have k = 1.

2. Perfect powers in q-binomial coefficients. From now on until
the rest of the paper, we work with the Lucas sequence {un}n≥1 of roots
α := q and β := 1, where q ≥ 2 is an integer. In this case, the u-binomial
coefficient is called the q-binomial coefficient. In [LS], it was proved that
the Diophantine equation (1.2) has no solution with k ≥ 2 for this sequence
(treating also q ≥ 2 as an unknown integer). Again, the proof of this result
from [LS] circumvents knowledge of the solutions to equation (1.3), which
in this case is

(2.1)
qn − 1
q − 1

= yt in integers q ≥ 2, n ≥ 3, y ≥ 2, and t ≥ 2 prime,

because the complete list of solutions to equation (2.1) is not yet known.
The known solutions are

(2.2)
35 − 1
3− 1

= 112,
74 − 1
7− 1

= 202,
183 − 1
18− 1

= 73.

We next study the q-binomial coefficients which are powers. Our result is
the following.

Main Theorem 2.1. All the solutions of the equation

(2.3)
[
m

k

]
q

= yt in integers q ≥ 2, m ≥ 2k ≥ 1, y ≥ 2, and t ≥ 2 prime

have k = 1.

This complements a result of K. Győry [G1], [G2] who found all binomial
coefficients which are perfect powers. The proof uses a result of Pethő [P]
concerning perfect powers in the Pell sequence.

We record a couple of known facts that turn out to be useful.

Lemma 2.2. Assume that (q, n, y, t) is a solution of equation (2.1) with
n ≥ 3, and t ≥ 2 prime. Then:
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(i) q is not square.
(ii) If (q, n, y, t) is not in the list (2.2), then both n and t are odd, and

if p is the smallest prime factor of n, then either p ≥ 29, or p = t ∈
{17, 19, 23}.

The proofs of the statements summarized in Lemma 2.2 can be found in
[BHM], [BMRS], and [M].

We shall also need the following extension of a result of Faulkner [F].

Lemma 2.3. Assume that m ≥ 2.5k ≥ 5. Then P
((
m
k

))
> 2k + 1 except

if the pair (m, k) belongs to the set

{(5, 2), (6, 2), (9, 2), (8, 3), (9, 3), (10, 2), (10, 3), (10, 4), (15, 6),(2.4)
(16, 2), (16, 3), (16, 6), (25, 2), (28, 11), (50, 3), (81, 2)}.

Proof. We follow Faulkner [F]. Let pk stand for the smallest prime factor
≥ 2k. In [F], it is shown that P

((
m
k

))
≥ pk for all m ≥ 2k ≥ 4, except when

(m, k) = (9, 2), (10, 3). In his proof, Faulkner used the inequality

(2.5) θ(x) < 1.01624x, valid for all x > 0,

where θ(x) :=
∑

p≤x log p, which he had taken from [RS1]. We shall use
instead the sharper inequality

(2.6) θ(x) < 1.001102x, valid for all x > 0,

from [RS2], which appeared nine years after Faulkner’s paper. So, let us
follow the proof of the theorem in [F] by replacing everywhere inequality
(2.5) by (2.6), and using also the inequality

(2.7) π(x) < 1.25506x/log x, valid for all x > 1.

Instead of pointing out what one should change where, we simply go through
the entire proof. First, a computation in the range 5 ≤ m ≤ 1100 leads to
the solutions shown in (2.4). So from now on, m ≥ 1101.

Assume that
(
m
k

)
has no prime factor p > 2k + 1. Then

(2.8)
(
m

k

)k
≤
(
m

k

)
=

∏
pα‖(mk )
p≤2k+1

pa ≤ mπ(2k+1).

The last inequality above is based on the fact due to Erdős that if pa ‖
(
m
k

)
,

then pa ≤ m. Using inequality (2.7), we get
m

k
< mπ(2k+1)/k < m1.25506(2+1/k)/log(2k).

The right-hand side above is < m1/2 for k ≥ 79. However, since π(2k+ 1)/k
< 1/2 holds also for k = 77, 78 and 79, we conclude that

m

k
< m1/2 for k ≥ 76,
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which is the last display on page 107 in [F]. Thus, the assumption is false
for 76 ≤ k ≤ m1/2. Assume next that k > m1/2. Returning to inequality
(2.8), and using (2.6) and (2.7), we have(

m

k

)k
≤
(
m

k

)
≤

∏
p≤2k+1

p
∏

pa‖(mk )
p≤
√
m

pa(2.9)

< exp(1.001102(2k + 1))m2·1.25506
√
m/logm.

