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1. Introduction. The Rogers—Ramanujan continued fraction is defined
by ([2, p. 9], [13} p. xxviii])

g\ q f ¢

I +1+1+1+--
As is customary, throughout this paper we assume that |¢| < 1 and use the
standard notation

R(q) := , el < 1.

n—1 [e9)
(a;q)n = H(l —aqg®) and  (a;¢)e = H(l —aq").
k=0 n=0

The famous Rogers-Ramanujan functions G(q) and H(q) are defined by

oo 2

(L.1) SUEDW A X

GOn (66°)(0%6%) s’

0 n(n+1) 1

(1-2) zz: . 4 q (6% 6°) 0 (4% ¢°) o

where the two equalities on the right sides of ([L.1) and (1.2)) are the cele-
brated Rogers—Ramanujan identities [2, p. 87], [15 p. 347]. Using (1.1)) and
(1.2)), Rogers [16] proved that

_ 15 H(g)
R(q) = q1/5@.

In his notebooks, Ramanujan recorded many identities involving R(q) which
can be found in [2, 4, 14, 15]. For example, two of the most important
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formulas for R(q) [2, p. 11], [15, pp. 135, 238] are

1 ( 1/5 1/5)

(1:3) R(q) - Rl = 1/5((1 7)o
1 I o0

(14) mg LT E@= q<(qq5;qq)5>2;

Furthermore, he established factorizations of (1.3)) and (1.4) [2, pp. 21-22],
[5], [L5, p. 206],

\/% 1Rl = 1/10 H1+vq”/5+q2"/5’

(1.5) \/:7 A 1/10 (;qg H1+5qn/i+q2n/5’
< ;(Q)> _(7\/@)526111/2\/71;[ 1+7q”/5+q2"/5)
() ~ 6V = i I s o

where v = (1 —/5)/2 and 6 = (1 ++/5)/2.

On page 229 of his second notebook [14], [4, p. 221], Ramanujan defined
another continued fraction v(q) that has properties similar to those of R(q),
namely,

g /2 ¢ ¢ e
(16) U(Q) T 3 5 7 )
I+ g+ 1+ @ +1+@+1+q +--
later called the Ramanujan—Gollnitz—Gordon continued fraction. In addi-
tion, Ramanujan recorded an identity for v(q) [4, p. 221],

(450%)o0 (471 6%) oo
1.7 v(q) = ql/2
4 @ (4% 6%)o0 (4% ¢%) oo
H. Gollnitz [9] and B. Gordon [10] rediscovered and proved (|1.7)) indepen-

dently. A proof of ([1.7)) can also be found in [4, p. 221]. Moreover, Ramanujan
established two further identities for v(q) [4, p. 221], [14, p. 229], namely,

BT (4% 45 (0% ¢ o (9" ¢*) oo
(18) og 9= 4"2(¢% ) oo ’

I ol X FS C T W U L
(1.9) o " (q) = TP,
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The Gollnitz—Gordon functions S(q) and T'(q) are defined as

(1'10) S(Q) = i m n? and T(q) = i qu%—?n'

q
= (@*¢)n = (@*¢)n
Then the Gollnitz—Gordon identities [9, [10] are given by
1
111 S(q) = ,
(L1) @) (45 6%) 0 (q% ¢®) o0 (475 %) o
1
1.12 T(q) = .
(12 O = e 0 P (5 e
We see that
T(q)
_1/2
v(q) = q/*=—=<.
D=4

Recently, several authors, including N. D. Baruah and N. Saikia [3], H.-H.
Chan and S.-S. Huang [6], S.-D. Chen and S.-S. Huang [7], S. Cooper [§] and
M. D. Hirschhorn [I1], have found additional identities and properties for
v(q). In this paper, we will establish several new identities and properties
for v(q) motivated by identities involving the Rogers—Ramanujan continued
fraction.

