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Abstract. In this paper we give a summary of joint work with Alexa van der Waall con-
cerning Lamé equations having finite monodromy. This research is the subject of van der Waall’s
Ph. D. thesis [W].

1. Second order equations with finite monodromy. Consider the set of second
order linear Fuchsian differential equations of the form

Ly = 0, L ∈ C(z)
[
d

dz

]

having finite monodromy group. Denote this set by A. As is well-known, A is precisely
the set of second order equations over C(z) whose solution set consists of functions alge-
braic over C(z). By abuse of language we call the elements from A algebraic differential
equations.

Consider an equation Ly = 0 from the set A. At every point of a ∈ P1 the equation
Ly = 0 has two local exponents ρ1, ρ2. We call |ρ1 − ρ2| the local exponent difference at
a. At every non-singular point the local exponent difference is 1. Suppose conversely that
the local exponent difference of Ly = 0 at a equals 1. Since Ly = 0 belongs to A there
are no local logarithmic solutions. Denote the local solutions at a by (z − a)ρf1(z) and
(z−a)ρ+1f2(z), where f1, f2 are locally biholomorphic at a. Then the differential equation
(z − a)−ρL((z − a)ρy) = 0 has the solutions f1, (z − a)f2 and z = a is a non-singular
point of the new differential equation.

An equation from A is called pure if the only integral exponent difference that is al-
lowed to occur is 1. In particular, apparent singularities are forbidden with such equations.
Denote the subset of pure equations by A0. The set of pure equations is stable under the
substitution L → A(z)R(z)−ρL ◦ R(z)ρ for any A(z), R(z) ∈ C(z) and ρ ∈ Q. It is also

stable under automorphisms of P1, that is, replacing z by az+b
cz+d for any

(
a b
c d

)
∈ GL(2,C).
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These two operations give an equivalence relation in A0. Denote this equivalence relation
by ∼. We have the following Theorem.

Theorem 1.1. Let notations be as above. Then A0/ ∼ is a countable set.

A proof of this Theorem is given in the last section. As a consequence of this Theorem
one can start an enumeration of the set A0. We perform this enumeration using an in-
creasing number of singular points of the differential equation. Let us start with Fuchsian
equations having two singularities, which we may assume to be 0,∞. Such an equation
is of the form z2 d2y

dz2 + az dydz + by = 0. It has a basis of solutions of the form zρ1 , zρ2

where ρ1, ρ2 are zeros of x2 + (a− 1)x+ b. Algebraicity of the solutions is equivalent to
ρ1, ρ2 ∈ Q. Hence a, b ∈ Q.

The first interesting case is that of three singularities. By application of an equivalence
transformation we can see to it that the singularities are 0, 1,∞ and at 0, 1 at least one
local exponent is 0. These properties characterise the Gaussian hypergeometric equation,
having the famous hypergeometric series

F (a, b, c|z) =
∞∑

n=0

(a)n(b)n
(c)nn!

zn

as solution, where (x)n = x(x+1) · · · (x+n−1) is the so-called Pochhammer symbol. The
numbers a, b, c are the parameters of the hypergeometric equation. In 1873 H. A. Schwarz
[Schw], using ideas of Riemann, gave a complete list of all hypergeometric equations
having an algebraic solution set.

The next step would be to study second order equations with four singularities. How-
ever, in this case we encounter a difficulty. In the previous cases the equation was de-
termined by the location of the singularities and the local exponents. In other words, by
local data. In the case of four singularities there is one parameter which is not determined
by local data. This is called the accessory parameter. The dependence of the monodromy
group on the accessory parameter is as yet little understood. It is possible however to find
conditions on the accessory parameter for the solutions to be algebraic. In particular, we
shall do this for the Lamé equation.

2. The Lamé equation. Let n ∈ Q, g2, g3, B ∈ C. The Lamé equation with these
numbers as parameters is the equation given by

p(z)
d2y

dz2 +
1
2
p′(z)

dy

dz
− (n(n+ 1)z +B)y = 0

where p(z) = 4z3 − g2z − g3 and we assume that p(z) has three distinct zeros z1, z2, z3.
This equation will be abbreviated by

Ln,By = 0.

The local exponents are 0, 1/2 at the three finite singularities and −n/2, (n+ 1)/2 at ∞.
Since the equation does not change under n → −1 − n we shall assume n ≥ −1/2. The
number B is the accessory parameter of the equation.

Consider a local set of solutions around a non-singular point and consider also the
action of the monodromy group M on this space. The local monodromies γi at the
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finite singularities zi have eigenvalues ±1 and hence γ2
1 = γ2

2 = γ2
3 = Id. Moreover,

γ1γ2γ3γ∞ = Id where γ∞ is the local monodromy at ∞. Moreover, M is generated by
the γi and the γi are reflections. So M is a so-called reflection group.

