
ACTA ARITHMETICA

151.3 (2012)

Diophantine equations of matching games II

by

Wai Yan Pong (Carson, CA)
and Roelof J. Stroeker (Krimpen aan den IJssel)

1. Introduction. Consider a game in which the player draws d balls
from a bag of balls with n different colors. The player wins if the balls drawn
are of the same color, otherwise he loses. We call this an (n, d)-matching
game or briefly an (n, d)-game. A game is fair if the winning and losing
chances for the player are equal. Let ai be the number of ith color balls in
the bag. It is easy to see that (a1, . . . , an) represents a fair (n, d)-game if it
satisfies the following equation:

(1.1)
(∑n

i=1 xi

d

)
= 2

n∑
i=1

(
xi

d

)
.

Conversely, a solution (a1, . . . , an) of the equation above is a fair game if the
ai’s are non-negative and their sum is at least d.

The quadratic case, i.e. d = 2, of equation (1.1) has been solved in
[HP11]. We believe that equation (1.1) is hard to solve in full generality. In
this paper we will only deal with the “curve” case, i.e. n = 2. But even with
this restriction, we can only handle cases of degree at most 5. We use x, y
instead of x1, x2 for the two variables and equation (1.1) becomes

(1.2)
(
x+ y

d

)
= 2
(
x

d

)
+ 2
(
y

d

)
.

We shall completely solve the three cases d ∈ {3, 4, 5}, and although
for a solution (x, y) of (1.2) to represent a fair (2, d)-game we require both
x and y to be non-negative and x + y ≥ d, it takes little extra effort to
consider all integral values of x and y satisfying the diophantine equation
(1.2). Therefore we need the binomial coefficient to be defined by
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x

d

)
=
x(x− 1) . . . (x− d+ 1)

d!
for any rational integers x, y, and d ≥ 2. As(

2d
d

)
= 2
(

1
d

)
+ 2
(

2d− 1
d

)
for every d ≥ 2, there is always a fair (2, d)-game; it is represented by the
solution (1, 2d − 1) of equation (1.2). It turns out that there are infinitely
many fair (2, 3)-games; we give a full description in the next section. On
the other hand, for d = 4 and d = 5, there are no other fair (2, d)-games
than the one mentioned. A little search reveals that for d = 6 the number of
fair (2, d)-games is at least two: (1, 11) and (2, 19) are the representatives.
We suspect that there are no others, but we are unable to prove this. Our
methods do not work for the cases d ≥ 6.

2. The degree 3 case. In this section we completely solve equation
(1.2) for d = 3; in particular, we will find all fair (2, 3)-games.

Clearing denominators in (1.2) yields
(2.1) s(s− 1)(s− 2) = 2x(x− 1)(x− 2) + 2y(y − 1)(y − 2),
where s = x+y. Observe that x(x−1)(x−2) ≡ −y(y−1)(y−2) modulo s−2.
In other words, x + y − 2 is a factor of both sides of equation (2.1). Note
here that this is not only true in this special case, but something similar
happens for all odd values of d. In fact, for d odd, the line x+ y = d− 1 is
a component of the variety defined by equation (1.2). Canceling x + y − 2
on both sides of (2.1) and rearranging terms yields
(2.2) x2 + y2 − 4xy − x− y = 0.

First note that xy ≥ 0 for all solutions (x, y) ∈ Z2 of equation (2.2). To
be more precise, either x ≥ 0 and y ≥ 0, or x < 0 and y < 0. First consider
the non-negative case. Suppose b ≥ 0 is a coordinate of a fair (2, 3)-game.
Substituting b for y in equation (2.2) yields
(2.3) x2 − (4b+ 1)x+ (b2 − b) = 0.
Since b is a coordinate of a fair game, equation (2.3) must have another
integer solution. In fact, it has two distinct integer solutions since 4b + 1
is an odd integer. Let us call the solutions a and c. Since ac = b2 − b ≥ 0,
a and c have the same sign, and since a+c = 4b+1 > 0, they are non-negative
and cannot both be zero. Now ac = b2− b ≤ b2, so either a or c is at most b.
Without loss of generality, suppose a ≤ b. Then c = 4b + 1 − a > b. So we
have 0 ≤ a ≤ b < c and the equalities hold if and only if b = 0. If b > 0,
repeat the argument with b replaced by a until we get 0 as the smaller root
of equation (2.3). When b = 0, the two roots of equation (2.3) are 0 and 1.
Thus, from c = 4b+ 1− a and 0 ≤ a < b < c we conclude that
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Theorem 1. The non-negative solutions of equation (2.2) are pairs of
consecutive terms of the solution of the second-order recurrence

(2.4) nk+1 = 4nk + 1− nk−1,

with the initial conditions n0 = n1 = 0. The negative solutions of (2.2) are
pairs of consecutive terms of the solution of the same recurrence (2.4) with
the initial conditions n0 = n1 = −1.