In [12], T. Horie and N. Kanou found that

1 (43 9)30(a* 4")5
v*(q) 9(¢% )3 (0% ¢*)%
by employing modular forms (see also [§]). Here in Section 3| we will present

factorizations for v(q) in Theorems and which are similar to (1.5]).
We prove that

(1.13) —6+0%(q) =

L S (=" 9% (¢ D)oo (01 ¢®) oo
v a'/2(q% ¢%) oo ’
1 92y — (¢"/%; 0% (459000 (0* 6% 0o
v 7243 ¢®) e ’

which is employed to establish a shorter proof of .

Hirschhorn [I1] showed that when infinite products associated with v(q)
are expanded as power series, the sign of the coefficients is periodic with
period 8, and he also derived some identities for such coefficients. In Sec-
tion [} we will provide a new proof of Hirschhorn’s results. The forms given
in Theorems [£.3] and [£.4] are the same as the ones given by Hirschhorn, but
are given here in a more compact form. Both Hirschhorn’s form as well as
the formulas in Theorems [4.3] and [4.4] immediately imply the sign of the co-
efficients. In the same section, some new identities for v(gq) are found here,

namely Theorem
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2. Preliminary results. For |ab| < 1, Ramanujan’s general theta-
function f(a,b) is defined by

(2.1) )= 3 antrn/2gne /2,

Jacobi’s triple product identity [4, p. 35] is given by
(2.2) f(a,b) = (—a;ab) oo (—b; ab) oo (ab; ab) o
The three most important special cases of f(a,b) [4, p. 36] are

(2.3) () == Z 0" = (6 A% (% D)oo
@4)  le) = Fa.q) an<n+l>/2 (qq)’
(25)  f(=a) = f(—a, =) = > (=1)"¢"®"V? = (g;¢)ws,

where the product representations in (2.3)—(2.5)) follow from (2.2]).
With the notations (2.1)—(2.5), we can rewrite (1.7)—(1.9), respectively,

v(a) = g1/2 f(=4,—4")
(9) =q =)
1 e(d?)
(26) v(q) )= ARy
Ly = P
&7 o T a'/2p(qt)
After Ramanujan, we define
(2:8) X(@) = (=4 ¢*)o

Ramanujan recorded several identities for f(a,b), ¢(q), ¥(q), f(—q),
and x(q). The following lemma provides such identities.

LEMMA 2.1 ([, p. 48]). Let
U, = an(n+1)/2bn(n—1)/2 and 'V, = an(n—l)/2bn(n+l)/2

for each integer n. Then

k—1
Uk—l—'r Vk—r
(2.9) FUL V) = Urf( , )
LW ZO T T

for every positive integer k.
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LEMMA 2.2 ([, p. 34]). We have

(2.10) fab) = £(b,0)

and if n is an integer, then

(2.11) fla,b) = a2 D2 £(a(ab)", b(ab) ).
LEMMA 2.3 ([4, pp. 39-40]). We have

(2.12) p(@)¥(—a) = f(@)f (=),

(2.13) p(@)p(—a) = ¢*(=4*),

(2.14) D(@)(—a) = ¥(@*) (=),

(2.15) pla)v(d®) = w2<q>,

(2.16) (@) + o(—aq) = 20(q"),

(2.17) (@) — p(—q) = 4q¥(¢%).

3. New identities. In this section, we shall provide identities for v(q)
which resemble ([1.3)) and (1.5)). Define

(3.1) U= ql/gm'

THEOREM 3.1. We have
(3.2) \# +iv/u(g) = g Zq1/2f)2((Q) )Vx(=a)’
(3.3) i(q —iv/vle) = 1/4f(z'q1/2)f( >q8) x(=q)’
(3.4) \1ﬁ +Volg) = X1/4 H<1+( > n/z)’

1

o oy A ()

where (%) 1s the Kronecker symbol.