Hence,

(2.10)
(
m

k

)k
< exp(1.001102(2k + 1) + 2 · 1.25506

√
m).

Replacing
√
m by k and taking kth roots in (2.10) above, we find that

m < exp(4.55)k for k ≥ 76. However, when k > exp(−4.55)m, we may
replace

√
m by exp(4.55)k/

√
m in (2.10) above and take kth roots to obtain

m < exp
(

1.001102(2 + 1/k) + 2 · 1.25506
exp(4.55)√

m

)
k < exp(3.49)k,

provided that m > 3 ·exp(9.1), i.e., for m > 26900. The initial assumption is
then false if m1/2 < k ≤ exp(−4.55)m, or exp(−4.55)m < k ≤ exp(−3.49)m,
with m > 26900.

A simple induction argument shows that(
9k
k

)
>

21.3k

3k
for k = 1, 2, 3, . . . .

Thus, for 9k ≤ m < 33.49k, it follows from inequality (2.9) that

21.3k

3k
≤
(
m

k

)
< exp(1.001102(2k + 1) + 2 · 1.25506

√
m).

Taking kth roots, we obtain

(2.11) 21.3 < exp
(

1.001102(2 + 1/k) + 2 · 1.25506
√
m

k
+

log(3k)
k

)
.

Since √
m

k
<

exp(3.49)√
m

<
exp(3.49)√

26900
and

log(3k)
k

≤ log 228
76

,

for 26900 < m < exp(3.49)k and k ≥ 76, a simple calculation shows that
(2.11) is false. Our assumption is therefore false for 9k ≤ m < exp(3.49)k
with m > 26900 and k ≥ 76.

The case k ≥ 76 and 9k ≤ m ≤ 26000 follows as in [F], since the
maximum gap, or difference, between consecutive primes < 26900 is < 76.
Hence, in this range,

(
m
k

)
has a prime factor > 8k > 2k + 1.
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Thus, it remains to deal with the case when k < 76.
For 3k ≤ m < 9k, the interval (8m/9,m) is contained in (m − k,m).

Next, as argued in [F], the interval (8m/9,m) contains a prime p for all
m ≥ 54, which is our case. To see that this prime p satisfies p > 2k + 1,
it suffices to observe that p > 8m/9 > (8/9) · (2.5k) = 20k/9, so indeed
p > 2k + 1 whenever (20/9)k > 2k + 1, which is true for k ≥ 5. However,
for k ≤ 4 and m ≥ 1101, we have (8/9) · 1101 ≥ 978 > 9 ≥ 2k + 1, so the
desired conclusion holds in this case also.

It remains to treat three situations, namely:

(i) k ∈ {2, 3, 4, 5, 6, 7};
(ii) 8 ≤ k < 76 and m > 3k;

(iii) 8 ≤ k and 2.5k ≤ m ≤ 3k.

Let us deal with situation (i). If the desired conclusion does not hold,
then P

((
m
k

))
≤ 13. Assume first that k ∈ {5, 6, 7}. Then at most one of the

numbers in the interval [m − k + 1,m] is a multiple of 13, at most one is
a multiple of 11, and at most one is a multiple of 7. Since there are k ≥ 5
numbers in this interval, it follows that there exist two, say x > y, such
that x − y ≤ 7 and P (xy) ≤ 5. All solutions to this Diophantine equation
appear in [W]. The largest is 6 = 486 − 480 = 2 · 35 − 25 · 3 · 5, leading to
n ≤ 480 + 7 = 487 < 1100, which is a range already covered. Suppose now
that k ∈ {2, 3, 4}. Then P

((
m
k

))
≤ 7. Hence, with x := m, y := m − 1, we

deduce that x− y = 1 and P (xy) ≤ 7. The results from [A] or [W] give us a
certain list of possibilities. There are only two of them with m = x ≥ 1101,
namely x = 2401, 4305. In both cases, x − 2 > 2k + 1 is prime, therefore
k = 2, but both 2401 and 4305 are multiples of 7 > 2 · 2 + 1. So, case (i)
does not lead to new exceptional pairs (m, k) failing the desired property.

