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Abstract. This paper deals with the notion of Grobner §-base for some rings of linear
differential operators by adapting the works of W. Trinks, A. Assi, M. Insa and F. Pauer. We
compare this notion with the one of Grobner base for such rings. As an application we give some
results on finiteness and on flatness of finitely generated left modules over these rings.

1. Introduction. We will study Grobner d-bases for some rings of linear differential
operators.

We have adapted to the differential case some notions and some results obtained by
W. Trinks in [TRI] and A. Assi (in [ASS-1] and [ASS-2]) for the case of a commutative
polynomial ring with coeflicients in a commutative unitary ring.

The notion of Grébner d-base we introduce here is equivalent to the one of Grébner
base defined by M. Insa and F. Pauer in [IN-PA]. Nevertheless, we reserve the name
Grobner base for the classical notion introduced in [CAS-1] (see also [CAS-2]). Besides
the k-algebras appearing in [IN-PA], the cases H = k[[X]][X '] and H = k{X }[X 1]
(when k = R, C) will be especially interesting in order to extend the results of [ACG-1]
and [ACG-2] to the rings of linear differential operators with coefficients in H.

Section 2 is devoted to the definition of the class of rings of linear differential operators
we will study and to the theory of Grébner §-bases. We have, in these rings, a reduction
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algorithm which allows the effective construction of a Grébner §-base for a given ideal,
defined by a finite system of generators. This is the aim of sections 3, 4 and 5.

In section 6 we compare the notions of Grébner §-base and Grébner base in the case
of the Weyl algebras. We prove that any Grébner base (in the sense of [CAS-1] (see
also [CAS-2])) of a left ideal of a Weyl algebra is a Grébner d-base with respect to an
appropriate well-ordering. We also prove that the converse is not true.

We can deduce adapted algorithms for membership problem, elimination problem and
syzygies problem by using Grobner d-bases (instead of Grobner bases) that could have
in some cases lower complexity (see Remark 28).

In section 7 we apply previous results to the study of flatness of some modules in
a (local) relative situation. We also give a finiteness results for some modules. These
flatness results could be compared to those of [SAB] for Rees modules over Rees rings.

It is a pleasure to thank Professor A. Assi for his help and useful suggestions. We
thank the referee for his useful comments.

2. Grobner d-bases. Here, k is a field of characteristic 0. Let us denote by k[[X]] =
k[[z1,...,x,]] the ring of formal power series and by k((X)) its quotient field.

Let us denote by k((X))[9] = k((X))[01, ..., 0n] the ring of linear differential opera-
tors with coefficients in k((X)), where 0; stands for the partial derivative with respect
to the variable x;.

Let us consider a noetherian sub-k-algebra H C k((X)) stable under the action of
the partial derivatives 0y, ..., y. Let us denote by D the sub-k-algebra (of k((X))[d]) of
linear differential operators generated by H and {01,...,0,}.

More generally, we will consider differential rings as D = H[01, . . ., O, ] for any noethe-
rian sub-k-algebra H of k((X)) = k((1,...,%n, Zni1,--->Tnim)), stable under the ac-
tion of 0; fori =1,...,n.

The ring D is the set of formal finite sums

> pad”,
aEN™
where p, € H.

Let < be a well-ordering in N™ compatible with the sum (i.e. a well-ordering such

that, for all v € N™, we have o + v < 4~ if and only if o < 3).

DEFINITION 1. Let P = Y _nn Pa0% be a non-zero element of D. The Newton 0-
diagram of P is the set
N(P)={a € N":p, #0}.
DEFINITION 2. Let P be a non-zero element of D. We call the element of N",
max. {N°(P)}, the §-ezponent of P with respect to <. It will be denoted by exp’ (P) or
by exp’(P) when no confusion is possible.

DEFINITION 3. Let P be a non-zero element of D. We call the element p, € H, where
a = exp®(P), the §-coefficient of P with respect to <. It will be denoted by c2 (P) or by
¢®(P) when no confusion is possible.

With these notations we have the following (see [MOR, pages 106-108]):
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LEMMA 4. Given two non-zero elements P,Q in D, the following properties hold:

1. exp’(PQ) = exp®(P) + exp’(Q) and exp’ ([P, Q]) < exp’(PQ).