Proof. By (3.1 .,
f(=¢% —q)+iq1/2f( 2—q")
3.6 — .
(36) fﬂf g1/ f( q ") f(—¢ )
By Jacobi’s triple product identity (|2 ,
(3.7 (=4, -4V (=", ")
= (0:6%)00(070*) o0 (6% 0*) oo (63 0*) oo (6% 4*) 2
= (4:4")0 (4% ¢%)% = X(—=0) f*(—¢°).
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Take k = 2, a = ig"/?, and b = —ig®/? in . ) to obtain
fiq'?,—ig*?) = f(=¢*, ~¢°) +iq"*f(~q, —q").

By (2.2),
(3.8) Fiq"?, —ig*?) = (—ig"% ¢*) o (16*%; 4P oo (6% ¢*)
_ )
f(=ig'?)’
Substituting (3.7) and ( . in ., we deduce that
. F*(q)
\ﬁ Five= g/ f(—ig ?) f(—q®)/x(—q)

To prove (3.3), take k = 2, a = —ig'/2, and b = i¢%/? in (2.9).

The proof of (3.4) uses k =2, a = ¢*/2, and b = —¢*/? in (2.9).

Employ (2.9 @ with k = 2, a = —¢*/2, and b = ¢*/2 to prove 1D "

We notice that Theorem [3.1] H is a factorization of (| . ) and (| . Before
proceeding further, we define o :=v2 —1, 3 :=+v2+1 and ¢ := 67”/ 4

THEOREM 3.2. We have

39 o-ave- =l a(l—/i}?f/;— o (-1rg"?)

(3.10) \}fra\/ | 1(1/4;;2q n/2 : Xq(n_;)qsn/z)’

I “ﬁ;ff””f o

(3.12) \1f 4B = | Y 1/4?( n/2)+ iq(n_;)(_mqan/z).
Proof. By (8] @7

(3.13) 7 o= f(1/4\/;q5) - aq1/2f(q_’q7 _qz;)'

Take k=4, a = ¢, and b = (3¢*/? in . to obtain
(B.14)  f(6.Ca) = f(-0' ~") + Cf (-0’ ~d)
+ P (=d" —0) + TP (=" —a 7).
Setn=1,a=—¢ ' and b= —¢° in . This yields
(3.15) f(=¢", =) = =" f(=d", —).
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Substituting (3.15)) in (3.14]), we obtain

FGCGM) =+ OF(— —°) + 2 f(—q", —q) — (¢ f(—¢", —

=(1+Of(—¢*~¢") + (¢* = Ng"*f(—q, —4"),

by (2.10).
Note that a = ¢ +¢7 — 1, 50 (5 — (" = —a(1 + ¢). It follows that

F(¢.¢%q'?)

(3.16) Tre F(=¢* —¢%) — aq'? f(—q, —q").
Substituting and in , we deduce that
3,1/2
(3.17) 1 o= [ ¢%q'?) .
Vv (1+¢) ¢'/*/x(—a) 2 (—¢%)

By Jacobi’s triple product identity (2.2,

G 3qY?) (—G =) oo(—CBq % —4Y?) o (=% =01 ?) o

1+¢ 1+¢
= (4% =4 o (= ¢M?; =) o (=4 =41

= [T+ <=M = E(=a"*" 1 = (=¢'/)).
n=1

Note that ¢ — (3 = /2 and ¢* = —1. Then

1+¢

(3.18) M - ﬁ(l + \/i(_ql/Q)n + (_q1/2)2n)(1 . (—q1/2)")
n=1

I
8

1

3
Il

(1+ a(-1)"g"2 — ag” — (~1)"¢"/2).

I
8

n=1

Substituting (3.18)) in (3.17)), we complete the proof of (3.9).

299

q)

(1+ (V2= 1)(=1)"¢"? = (V2= 1)¢" - (-1)"¢*"/?)

Use k =4,a = —C and b = —C5q1/2 in (2.9)), and use the fact that

6+ ¢ = a(l — %) to establish (3.10).