There are two particular cases to be mentioned. The first one is n + 1/2 ∈ Z. Since
n+ 1/2 is the local exponent difference at ∞, logarithmic solutions at ∞ may arise.

Theorem 2.1 (Brioschi-Halphén). Suppose n+ 1/2 ∈ Z≥0. Then there exists a poly-
nomial pn ∈ Z[g2/4, g3/4, B] of degree n+1/2 in B such that Ln,By = 0 has no logarithmic
solutions at ∞ if and only if pn(g2, g3, B) = 0.

The polynomial pn is known as the Brioschi-Halphén determinant. In particular, if
there are no logarithmic solutions, then γ∞ acts as a scalar. It is not hard to see that
γ2
i = Id for i = 1, 2, 3 and γ1γ2γ3 scalar imply that M modulo scalars equals Klein’s four

group V4. In other words, if pn(g2, g3, B) = 0 then the monodromy group is finite. For
example, when n = 3/2 we have p3/2(g2, g3, B) = B2 − 3g2/4. There are overcountably
many g2, g3, B satisfying B2 − 3g2/4 = 0. Notice also that our equation is not pure for
such triples since the local exponent difference at ∞ is 2. So we see that Theorem 1.1
cannot hold if we drop the purity condition.

The next case of interest is n ∈ Z. Then n + 1/2 is a half integer and γ∞ is also a
reflection. So we now have

γ2
1 = γ2

2 = γ2
3 = γ2

∞ = Id, γ1γ2γ3γ∞ = Id.

From these relations it follows easily that the subgroup H generated by γ1γ2 and γ2γ3

is an abelian subgroup of M of index 2. We can now distinguish two cases.

1. H contains an element with two distinct eigenvalues. Denote the corresponding
eigenfunctions by y1, y2. With respect to this basis the group H is a subgroup of

{(
λ 0
0 λ−1

)
|λ ∈ C∗

}
.

The monodromy group M itself is then a subgroup of
{(

λ 0
0 λ−1

)
,

(
0 λ

λ−1 0

)
|λ ∈ C∗

}
.

2. All elements of H have coinciding eigenvalues. Then, with respect to a suitable
basis, H is a subgroup of {

±
(

1 λ

0 1

)
|λ ∈ C

}
.

The monodromy group M itself is then a subgroup of
{(±1 λ

0 ±1

)
|λ ∈ C

}

and M acts reducibly. The one-dimensional invariant subspace corresponds to the
so-called Lamé solutions.

The following classical theorem characterises the occurrence of Lamé and Hermite
solutions.
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Theorem 2.2 (Lamé). Suppose n ∈ Z≥0. Then there is a polynomial pn ∈ Z[g2/4,
g3/4, B] of degree n in B such that there exists a solution of the form

3∏

i=1

(z − zi)εiQ(z)

with εi ∈ {0, 1/2}, Q(z) ∈ C[z], if and only if pn(g2, g3, B) = 0.

Moreover, the case described in this Theorem is the only case in which the Lamé
equation is reducible over C(z) (see [W]).

3. Algebraic Lamé equations. In this section we suppose that the monodromy
group M of the Lamé equation is finite. The group M is generated by the three local
monodromy elements γ1, γ2, γ3, each having eigenvalues ±1. Through the classification
of finite subgroups of PGL(2,C) we know that M modulo scalars is either one of the
following groups: the cyclic group Cn of order n, the dihedral group Dn of order 2n, the
alternating groups A4, A5 and the permutation group S4. Moreover, in each of these cases
we can find an explicit description of the matrix group in [K]. The following theorem is
immediate.

Theorem 3.1 (Baldassarri). The group M modulo scalars cannot be A4.

This follows from the fact that the γi still have order two if we consider them as
elements of PGL(2,C) and A4 cannot be generated by elements of order two.

A more refined description of M can be given when we use the classification of Shep-
hard and Todd of finite complex reflection groups. A finite complex reflection group
is a finite subgroup of GL(m,C) which is generated by complex reflections. A com-
plex reflection is a semi-simple element all of whose eigenvalues except one are equal
to 1. In the following theorem an element g ∈ GL(m,C) acts on C[x1, . . . , xm] via
(x1, . . . , xm)t 7→ g(x1, . . . , xm)t. The action of g on a polynomial P is denoted by P g. We
define

C[x1, . . . , xm]G := {P ∈ C[x1, . . . , xm]|P g = P for all g ∈ G}.