Let us now deal with situation (ii). Let us note here that the interval
[m − k + 1,m] is contained in [2k + 2,m], so it is enough to show that
the interval [m − k + 1,m] contains primes. We follow the arguments on
page 108 in [F]. A result of D. H. Lehmer shows that the product of seven
consecutive integers ≥ 36 contains a multiple of a prime ≥ 43. Thus, the
desired conclusion holds for 8 ≤ k ≤ 20. Hence, we may assume that k ≥ 21.
Now if the desired conclusion is violated for some m and k, then

mk

k!

(
1− k(k − 1)

2m

)
≤ mk

k!

(
1− 1

m

)
· · ·
(

1− k − 1
m

)
=
(
m

k

)
≤ mπ(2k+1).

Assume that m > (k2−1)/2. Then the factor in parentheses on the left-hand
side above is > 1/(k + 1), so the above inequality implies

mk−π(2k+1) ≤ (k + 1)!,

or, in other words,
m < (k + 1)!1/(k−π(2k+1)).
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The upper bound above is < 1100 for all k in the range k ∈ [21, 75]. Hence,
1101 ≤ m ≤ (k2 − 1)/2 giving k ≥ 47. The same argument shows that the
desired conclusion holds for m > 3000 > (752 − 1)/2. Hence, it remains
to cover the range 1101 < m ≤ 3000 and 47 ≤ k ≤ 75. This follows as
in [F] because the maximum gap between consecutive primes for m < 3000
is < 46.

Finally, let us deal with situation (iii). Observe that 2.5k > 2k+1 for all
k ≥ 8. Assume next that the interval (2.5k, 3k) does not contain any prime
number. Using the fact that

π(x) >
x

log x− 1.5
and π(x) <

x

log x− 0.5
for all x > 67

(see Theorem 2 in [RS1]), we get

π(3k)− π(2.5k) >
3k

log(3k)− 0.5
− 2.5k

log(2.5k)− 1.5
.

The function appearing on the right-hand side above is positive for k ≥ 663
and a short calculation reveals that π(3k)−π(2.5k) > 0 for all k ≥ 8, which
finishes the argument for (iii) and hence the proof of the lemma.

Proof of Theorem 2.1. Assume that there is a solution (m, k, y, q, t) of
equation (2.3) with m ≥ 2k ≥ 4, and t prime. We handle various cases.

Case 1: k = 2. Let n ∈ {m − 1,m} be such that n is even and let
{m− 1,m} =: {n, n+ δ}, where δ ∈ {±1}. Then[

m

2

]
=
(
qn+δ − 1
q − 1

)(
(q2)n/2 − 1
q2 − 1

)
= yt,

and the two factors in the middle are coprime. Thus, (xn/2−1)/(x−1) = yt1
with the perfect square x := q2 and with some divisor y1 of y. If n/2 ≥ 3, this
is impossible by (i) of Lemma 2.2, while if n/2 = 2, then q2 +1 = x+1 = yt1,
which is not possible with q ≥ 2 by known results on the Catalan equation.
From now on, k ≥ 3.

Case 2: t = 2. Put n := m − k and observe that n ≥ k. Put p :=
P ((n+ 1) · · · (n+ k)) and observe that p > k by Sylvester’s theorem. Since
k ≥ 3, we have p ≥ 5. Let, as in the proof of Theorem 1.1, i0 stand for
the unique index in {1, . . . , k} such that p |n + i0, and write n + i0 := pal
for some integers a ≥ 1 and l coprime to p. The argument from the proof
of Theorem 1.1 shows that upa = y2

1 for some divisor y1 of y. Lemma 2.2
shows that (q, pa) = (3, 5). Thus, P (m(m − 1)(m − 2)) = 5, and the only
possibility is m = 6, for which p = 5 and q = 3. However,

[
6
3

]
3

= 33880 is
not a perfect square. From now on, t ≥ 3.
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Case 3: k = 3. This is a warm-up for the more general case that follows,
but it is worth doing it separately since it has its particularities. Let M be
the set of even indices in the interval [m − 2,m]. Then M = {m − 2,m}
or {m− 1}, according to whether m is even or odd. Let p := P (

∏
m∈Mm),

and assume that p ≥ 5. Let m0 be the unique index in M such that p |m0.
Write m0 =: 2pal, where a and l are positive integers with l coprime to p.
Rewrite equation (2.3) as

(2.12)
q2p

a − 1
q2 − 1

(
qm0 − 1
q2pa − 1

) ∏
n∈{m−2,m−1,m}

n6=m0

qn − 1
q − 1

=
(
q3 − 1
q − 1

)
yt.