To prove (3.11), employ (® — ¢ = —B(1 + %) and k = 4, a = %,

b= ("2 in [29).

and
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The proof of (3.12)) uses (64 ¢7 = B(1 —¢) and k = 4, a = —(, and
=3 in 29). =

COROLLARY 3.3. We have

1 1/2
(3.19) S 2 ‘1"/(22( ))

1 _1/2
(3.20) S-2-v= ;(/%Z(q‘*))'

Proof. By (3.9) and (3.12)), we observe that

(3.21) i—i—Q—v—(\[ a\f><f+ﬂf>

[ (1+a(-1)"g"? — ag® — (-1)"¢*"/?)
x (1= B(=1)"¢"% + Bg" — (=1)"¢*"/?)
72X (=) f2(—¢®) '

We see that
(3.22) (l+a(-1)"¢"*—aq"—(—-1)"¢*"*)(1-B(-1)"q"*+Bq"—(—1)"¢*"/?)
= 1-2(—1)"¢" 2 +q"+¢*"—2(~1)"¢"" 2 +-¢*"
= (1+¢*")(1-2(-1)"¢"*+¢")
B { (1+¢*") (1-2¢"+¢%) if n = 2k,
(14+¢>) (1424512 4¢21) if n = 2k—1.
Substituting in , we deduce that
L+ = g")*(L+ g2
qY2x(=q) f2(—¢®)
_ (=00 oo (@: @) (—4"* )%
7%(¢; 4% o0 (4% ¢®)%
% 0%) 00 (0% %) oo (45 @) o (—4
a'2(¢% ¢%)2%,
(@)@ Do (=003 e(¢'?)
7'%(¢% ¢%)oo g2y (q")’
by (2.3 and , which completes the proof of (| -

It is easy to Verlfy in a similar manner from (| and (3.11)) or
simply by replacing q'/? Wlth —¢'/?. w

1
Z 49—
v

2

12 9)%

(—q
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COROLLARY 3.4. If ( = €™/, then

1 F=a) (B %)% (Cq % 9)%
AV sy T
L P 0k (e
ey e R
1 e, IPaxe )(ng 03 (CSq, 9)3
v 1/2f2<_ ) ’
L g F=0x (@) (a2 (T a)%
v g2 f2(—¢®)

Proof. The proof is similar to that of the previous corollary. m

The following corollary is (1.13), and originally was proved by using
modular forms.

COROLLARY 3.5. We have

_ 99 _ oA (=dh)
W dh)  aff (=) fA(—e®)
Proof. By (3.19)) and (3.20), we deduce that

%—6+v2: <1+2—v><1—2—v>
v v v
_ ( v(q'/?) )(w(—qm)) _ P9
a'29(q) ) \a'*h(ar) ) av?(a*)
The last equation is obtained by . By employing the product repre-
sentations in 7, we easily obtain the last equality of . "

1
3.23 — — 6
(3.23) =6+

4. The expansion of the Ramanujan—Gollnitz—Gordon contin-
ued fraction. In [7], Chen and Huang established the 4-dissection of the
Ramanujan—Gollnitz—Gordon continued fraction. In this section, we shall
provide a new proof of the 8-dissection identities for this continued fraction
found by Hirschhorn [I1]. Define

(=4 —¢)
Dla):= f=q,—q") "
By and , we find that
(A1) D) = gy (0(6) + 9(0) = s (3 "4 3 0”)

o0
=: E Upq".
n=0
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If f(q) =>72panq", we define the operator Ug operating on f(q) by [I}
p. 161]

7
Usf(q ZGan Zf(qul/g),
j=0
where ¢ = e™/%. Then apply Ug to (#.1)) and deduce that

e’} 7
—ap 1 aj ,—a
(4'2) Zu8n+aqn = Usq g Z( J /8D C] 1/8)
n=0 7=0
7

1 aj ,—a n n2 n?j n’
7625 CMQ(Z@J Y o)