Theorem 3.2 (Shephard-Todd). Let G be a finite subgroup of GL(m,C). Then G is
a finite complex reflection group if and only if C[x1, . . . , xm]G is a polynomial ring freely
generated by m elements I1, . . . , Im.

Let G be a finite complex reflection group and I1, . . . , Im be a set of generating
invariants. We can assume them to be homogeneous polynomials. Denote the degree of Ii
by di and suppose that d1 ≤ d2 ≤ · · · ≤ dm. Then the di are uniquely determined and they
are called the degrees of G. In their paper [ST] Shephard and Todd also give a complete
classification of all finite complex reflection groups. We can use their classification to
list the possible finite monodromy groups M that occur for the Lamé equation. In the
case when m = 2 we get, using the further restriction that M is generated by order 2
reflections, the following list of possibilities.

G(4, 2, 2), G(N,N, 2) (N ≥ 3), G12, G13, G22.
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Here G(4, 2, 2) is the group of order 16 generated by
(
i 0
0 −i

)
,

(−1 0
0 1

)
,

(
0 1
1 0

)
.

Its quotient by scalars is Klein’s four group V4. The group G(N,N, 2) is the dihedral
group of order 2N generated by

(
exp(2πi/N) 0

0 exp(−2πi/N)

)
,

(
0 1
1 0

)
.

The group G12 is generated by

1√
2

(
0 1 + i

1− i 0

)
,

1√
2

(
1 1
1 −1

)
,

1√
2

(
1 i

−i −1

)
.

The group G13 is the group generated by the elements of G12 together with
(
i 0
0 i

)
.

The groups G12, G13 modulo scalars are isomorphic to S4. They will be called octahedral
groups. Finally, the group G22 is generated by

(
i 0
0 i

)
,

1√
5

(
ζ5 − ζ4

5 ζ2
5 − ζ3

5

ζ2
5 − ζ3

5 ζ4
5 − ζ5

)
,

1√
5

(
ζ3
5 − ζ5 1− ζ5
ζ4
5 − 1 ζ2

5 − ζ4
5

)
.

Its quotient by scalars is A5 and we call it the icosahedral group. We have the following
Theorem.

Theorem 3.3 (Van der Waall). Suppose the Lamé equation Ln,By = 0 has finite
monodromy group M . Then

1. M = G(4, 2, 2)⇒ n ∈ 1/2 + Z
2. M = G(N,N, 2)⇒ n ∈ Z
3. M = G12 ⇒ n ∈ ±1/4 + Z
4. M = G13 ⇒ n ∈ ±1/6 + Z
5. M = G22 ⇒ n ∈ ±1/10,±3/10,±1/6 + Z

Moreover, in each of the cases 1,3,4,5 we can find a Lamé equation such that the group
actually occurs together with the given residue class n (modZ). The group G(4, 4, 2) never
occurs. The group G(N,N, 2) is known to occur for N = 3, 5, 6, 7, 8, 9, 10.

A complete proof can be found in [W]. Partial results in this direction were obtained
by Baldassarri [B] and Chiarellotto [C]. We expect that for every group G(N,N, 2) with
N ≥ 3, N 6= 4, there is a Lamé equation having this monodromy group. In [C] there
is a method to count the number of inequivalent Lamé equations with given dihedral
monodromy group and thus confirm our expectation. Unfortunately Theorems 2.14, 2.15
in [C] only consider monodromy modulo scalars. For example, from [C] it follows that
there are two distinct Lamé equations with n = 1 and dihedral monodromy group of
order 10. In [W] the author gets only one such equation, whereas the other intended
solution has dihedral monodromy of order 20. Also it is stated in [C] that there is one
case with n = 1 and dihedral monodromy group of order 8. This contradicts the above
Theorem, which states that such groups cannot occur. We think that the group alluded
to in [C] is in fact dihedral of order 16.
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In [B] it is stated that the octahedral group cannot occur when n ∈ 1/6+Z. However,
this is due to an error since the Lamé equation with g2 = 1, g3 = 0, B = 0, n = 1/6
does have octahedral monodromy, as it is the rational pull-back of the hypergeometric
equation x(x − 1)y′′ + (5x/4 − 3/4)y′ − (7/242)y = 0 by the substitution x = z2. The
latter hypergeometric equation has octahedral monodromy.