The negative case can be proven by an argument quite similar to the
descent argument used above.

The general solution of recurrence (2.4) is

nk = c1λ
k
1 + c2λ

k
2 − 1

2 ,

where λ1 = 2 +
√

3 and λ2 = 2 −
√

3 are the eigenvalues of the matrix(
4 −1
1 0

)
associated with the second order difference equation (2.4), and c1

and c2 are constants depending on the initial values. In the non-negative
case the constants are c1 = 1

12(3−
√

3), c2 = 1
12(3+

√
3), and in the negative

case we have c1 = 1
12(−3 +

√
3), c2 = 1

12(−3 −
√

3). All this leads to the
following results: the fair (2, 3)-games are represented by the pairs (nk, nk+1)
for k ≥ 2, where (nk)k≥0 is the sequence

0, 0, 1, 5, 20, 76, 285, 1065, 3976, 14840, 55385, . . . ,

and the solution set {(x, y) ∈ Z2 | (x, y) satisfies (2.2) and x ≤ y} consists
of the trivial pairs (0, 0), (0, 1), the pairs (−nk+1 − 1,−nk − 1) for k ≥ 0,
and the fair (2, 3)-games.

3. The degree 4 case. In this section we intend to prove the following

Theorem 2. The diophantine equation (1.2) with d = 4 and (x, y) ∈ Z2

has the twelve solutions

(x, y) = (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1),
(1, 2), (1, 7), (2, 0), (2, 1), (3, 0), (7, 1)

and no others.

As a consequence, there is only one fair (2, 4)-game, namely the one
represented by (1, 7).

A quick search with the computer algebra package Maple14 reveals no
other solutions (x, y) with −1000 ≤ x, y ≤ 1000. Other software packages we
shall repeatedly use are SAGE 4.5.3 and PARI/gp 2.3.5. With the help of the
Maple package algcurves we find that equation (1.2) with d = 4 represents
a non-singular rational curve of genus 3. Therefore, by Faltings’ theorem
(see [Fa83]), there can only be finitely many rational solutions and thus also
at most finitely many integral ones. What we need to do is find an upper
bound for the size of these solutions. Unfortunately, no general method is
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known for computing such an upper bound. We can however associate a
rational curve E of genus 1 with (1.2), and for such curves a method does
exists that may succeed in computing all rational integer solutions, namely
Ellog (see [ST94], [ST03]). For general information we also refer to [Sm98,
Chapter XIII].

Every integral solution of (1.2) with d = 4 maps to an integral solution
of the associated curve E of genus 1 by

(x, y) 7→ (xy, x+ y).

Clearly, this means that the rational integral solutions of (1.2) can be recov-
ered from those of the elliptic equation. We shall closely follow [ST03] and
[Tz96] in presenting and combining the necessary calculations.

Putting s = x+ y and p = xy into (1.2) with d = 4 yields

(3.1) F = 0, with F = s(s−1)(s−2)(s−3) + 4p(−2s2 + 9s+p−11).

Another quick search shows that equation (3.1) has the 14 rational integral
solutions

(s, p) = (−10, 15), (−10, 286), (0, 0), (0, 11), (1, 0), (1, 4), (2, 0),
(2, 1), (3, 0), (3, 2), (4, 1), (4, 6), (8, 7), (8, 60)

and no others in the range −1000 ≤ s, p ≤ 1000. It is easily established that
our work is done if it can be shown that (3.1) has no other rational integer
solutions. Hence we may assume that |s| > 1000 for a solution (s, p) ∈ Z2 of
(3.1). In order to get an idea in which parts of the (s, p)-plane large solutions
of (3.1) may be expected, we look at the graph of the equation.

The visible integer solutions are shown in Figure 1. It appears that there
are four infinite branches. We can check this by considering Puiseux series.