We now argue that the first factor on the left-hand side in (2.12) above is co-
prime to all other factors on the left and also to u3 = (q3−1)/(q−1), which is
on the right-hand side. Indeed, if r is a prime dividing both (q2p

a−1)/(q2−1)
and (qn−1)/(q−1) for some n 6= m0 in [m−2,m], then r | (q2n−1)/(q2−1).
Hence, r divides both wpa and wn, where {wj}j≥1 is the Lucas sequence of
roots α := q2 and β := 1. But this is impossible since pa and n are co-
prime. The same argument shows that (q2p

a − 1)/(q2 − 1) is coprime to
(q3 − 1)/(q − 1), which is a divisor of (q6 − 1)/(q2 − 1), because we are as-
suming that p > 3. Finally, assume that r divides both (q2p

a − 1)/(q2 − 1)
and (qm0−1)/(q2p

a−1). Then r must divide m0/2. However, since r divides
either (qp

a − 1)/(q − 1) or (qp
a

+ 1)/(q + 1), it follows that either r = p
(and this happens if and only if q ≡ ±1 (mod p)), or r ≡ 1 (mod p). In
both cases, r ≥ p > P (m0/2), so r cannot divide m0/2. Now we deduce that
(q2p

a − 1)/(q2 − 1) = yt1 for some divisor y1 of y, which is impossible by (i)
of Lemma 2.2.

Thus, p ≤ 3. Suppose next that m is even. Then m = 2m0, where
P (m0(m0 − 1)) ≤ 3. Since m0 ≥ 3, it follows that the only possibilities are
m0 ∈ {3, 4, 9}, so m ∈ {6, 8, 18}. When m = 6, we get[

6
3

]
q

=
(
q5 − 1
q − 1

)(
(q4 − 1)(q6 − 1)
(q2 − 1)(q3 − 1)

)
= yt,

and in the middle above the first factor is coprime to the cofactor. Hence,
we get (q5 − 1)/(q − 1) = yt1 for some divisor y1 of t, which is impossible
for t ≥ 3 by (ii) of Lemma 2.2. Similarly, when m = 8, we get an equation
of the form (q7 − 1)/(q − 1) = yt1, which is impossible by (ii) of Lemma 2.2.
Finally, when m = 18, we get[

18
3

]
3

= (q8 + 1)
(
q8 − 1
q2 − 1

)(
(q17 − 1)(q18 − 1)

(q − 1)(q3 − 1)

)
= yt.

In the middle, either q8 +1 is coprime to the remaining cofactor, or the only
common prime factor of q8 + 1 with the remaining cofactor is 2, and if it
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is 2, then q is odd, so 2 ‖ q8 + 1. Hence, q8 + 1 = δyt1 for some divisor y1 of
y and some δ ∈ {1, 2}, which is impossible.

Suppose next that n is odd and P (n − 1) ≤ 3. Then m − 1 = 2a3b ≥ 6
for some a ≥ 1 and b ≥ 0. Furthermore, m − 1 is coprime to both m − 2
and m. Hence, (qm−1 − 1)/(q − 1) = yt1 for some divisor y1 of t, but this is
impossible by (ii) of Lemma 2.2.

Case 4: m ≥ 2.5k. Here, we write m = 2m0 + m1, k = 2k0 + k1, with
integers m0, k0 ≥ 2 and m1, k1 ∈ {0, 1}. Observe that since m ≥ 2.5k, we
get m/2 ≥ 2.5k/2, so that

m0 = bm/2c ≥ b2.5k/2c = b2.5k0 + 1.25k1c ≥
{

2.5k0 if k0 = 0,
2.5k0 + 1 if k0 = 1.

By Lemma 2.3, we get P ((m0 − k0 + 1) · · ·m0) > 2k0 + 1 ≥ k except when
(m0, k0) belongs to the list (2.4). Assume that we are in the good case, and
we treat the exceptions later. Observe that

{2m0 − 2k0 + 2, 2m0 − 2k0 + 4, . . . , 2m0} ⊆ {m− k + 1,m− k + 2, . . . ,m}.

WriteN for the set of even integers in [m−k+1,m] and put p :=P (
∏
n∈N m).

From the above display it follows that p > k. In particular, there exists a
unique number n0 ∈ N such that p |n0. Write n0 =: 2pal, with some integers
a ≥ 1 and l coprime to p. We then rewrite equation (2.3) as

(2.13)
q2p

a − 1
q2 − 1

(
qn0 − 1
q2pa − 1

) ∏
n∈{m−k+1,...,m}

n6=n0

qn − 1
q − 1

=
( ∏

3≤i≤k

qi − 1
q − 1

)
yt.