17 1 n—an —a n—an —a
3 s (S s 55 )

j n=-—00 n=-—00

I\
o

¢(11/2)23:< i C(zn?—a)zjqn2/4—a/8Jr i C(n2—a)2jqn2/8—a/8>
167 (q

j=0 n=-—oc0 n=—00
3

1 = 2 ) (24 1)
(2n*—a)(2j+1) ,n*/4—a/8
+ 16¢(—q1/2) z;)( Z ¢ ’ q
j=0 n=-o0 00
+ Z g(nQ—a)(2j+1)qn2/8—a/8>'

n=—oo

LEMMA 4.1. If ¢ = €™/, then

(4.3) {4 if =0 (mod 4),

0 otherwise,

CT(%) —
)

3
>
j=0
3 4 ifr=0 (mod B),
(4.4) » et { —4 ifr=4 (mod 8),
j=0

0 otherwise.

LEMMA 4.2. We have

(4.5) Y(Q)v(—q) = F(=a*) f(—q"),
(4.6) W(q) +¥(—q) = 2f(¢% ¢"°),
(4.7) ¥(q) — (—q) = 2¢f (¢, ¢").

Proof. The identity (4.5) follows immediately from (2.14) and (2.12)).
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To prove (4.6, by (2.4), we have
w Z qn(n+1)/2+z n (n+1)/
_ Zq 2n+1)+zq (n+1)( 2n+1)+z n n (2n+1) +Z n (n+1)(2n+1)
-9 Z q2n(4n+1)+2 Z q(2n+2)(4n+3) -9 Z q2n(4n+1)‘

n=0 n=0 n=-—oo

By (2.1) and (2.10)), we obtain (4.6)).

Similarly, by (2.4), we deduce that

(e 9]

¥(g) —P(—q) = Z g N (gD
n=0
= Z qn(2”+1) + Z q(n+1)(2n+1)
=0
- Z n n (2n+1) _ Z(_l)nq(n+1)(2n+1)
n=0
=9 Z GrtDUnt3) 4 o Z D) (nt1)
n=0 n=0
-9 Z 2n+1)(4n+1

n=—oo
so the proof of (4.7)) is complete by employing (2.1)) and (2.10]). =

THEOREM 4.3. We have

— e(g")f (4% ¢°)

;;;“8"‘1 T (=)
= V() f(¢* ¢°)
HZZO“W T (=)
G () (PP,
gum T Cof)
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- n 2q0(¢®) f(q,q")
Usn+4q9 = —
nZ:;) 8n+4

f(=a)f(=¢*) "’
3 n__ Y@)fa.d")
nz_%“s"*” T Iy
N n_ V@) (0.d)
nzougan T o f(=¢?)

o0
Z ugny7q" = 0.

Proof. 1t is obvious from . . ) that the fourth and the last identi-
ties hold.

To prove the first equality, by (4.2)) with a = 0, (4.3) and (4.4), we have

(4.8) iu&lqn 1/2 (Z ¢+ Z 2/2>
n=0

1/2 (Z q + z; n n2/2>
41/}(11/2)(@@) +e(q'?) + . : 1/2)(<p(q) +o(—¢'?))

=3 (o0 (g smm) + (o + 5

Employing (2.15)) and (2.14)), respectively, we see that
p(d'?) v e(=q)

) v(@'2) g e(—¢2)
Similarly,
(4.10) p(=a'?) _ ¥(=4"?) _ p(-q)

b(=g"?) W@ P(V?)
Putting (4.9) and ( - in . yields
1

1
ugnq" = ~(p(q) + ¢(—q ( + >
n;) i 4( @+ e\ oy o
By (2.16), (4.5) and (4.6),
a*)f(¢* ¢°)
Ugn, —7
Z = F )i (=)

which completes the proof of the first identity.
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Now by (4.2) with a =1, (4.3]) and (4.4), we find that
(4.11) Zu8n+1q

n(n+1) /2 n(n+1)/2
1/2 Z q 2p(— 1/2) Z q
1 1 1
= + ¥(q)-
2 <w(q1/2) w<—q1/2>>
Utilize (4.5) and (4.6]) to deduce that
iug = V(@ f (¢’ a)
vt f(=a) f(—=4¢?)
This completes the proof of the second identity.
Again by . with a = 2, and ., we have
1 (o]
n(n+1) n(n+1)