(a) Four infinite branches (b) Zoomed in near the origin

Fig. 1. Graphs of the non-singular curve (3.1) of genus 1
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We find, again with the assistance of algcurves, that

(3.2) p = αs2 +
(

1
2 − 5α

)
s− 1 + 13

2 α+O(s−1) (s→ ±∞).

Here α is one of the roots of 4t2 − 8t+ 1 = 0, that is, α = 1± 1
2

√
3.

The curve represented by equation (3.1) is a non-singular curve E of
genus 1 over Q with a distinguished point and hence an elliptic curve. Its
short Weierstraß model is

(3.3) v2 = u3 − 24u+ 4,

and this also happens to be a minimal equation for E. This is a well known
curve, it has Cremona label 4572b1. The birational transformation equations
are

u =
2(41s2 − 195s− 22p+ 242)

s2
,(3.4)

v =
2(357s3 − 2602s2 − 192sp+ 6402s+ 484p− 5324)

s3
,(3.5)

and

s =
192u+ 22v − 36
u2 − 76u− 8

,

p =
94u3 + 3u2v + 2982u2 + 960uv − 23472u− 4512v + 9280

u4 − 152u3 + 5760u2 + 1216u+ 64
.

All this can be quickly computed with the Maple package algcurves. Now
as s tends to ±∞, we know from (3.2) how any point (s, p) moves along
its branch of the curve (3.1), and from (3.4) and (3.5) we have similar
information about the point (u, v) on the Weierstraß model (3.3). Hence
for each of the parameterizations given by the Puiseux series (3.2),

(3.6) Q0 = (u0, v0) := lim
s→±∞

(u(s), v(s)) = (82− 44α, 714− 384α)

is a point on (3.3). This gives two points, one on each of the two components
of this curve (see Figure 2). Therefore we have to consider two separate cases.

We turn to SAGE to find information on the structure of the curve (3.3).
It turns out that this is an elliptic curve E over Q with trivial torsion and
of rank 2. A basis for the Mordell–Weil group is {(−4, 6), (−3, 7)}; this is a
certified basis, computed by John Cremona’s mwrank which is incorporated
in SAGE. Also with SAGE we calculated several height values that we shall
need shortly; they are given in Table 1 below.

Let us have a further look at equation (3.3). The cubic polynomial
q(u) := u3 − 24u + 4 has three distinct real roots, e1, e2, e3, say with
e1 > e2 > e3. Let Qi = (ei, 0) (i = 1, 2, 3) be the corresponding points
on the curve. These points are torsion points of order 2 of the curve E de-
fined over a cubic number field generated by a zero of q. The group E(R) has
two components (see Figure 2(b)), E0(R) containing the identity element,
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(a) One finite, one infinite branch (b) Zoomed in near the origin

Fig. 2. Graphs of the non-singular curve (3.3) of genus 1; the points Q0 are drawn in.

Table 1. Important constants for E with equation (3.3)

The functions h and ĥ are the näıve logarithmic height

and the canonical height functions respectively

hE = h(jE), real height of E 12.3067502132836

upper bound height difference, ĥ(Q)− 1
2
h(Q) 1.4735023850806

least eigenvalue of height pairing matrix 0.1271279537058

and the bounded component E1(R). If R ∈ E(R) does not belong to E0(R)
then R′ := R+Q2 ∈ E0(R). The group isomorphism (see [ST94] and [Za87])

(3.7) φ : E0(R)→ [0, 1) = R/Z
can be extended to a two-to-one epimorphism φ̃ by

φ̃(Q) = φ(Q) or φ(Q′)

for any point Q ∈ E(R), depending on whether Q ∈ E0(R) or not. By the
way, the basis elements of the Mordell–Weil group given above do not belong
to E0(R). Now, if ω is the fundamental real period then ωφ̃(Q) is the elliptic
logarithm of Q or of Q′, whichever makes sense.

Any point Q ∈ E(Q) can be written as Q = m1P1+m2P2 where {P1, P2}
is the Mordell–Weil basis given above. As Pi 6∈ E0(R), we add Q2 to each of
them, so that Q = m1P

′
1 + m2P

′
2 + T , where T is the identity or a torsion

point of order 2. We do the same for Q0 in case this point happens to lie on
the compact component of E. As 2φ(T ) ≡ 0 (mod 1) we have

φ̃(Q) = m1φ(P ′1) +m2φ(P ′2) +m0 + 1
2ε,
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where m0 is a rational integer with |m0| ≤ 2M + 1
2 < 2M +1 and ε ∈ {0, 1};

here M := max(|m1|, |m2|). In terms of elliptic logarithms we now have (see
[ST03, Section 2.5])

(3.8)
u0�

u

du√
q(u)

= −ωφ̃(Q0) +
(
m0 + 1

2ε
)
ω +m1ωφ(P ′1) +m2ωφ(P ′2).