Arguing as before, we see that the first factor on the left-hand side in (2.13)
above, wpa := (q2p

a − 1)/(q2 − 1), is coprime to (qn − 1)/(q2 − 1) for all
n 6= n0 in [m − k + 1, . . . ,m], just because (qn − 1)/(q − 1) is a divisor
of wn := (q2n − 1)/(q − 1), and n and p are coprime. The same argument
shows that the first factor on the left-hand side in (2.13) above is coprime
to each of the factors (qi − 1)/(q − 1) for i = 3, . . . , k from the right-hand
side, just because p > k. Finally, since p is the largest prime factor of n0

and n0/(2pa) is coprime to p, it follows that the first factor on the left-hand
side above is also coprime to the second factor on the same side. Hence,
(q2p

a − 1)/(q2 − 1) = yt1 for some divisor y1 of y, which is impossible by (ii)
of Lemma 2.2.

It remains to deal with the exceptions. Observe that if k1 = 0, then k is
even, and we only want the largest prime factor of (m0 − k0 + 1) · · ·m0 to
exceed 2k0 = k, and by Faulkner’s result this is so except when (m0, k0) =
(9, 2), (10, 3). When k1 = 1, we get in fact m0 ≥ 2.5k0 + 1. A quick look in
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the list (2.4) shows that the only pairs (m, k) to consider when k1 = 1 are

(2.14)
(6, 2), (9, 2), (9, 3), (10, 2), (10, 3), (16, 2),
(16, 3), (16, 6), (25, 2), (50, 3), (81, 2).

Hence, we just need to deal with the following set of 26 exceptional pairs
(m, k):

{(18, 4), (19, 4), (20, 6), (21, 6), (12, 5), (13, 5), (18, 5), (19, 5), (18, 7)
(19, 7), (20, 5), (21, 5), (20, 7), (21, 7), (32, 5), (33, 5), (32, 7), (33, 7),
(32, 13), (33, 13), (50, 5), (51, 5), (100, 7), (101, 7), (162, 5), (163, 5)}.

In all the above cases except when (m, k) = (32, 13), (33, 13), we have k ≤ 8,
so the interval [m− k+ 1,m] contains at most one multiple of 8, whereas in
the two exceptional cases above the interval [m− k+ 1,m] contains at most
one multiple of 16. In all the above cases, this multiple of 8 (or 16) is one of
8, 16 or 32, except for the following pairs (m, k):

(2.15) (13, 5), (21, 5), (50, 5), (51, 5), (100, 7), (101, 7), (162, 5), (163, 5).

Thus, for such equations except when (m, k) belongs to the list (2.15), we
have [

m

k

]
q

= ((qδ)4 + 1)C = yt, where δ ∈ {1, 2, 4},

where the greatest common divisor of q4δ + 1 and the cofactor C either is 1,
or is 2, but if it is 2, then q is odd and 2 ‖ q4δ + 1. Hence, we get the relation
x4 + 1 = δ1y

t
1 with x := qδ, δ1 ∈ {1, 2} and some divisor y1 of y, but this is

impossible.
For (m, k) = (13, 5), the only multiple of 11 in [m − k + 1,m] is 11, so

by arguments similar to the above ones we conclude that equation (2.3) for
this pair implies that (q11 − 1)/(q − 1) = yt1 for some divisor y1 of y, and
this is impossible by (ii) of Lemma 2.2. For (m, k) = (21, 5), we see that
17 and 19 are two primes in [m − k + 1,m]. Hence, we get the equations
(q17−1)/(q−1) = yt1 and (q19−1)/(q−1) = yt2 for divisors y1 and y2 of y. Now
(ii) of Lemma 2.2 implies that t must be equal to both 17 and 19, which is
impossible. Finally, for the last six cases m ∈ {50, 51, 100, 101, 162, 163}, we
work with the numbers 49, 98, 161, respectively. Namely, when m ∈ {50, 51}
then 49 is the only multiple of 7 in the interval [m − k + 1,m]. Hence,
equation (2.3) yields (q49−1)/(q−1) = yt1 for some divisor y1 of y, and this
is impossible by (ii) of Lemma 2.2. When m ∈ {100, 101}, we write equation
(2.3) as(

q49 − 1
q7 − 1

)
(q49 + 1)