1 1 1
=35 + T/J(QQ)a
2 <w(q1/2) ¢<—q1/2>>
SO the proof of the third identity is complete after employing (4.5)) and (4.6))
in (4.12).
As before, by (4.2)) with a = 4, and ., we have

o0

1 2-1)
(413) Zu8n+4q 1/}( 1/2)( Z 2 + Z . /2>

n=—oo n=—oo

1/2 (Z q" TV Z (n2—1)/2)

n=—oo n=—oo

-1/2 —1/2

- @ 1/2)<so<q>+so<q1/2>> T (@) + (-0

V2 I p(q'?)  p(=¢"?)
= (v (G v+ (S~ Sam))
Putting (4.9) and ( - in - 4.13)) yields

q1/2
Zu8n+4q = 4 («p(Q)—sa(—Q))(

n=0
By @T7. (&3) and (7).
oo

n_ 2q0(¢%) (g, 4")
ZO“S’”“ T

and the proof of the fifth identity is complete.

1 >
W(g?)  p(—q'?) )
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By (4.2] . with a =5, and ., we have
oo [e.e]

1 2 1 2
(n*4+n-1)/2 _ + (n°4+n-1)/2
ZU8n+5C] 41h(q 1/2) Z q 4w(_q1/2) Z q

n=—0oo n=—oo

~1/2
q 1 1
< 1/2 - 1/2 >¢(Q)
2 \¥(d"?)  ¥(=¢'?)
Using (4.5) and (4.7)), we find that the sixth identity holds.
Again by (4.2) with a = 6, (4.3) and (4.4]), we see that

o0

1
n(n+1)—1/2 n(n+1)—1/2
ZUSn—i-Gq e 1/2 Z q pRrEmTE > a

n=—oo n=—oo

_q71/2 1 B 1 )
=3 (wa/?) w<—q1/2>>¢(q -

After utilizing (4.5) and (4.7)), the proof of the seventh identity is complete. =

By (2.6) and (2.7]), we see that

(4.14)

1 1
D) = 2q¢( 4)(90(@ — (%))

n=-—00 n=0

Then apply Us to (4.14) and deduce that

00 7
1
4.15 > Usnrad” = Usq ™~ ,Z —aj —a/s

7 oo oo
1 —aj —a 1 n2-1)j (n?— n2—1)j n?—
= 416Z§ ig /81/}(<4jq1/2)( Z ¢(n*=Dig(n?-1)/8 _ Z ¢(2n* =i 2 1)/8)

(n?—a—1)j (n —a-1)/8 G (2n?—a—1)j (2n%2—a—1)/8
3 oo oo
1 2 . 2 2 . 2
(n“—a—1)j (n“—a—1)/8 (2n“—a—1)j (2n“—a—1)/8
16’1#( 1/2) Z( Z C q - Z C q )
j=0 n=—occ n=-—oo

3 oo e}

1 2 N o2 . .
+WZ( Z C(" a 1)Jq(n a—1)/8 _ Z C(Zn a 1)]q(2n a 1)/8>.

]:O n—=—oo n=—oo
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THEOREM 4.4. We have