Now suppose Q = (s, p) is an integral point of (3.1), s > resp

(
F, ∂F

∂p

)
=

3.2368, and (u, v) is the birationally corresponding point on (3.3). Further,
let us denote the right-hand side of (3.8) by L(Q). The elliptic integral of
(3.8) is connected to one of the elliptic integrals corresponding with the
model (3.1) by means of the birational transformations (3.4) and (3.5) in
the obvious way, that is,

(3.9)
∞�

s

Gds = ±
u0�

u

du√
q(u)

or
s�

−∞
Gds = ±

u0�

u

du√
q(u)

depending on the point Q, where

G :=
2(vsFp − vpFs)
(3u2 − 24)Fp

.

Specializing p as a Puiseux series (see (3.2)) and hence u and v as well via
(3.4) and (3.5), we find the following Puiseux expansion for G in terms of
powers of s:

G =
(

2
3 −

2
3α
)
s−2 +

(
10
3 −

10
3 α
)
s−3 +O(s−4) (s→ ±∞).

Combining this expression with (3.8) and (3.9) should give an upper bound
for |L(Q)| in terms of the abscissa of the integral point Q, namely (see [ST03,
Section 2.4])

(3.10) |L(Q)| ≤ c1|s|−1.

To find a suitable value for c1, solve F = 0—which is quadratic in p (see
(3.1))—explicitly for p and substitute the solutions p = p(s) into G. This
gives, for both values of α,

|G| = 1√
3s4 − 30s3 + 114s2 − 192s+ 121

≤ 0.6s−2

for |s| > 1000 and therefore we may take c1 = 0.6.
We have now established an upper bound for |L(Q)| in terms of s, but

we need an upper bound in terms of the maximum M of the absolute values
of the coefficients m1,m2 of Q with respect to the given Mordell–Weil basis.
Therefore we need the constants c2, c3 of [ST03, Lemma 2.5.1]. These can be
found using (3.2) and (3.4). To be more precise, if (u, v) are the coordinates
of Q on (3.3) then the näıve logarithmic height of Q is

h(u) = log max(|2(41s2 − 195s− 22p+ 242)|, s2) ≤ log 77 + log s2
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for |s| > 1000. On the other hand (see Table 1)

h(u) ≥ 2(ĥ(Q)− 1.48) ≥ 2(0.127M2 − 1.48),

and hence

(3.11) log |s| ≥ −1.48− 1
2 log 77 + 0.127M2.

Combining (3.10) with (3.11) leads to

(3.12) |L(Q)| ≤ exp(3.15− 0.127M2).

Finally, the lower bound for L(Q) is provided by S. David’s theorem
[Da95, Théorème 2.1]:

(3.13) |L(Q)| > exp(−c4(logN + c5)(log logN + c6)5).

Here N is an upper bound for all the coefficients in the linear form of elliptic
logarithms L(Q), so that N ≤ 2M+1. This lower bound is valid provided M
is not less than a certain small positive constant. For a detailed discussion
of the constants c4, c5 and c6 the reader can consult [Tz96, Appendix]. We
calculated c4 = 0.995 · 10118, c5 = 2.8, c6 = 15.1. Observe that the points
Q0 and P ′1, P

′
2 are defined over a number field of degree 6. As the right-hand

side of (3.13) is larger than the right-hand side of (3.12) for large M , this
gives an upper bound for M . Our calculations give the initial upper bound
0.622 · 1064 for M .