∏
n∈[m−k+1,m]

n6=98

(
qn − 1
q − 1

)
= yt

6∏
i=1

(
qi − 1
q − 1

)
.
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Since no number n 6= 98 in [m− k + 1,m] is a multiple of 7, it follows that
the first factor on the left-hand side above is coprime to all numbers of the
form (qn− 1)/(q− 1) for n 6= 98 ∈ [m−k+ 1,m], and for the same reason it
is also coprime to (qi− 1)/(q− 1) for i = 1, . . . , 6. Finally, (q49− 1)/(q7− 1)
is also coprime to q49 +1, since clearly their only common factor could be 2,
but this is not the case since (q49 − 1)/(q7 − 1) is odd. Hence, we find that
(q49 − 1)/(q7 − 1) = yt1 holds for some divisor y1 of y. This gives a solution
to the equation (q71 − 1)/(q1 − 1) = yt1 with q1 := q7, which does not exist
by (ii) of Lemma 2.2.

Finally, when m ∈ {162, 163} then note that 161 = 7 · 23 is a multiple
of 7 and is coprime to all [m− k + 1,m] and to all i ∈ [1, k]. Hence, by the
previous arguments, we get a solution to the equation (q161−1)/(q−1) = yt1
for some divisor y1 of y, and this is impossible by (ii) of Lemma 2.2.

Case 5: m < 2.5k. Let a be the largest positive integer such that k/2 <
2a ≤ k. Observe that since k ≥ 4, we have a ≥ 2. The interval [m−k+ 1,m]
contains one or two multiples of 2a, but not three of them. If one of them
is 5 · 2a, we get m ≥ 5 · 2a > 2.5k, which is a contradiction. Since also
m − k + 1 > k, the only possible multiples of 2a in [m − k + 1,m] are
{2a+1, 3 · 2a, 2a+2}.

Suppose first that 2a1 ∈ [m − k + 1,m] for some a1 ∈ {a + 1, a + 2}.
Observe that a1 is unique because not both 2a+1 and 2a+2 can belong to
[m− k + 1,m]. Then equation (2.3) implies that

(q2
a1−1

+ 1)
(
q2
a1−1 − 1
q − 1

) ∏
n∈[m−k+1,m]

n6=2a1

(
qn − 1
q − 1

)
= yt

k∏
i=1

(
qi − 1
q − 1

)
.

As before, it follows that the only common prime that the first factor on
the left can share either with the remaining factors on the left or with the
factors (qi − 1)/(q − 1) for i = 1, . . . , k appearing on the right above is 2,
and this happens when q is odd, but in that case 2 ‖ q2a1−1

+ 1. Indeed, this
follows because aside from 2, all other primes dividing q2

a1−1
+ 1 have order

of appearance z(p) = 2a1 , but there is no n 6= 2a1 in [m − k + 1,m] which
is a multiple of 2a1 , and similarly there is no i ∈ [1, k] which is a multiple
of 2a1 either. Hence, we get a solution to the equation x2 + 1 = δyt1 with
δ ∈ {1, 2}, y1 some divisor of y and x := q2

a1−2
, which is impossible because

this last equation has no positive integer solutions with x > 1.
Finally, assume that 3 · 2a ∈ [m− k + 1,m]. We then have(

q3·2
a − 1

q − 1

) ∏
n∈[m−k+1,m]

n6=3·2a

(
qn − 1
q − 1

)
=

k∏
i=2

(
qi − 1
q − 1

)
yt.
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Consider the divisor q2
a − q2a−1

+ 1 = Φ6(q2
a−1

) = Φ3·2a(q) of u3·2a . Here,
Φn(X) ∈ Z[X] denotes the cyclotomic polynomial whose roots are the primi-
tive roots of unity of order n. Note that the divisor considered is odd and it is
also coprime to 3 because q2

a−1 ≡ 0, 1 (mod 3), so q2
a−q2a−1

+1 ≡ 1 (mod 3).
Then every prime factor p of q2

a− q2a−1
+1 has z(p) = 3 ·2a, and since 3 ·2a

divides neither any n 6= 3·2a ∈ [m−k+1,m] nor any i ∈ [1, k], it follows that
q2
a−q2a−1

+1 = yt1 for some divisor y1 of y. This leads to (x3−1)/(x−1) = yt1
with x := q2

a−1 − 1. The only solution is (x, y1, t) = (18, 7, 3), leading to
q2
a−1

= 19, which is false since 19 is not a perfect square. This finishes the
proof of Theorem 2.1.
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