4. Enumeration of algebraic Lamé equations. For each choice of group M and
parameter n there is an algorithm to construct all g2, g3, B such that the group M actu-
ally occurs. Here we give only an example of such a construction. We like to determine
all algebraic Lamé equations with parameter n = 3/10. According to Theorem 3.3 the
monodromy group must be G22. This has an invariant of degree 12. Let y1(z), y2(z) be
two local solutions around infinity. Then there is a binary form I of degree 12 such that
I(y1, y2) is invariant under monodromy. Hence it is a rational function in z. Moreover,
since the local exponents at all finite points are non-negative, we have I(y1, y2) ∈ C[z].
The explicit solutions read

y1(z) = z3/20
(

1 +
5B
4

1
z

+
(

25B2

192
− 7g2

1280

)
1
z2 + · · ·

)
,

y2(z) = z−13/20
(

1 +
5B
36

1
z

+
(

25B2

4032
+

299g2

8960

)
1
z2 + · · ·

)
.

The only degree twelve monomials that occur in I(y1, y2) are therefore, y11
1 y2, y

6
1y

6
2 , y1y

11
2 .

The others all contain fractional powers of z. We must find α, β such that I = y11
1 y2 +

αy6
1y

6
2 + βy1y

11
2 ∈ C[z]. Notice that the three relevant monomials are of order −1, 3, 7 in

1/z. Up to order 1/z3 we have

I = z +
125B

9
+

10000B2 − 3g2

112
1
z

+

+
750000B3 + 650Bg2 − 63g3

2128
1
z2 +O(

1
z3 ).

The coefficients of 1/z and 1/z2 must be zero. Notice that through the substitution
z → λz in the Lamé equation the parameter B changes into B/λ. Hence after suitable
normalisation we can assume that B has some arbitrarily given value. We take B =
1/100. It then follows from the vanishing of our two coefficients that g2 = 1/3 and
g3 = 5/108. Applying Kovacic’s algorithm to this particular case shows that we have
indeed an algebraic differential equation.

5. Proof of Theorem 1.1. Given a linear differential equation from A0, let M ⊂
GL(2,C) be its finite Galois group. The conjugacy class of M depends on the choice
of a local basis y1, y2 with respect to which M is determined. According to F.Klein’s
work, y1, y2 can be chosen in such a way that M modulo scalars is one of a concrete
list of possible groups in PGL(2,C). They are the cyclic group CN of order N , the
dihedral group DN of order 2N , the tetrahedral group A4, the octahedral group S4 and
the icosahedral group A5. Let G be such a group. A rational function f(z) is called G-

invariant when f(az+bcz+d ) = f(z) for every
(
a b
c d

)
∈ G. The G-invariant rational functions
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form a subfield of C(z) which we will denote by C(z)G. Klein constructed for each G

an explicit rational function jG(z) ∈ C(z) such that jG generates C(z)G. Moreover, jG
ramifies only above 0, 1,∞.

Now consider the composite function R(z) = jG(y1/y2). Then R(z) is invariant under
monodromy, hence a meromorphic function on P1, i.e. R(z) ∈ C(z). Let z0 ∈ P1. The
ramification order of R(z) at z0 is equal to the local exponent difference of Ly = 0 at
z0 times the ramification order of jG at y1(z0)/y2(z0). This implies in particular that
any point z0 where the local exponent difference is not an integer, must be mapped to a
ramification point of jG by z0 7→ y1(z0)/y2(z0). Since jG ramifies only above 0, 1,∞, we
conclude that R(z0) ∈ {0, 1,∞}. Let z0 be any point such that R(z0) 6= 0, 1,∞. Then z0

must have integral exponent difference. Since our equation is pure this difference is 1 and
therefore R(z) is unramified in z0. We conclude that R(z) is a so-called Belyi function, a
rational function R : P1 → P1 such that R ramifies only above 0, 1,∞.

According to [Schn, Lemma I.1] the set of Belyi functions is countable when we con-
sider two Belyi functions f(z), f( az+bcz+d ) as equivalent. The set of functions jG is also
countable and therefore the set of ratios y1(z)/y2(z) modulo fractional linear transforma-
tions in z is countable. Suppose now that two differential equations L̃y = 0 and Ly = 0
give rise to the same quotient y1/y2 = ỹ1/ỹ2. Differentiate both sides to getW/y2

2 = W̃/ỹ2
2

where W and W̃ are the Wronskian determinants of the differential equations. For exam-
ple W (z) = y′1y2 − y1y

′
2. It is well-known that W (z) = S(z)a for some S(z) ∈ C(z) and

a ∈ Q. And similarly W̃ (z) = S̃(z)ã. Hence ỹ2 = S̃ã/2S(z)−a/2y2 and we conclude that
Ly = 0 and L̃y = 0 are equivalent. Hence, up to equivalence the set of equations in A0 is
countable, as asserted.

References

[B] F. Baldassarri, On algebraic solutions of Lamé’s differential equation, J. Differential
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