= Y(@f(d )
;0”8"‘1 T ()
= ()P d°)
Z%”S"“q Tl
szn+2q =0
n=0
.- w_ pla")f(a,q")
;_%“8”*” T (=)
. _ (9)f(a,q7)
;)“8"*‘” T Il
= q*)f(g:4")

o0
Z Usn+6q" =0

~29(¢%) (4% ¢°)
ZUS"W EeR

Proof. We observe that by (4.2)) and (4.15]),

o0 o0
Z USTLJraqn = Z u8n+a+lqn for a = 0,2,5,6,

00 00
§ U8n+aqn = - E u8n+a+lqn for a =1,4.
n=0 n=0

Hence we can deduce all identities except the fourth and the last one.
To prove the fourth equality, by (4.15) with a = 3, (4.3)) and (4.4), we
have

o0

(4.16) Zv8n+3q (11/2)( Z q - Z ¢ 1/2>

n=—oo n=—oo
o0

+4¢(_1ql/2)( Z (_1)n+1q(n2—1)/2+ Z qn2_1/2)

n=—oo n=—oo
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—-1/2

¢ 2 1/2 q 1/2
= (g 1/2)(<p(q ) —»(q) + (= 1/2)(<P(q)—90(—q )

2 11 p(d?)  o(=¢'?)
I (*"(q)<w<— 172) " (g 1/?)) ! (w<q1/2> w<—q1/2>))'
Putting (4.9) and ( - in - yields

—1/2 1 1
ZUSn—i—Bq = (p(a) +¢(—q)) <w(_q1/2) - w(q1/2)>'

Using ([2.16]), (4.5) and , we complete the proof of the fourth identity.
To prove the last equality, by (4.15) with a = 7, (4.3]) and (4.4]), we have

& S S-Sy e
(4.17) Z%vsan :W<nz_:mq "’ 1_nz_:ooq 1>
LS Lot S g
+4¢(_q1/2)( ;( 1) ; )
= (e 0l0) + (o)  pla)
= dp(q2) AT () ! -

_ L (@) e(=d'?) 1 1
-3 (5 + fo) 0 (s + )
Putting (4.9) and ( - ) into (| - yields

> -1

n 1 1
nZZ;)USan = Tq(@(@) —»(=q)) (w(ql/Q) w(q1/2)>’

so the proof is complete after employing (2.17)), (4.5) and (4.6). =

COROLLARY 4.5. With u,, and v, defined by (4.1)) and (4.14)), we have,
forn >0,

_'_

ugn > 0, USn+1 > 0, Ugn+2 > 0, USnp+3 = 0,
Ugn+12 < 0, Ugn+s < 0, Ugn+6 < 0, Ugn+7 = 0, ug = 0,

vgn > 0, Vgn+1 < 0, Vgn+2 = 0, Vgn+3 > 0,

Ugnta <0, Ugny5 >0,  Ugpie =0, wvgpi7 <O.

Proof. These results follow immediately from Theorems [£.3] and [£.4] =

The last corollary was proved by Chen and Huang [7] and Hirschhorn
[11] by different methods. Moreover, the formulas of Theorems and
are in more compact forms than those of Hirschhorn.
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We observe that by the two identities and -,

(4.18) D(q) =

S o o — Doy (a0
(419) 7;) 2nq = D(Q)w(q2)7
= w1 (g
20 2 vt = = iy
= = ¥(q")
(4.21) woni1q" =S vang" = .
nZ:o 2n+19 nZ:O 2nq (%)

THEOREM 4.6. We have

D(q) = ¢(1I4)(Q¢(q8) + q2¢(q16) + q4¢(q32) + q8¢(q64) ¥,
D}q) - @(w(qs) — (@) + (@) — (™) + - -).

Proof. By (4.19) and (4.21)), it follows that

> s 8 8
D(q) = Zu2n+1q2n+1 + Zu2nq2n _ ¥(q°) + D(q2)¢(q )
n=0

- P Yo (g
_ (@) | av(d) | W) | sv(d™) |
~ ) T e T e T e T

- w<1q4> (a0(*) + *0(a") + " 0(g™) + ¢* (™) + ),

which completes the proof of the first result.

Similarly, by (4.20) and m, we find that

8 8 1

Zv2nq2n+zv2n 1(12"Jrl ZEZ& q1/1(Q) p

7¢(q8)_ w(q16) 20(¢*) 4 ¥(¢*)

“ueh  To® T e T e
1

= i V() — a0(a") 4 P0e™) gl ),

_|_

as desired. =
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