Table 2. Integer points (s, p) on (3.1)

and their corresponding points on (3.3)

Integer points on (3.1) with corresponding rational points
(u, v) = m1(−4, 6) + m2(−3, 7) on (3.3)

s p m1 m2 u v

8 60 −3 0 −7/16 −243/64

−10 286 −2 −1 0 −2

4 1 −2 0 12 38

3 2 −1 0 −4 −6

1 0 −1 1 176 −2334

2 1 0 1 −3 7

2 0 1 1 8 −18

0 11 1 2 20/121 258/1331

1 4 2 1 0 2

3 0 2 2 52/9 206/27

4 6 3 2 −7/4 −51/8

−10 15 3 3 2981/25 162621/125

8 7 4 2 36 214
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The final step is to reduce this large upper bound to a manageable size.
We use the LLL algorithm as implemented by de Weger; we closely follow
the detailed description in [Tz96, Section 5]. General information on the
LLL method can be found in [Sm98, Section V.4]. The calculations were
done by PARI/gp. Observe that here we are in the inhomogeneous case
because of the first term in L(Q) (see (3.8)). This makes the reduction
process slightly more complicated. The first reduction gives an upper bound
of 49, the second gives 14 and the third reduction gives an upper bound
of 13 for M ; no further reduction of the bound was obtained. Considering
the range [−13, 13] for m1,m2 with Q = m1P1 + m2P2 we get precisely
the expected values. The results are contained in Table 2. Observe that
(s, p) = (0, 0) is missing from the table; this point comes from the group
identity (the point at infinity) of the Weierstraß model (3.3).

4. The degree 5 case. This case is very similar to the degree 4 case.
Also the shapes of the curves look very much the same. Therefore we can
shorten this section considerably, and refer to the corresponding description
in the previous section.

We shall prove the following

Theorem 3. The diophantine equation (1.2) with d = 5 and (x, y) ∈ Z2

has the twelve solutions

(x, y) = (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1),
(1, 2), (1, 9), (2, 0), (2, 1), (3, 0), (9, 1)

together with all integer pairs on the line x+ y − 4 = 0, and no others.

As a consequence, there is only one fair (2, 5)-game, namely the one
represented by (1, 9).

Now, equation (1.2) is reducible, and we first factor out the linear factor
x + y − 4. The remaining irreducible factor again gives a curve of genus 3.
Putting s = x+ y and p = xy in the equation for this curve yields (compare
with (3.1))

(4.1) F = 0, with F = s(s− 1)(s− 2)(s− 3) + 10p(−s2 + 4s+ p− 5).

This time we find the 12 integer solutions

(s, p) = (−10, 13), (−10, 132), (0, 0), (0, 5), (1, 0), (1, 2),
(2, 0), (2, 1), (3, 0), (3, 2), (10, 9), (10, 56)

in the range −1000 ≤ s, p ≤ 1000 and no others, and so we may assume
|s| > 1000 for a solution (s, p) ∈ Z2 of (4.1). The curve F = 0 is of genus 1
so that we may apply the elliptic logarithm method Ellog in this case too.
The real graph of F = 0 reveals four infinite branches and the corresponding
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Puiseux series begin as follows:

(4.2) p = αs2 +
(

1
3 −

14
3 α
)
s− 19

18 + 64
9 α+O(s−1) (s→ ±∞),

where α is a root of 10t2 − 10t+ 1 = 0, so that α = 1
2 ±

1
10

√
15.

The curve represented by equation (4.1) is a non-singular curve E of
genus 1 over Q with a distinguished point and hence an elliptic curve. Its
short Weierstraß model

(4.3) v2 = u3 − 3100u− 20000

is also the minimal equation for E. The birational transformation equations
are

u =
10(43s2 − 194s− 50p+ 250)

s2
,(4.4)

v =
100(−82s3 + 583s2 + 94sp− 1440s− 250p+ 1250)

s3
,(4.5)

and

s =
−940u+ 50v − 5800
u2 − 360u− 5100

,

p =
430u3 − 6u2v + 60100u2 − 9840uv − 5597000u+ 490600v + 1210000

u4 − 720u3 + 119400u2 + 3672000u+ 26010000
.

Now, as s tends to ±∞, we know from (4.2) how any point (s, p) moves
along its branch of the curve (4.1), and from (4.4) and (4.5) we have similar
information about the point (u, v) on the Weierstraß model (4.3). Hence for
each of the four parameterizations given by the Puiseux series the point

(4.6) Q0 = (u0, v0) := lim
s→±∞

(u(s), v(s)) = (430− 500α,−8200 + 9400α)

is a point on (4.3). This gives two distinct points, one on each of the two
components of this curve. The graphs of (4.3) are quite similar to the ones
in Figure 2 except for the precise positions of the Q0.

The elliptic curve E/Q has trivial torsion and is of rank 3. A certi-
fied basis for the Mordell–Weil group is {(−50, 100), (−40, 200), (−36, 212)}.
Important constants for E are given in Table 3. The cubic polynomial
q(u) := u3 − 3100u − 20000 (see the Weierstraß equation (4.3) for E ) has

Table 3. Important constants for E with equation (4.3)

The functions h and ĥ are the näıve logarithmic height
and the canonical height functions respectively

hE = h(jE), real height of E 17.7566815628194

upper bound height difference, ĥ(Q)− 1
2
h(Q) 2.8224454784140

least eigenvalue of height pairing matrix 0.3081893302623
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three distinct real roots, e1, e2, e3, say with e1 > e2 > e3. As before, the
Qi = (ei, 0), i = 1, 2, 3, are the corresponding points on the curve; Qi is a
torsion point of E of order 2 over the cubic number field Q(ei). In order to
work out the upper bound for the linear form in elliptic logarithms we follow
exactly the same argument that was used in the previous section, starting
with the definition of the group isomorphism (3.7). The only difference is
the rank of E, which results in an extra term in this linear form. All three
group generators correspond with points in the compact part E0(R).

We now find
2(vsFp − vpFs)
(3u2 − 3100)Fp

=
(
−1

3 + 2
3α
)
s−2 +

(
−14

9 + 28
9 α
)
s−3 +O(s−4) (s→ ±∞),

so that

(4.7) |L(Q)| ≤ c1|s|−1,

where L(Q) = −ωφ̃(Q0)+
(
m0 + 1

2ε
)
ω+m1ωφ(P ′1)+m2ωφ(P ′2)+m3ωφ(P ′2).

Now

|G| = 1√
15s4 − 140s3 + 540s2 − 940s+ 625

≤ 0.3s−2

for |s| > 1000 and both values of α, and we can therefore take c1 = 0.3. As
we shall need to find an upper bound for |L(Q)| in terms of the maximum
M of the absolute values of the coefficients m1,m2,m3 of Q with respect to
the given Mordell–Weil basis, we proceed as follows.

Let (u, v) ∈ E(Q) be the coordinates of Q on (4.3). Then the näıve
logarithmic height of Q is

h(u) = log max(|10(43s2 − 194s− 50p+ 250)|, s2) ≤ log 375 + log s2

for |s| > 1000. Combining this with the inequality (see Table 3)

h(u) ≥ 2(ĥ(Q)− 2.83) ≥ 2(0.308M2 − 2.83),

ultimately leads to the upper bound

|L(Q)| ≤ exp(log 0.3 + 2.83 + 1
2 log 375− 0.308M2)(4.8)

≤ exp(4.59− 0.308M2).

The lower bound for L(Q) is provided by [Da95, Théorème 2.1]:

(4.9) |L(Q)| > exp(−c4(log(3M + 1) + c5)(log log(3M + 1) + c6)6).

We calculated c4 = 0.443 · 10166, c5 = 2.8, c6 = 20.6. The points Q0 and
P ′1, P

′
2, P

′
3 are defined over a number field of degree 6. As the right-hand side

of (4.9) is larger than that of (4.8) for large M , this gives an upper bound
for M . Our calculations give the initial upper bound 0.301 ·1089 for M . The
first LLL reduction step brings this large bound down to 37, the next one
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gives 10 and finally the reduction stops at 9. Considering all rational points

(u, v) = m1(−50, 100) +m2(−40, 100) +m3(−36, 212)

with |mi| ≤ 9 (i = 1, 2, 3) on (4.3) coming from integral points (s, p) on
(4.1), and checking which ones come from integral solutions of equation
(1.2), brings no surprises. For details see Table 4.

Table 4. Integer points (s, p) on (4.1) and their corresponding points on (4.3)

Integer points on (4.1) with corresponding rational points

(u, v) = m1(−50, 100) + m2(−40, 200) + m3(−36, 212) on (4.3)

s p m1 m2 m3 u v

10 56 −2 0 −1 −19 −179

−10 13 −2 0 0 584 14048

−168 3213 −2 1 −1 169660/441 69134500/9261

3 2 −1 0 0 −50 −100

1 0 −1 1 0 990 −31100

2 1 0 1 0 −40 200

2 0 0 1 1 85 −575

0 5 0 2 1 −164/25 916/125

1 2 1 1 1 −10 100

3 0 1 2 1 550/9 3700/27

−168 25688 2 1 2 −215/16 −8875/64

−10 132 2 2 1 −11 −113

10 9 2 2 2 216 3064
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