2. If exp® (P) # exp®(Q) then exp’ (P + Q) = max. {exp‘s(P), expé(Q)}.

3. If exp’(P) = exp’(Q) and ®(P) + ®(Q) # 0 then exp’(P + Q) = exp®(P) =
exp?(Q) and ¢® (P + Q) = ¢’ (P) + °(Q).

4. If exp®(P) = exp®(Q) and (P) + c*(Q) = 0 then exp®(P + Q) < exp®(P).

All ideals we will consider in D will be left ideals. Let I be a non-zero ideal of D. We

denote b
' Exp’ (I) = {exp?(P) : P € I\ {0}} C N"™.

We write Exp®(I) when no confusion is possible.

REMARK 5. By Lemma 4 we have Exp®(I) +N" = Exp’(I). So, by Dickson’s Lemma
(see for example [CLOJ), there is a finite generating subset F of Exp®([), i.e.

Exp’(I) = Ugep(a + N7),
Any of the subsets F' is called a é-stair of I.

We denote by H[(] = H|[(1,-. ., (] the (commutative) polynomial ring with coeffi-
cients in ‘H and with variables (3,...,(,.

DEFINITION 6. Let P = ) po0® be a non-zero element of D. The d-initial form
of P, with respect to <, is in’ (P) = c‘s(P)CeXpd(P) € H[¢]. We write in®(P) when no
confusion is possible.

DEFINITION 7. Let I be a non-zero ideal of D. The ideal generated by
{in’(P): PeI\{0}}

is called the d-initial ideal of I with respect to < (and it is denoted by in’ (I)). We write
in(I) when no confusion is possible.

REMARK 8. Note that in°(I) is a (-monomial ideal in H[¢]. If I is generated by
{Py,...,P,} (ie. I = D(Py,...,P,)), then the ideals H[(](in’(P;),...,in’(P,,)) and
in?(I) may be different.

DEFINITION 9. Let I be a non-zero ideal of D. A finite family {Py,...,P,} C I is
called a Grdbner d-base of I, with respect to the well-ordering <, if

in®(I) = H[C)(in (P1), ..., in°(Py)).

REMARK 10. When H = k (i.e. in the ring k(0] = k[01,...,0,]), the notion of
Grébner d-base and the one of Grébner base coincide. Here k[d] is the ring of linear
differential operators with constant coefficients which is a commutative polynomial ring.

3. Reduction in D. Let F be a non-empty subset of D and a € N”. Here we will
use some notations of [ASS-1]. Let

K(a;F)={c’(P) : P€ F, a € exp’(P) + N"}.
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We denote by C(«; F') the ideal, in H, generated by K(«; F), i.e.
Clo; F)=HK(o; F).
If K(a; F) =0 then C(«; F) = {0}.

EXAMPLE 1. Let us consider H = k[[x1,z2]][x] ' 25" and F = {P;,P,} C D =
H[01, D5, where Py = ad? + bdy and Py = ¢03 + edy with a,e € k[[z1]][z7"], @ # 0 and
b, ¢ € k[[zs]][x5 '] with ¢ # 0. We consider the lexicographic order (cf. [CLO]) in N? with
O > 0s.

Then exp®(P;) = (2,0) and exp®(P,) = (0,2). Since K((1,1);F) = § we have
C((1,1); F) = {0}. We also have

CL2.2:F) = (00, C(20F) ={a), C((0,2):F)= o)
where (N) stands for the ideal (in H) generated by N.

It is easy to check that

1. If B € a4+ N" then K(a; F) C K(B; F) and C(a; F) C C(B; F).

2. If F; C F5 then K(a; F1) C K(a; Fy) and C(a; Fy) C C(a; Fy) for all @ € N™.

REMARK 11. If I is a non-zero ideal of D then:

a) K(a;I) = {c’(P) : P eI, exp’(P)=a}. Moreover, K(a; 1) J{0} = C(o; I).
b) C(0;I)=INH.
REMARK 12. From now on, as in [IN-PA], we suppose H satisfies two additional

conditions:

1) For any subset {f1,..., fr} CH and for any f € H we can decide if f € H(f1,..., f+),
and in this case, it is possible to find ¢1, ..., g € H such that f = 2221 Qi fi-

2) For any subset {f1,..., fr} C H it is possible to find a system of generators of the
‘H-module of syzygies of {f1,..., fr}.

The algebras
H=k[X], k[X]lz1", ... 2] k(X), KX, (X)), k[X])fzr",. .. 2]

rn

and the algebra k{X}[z;",..., ;'] with k = R or C satisfy conditions 1) and 2). See

) n

[TRI] and [IN-PA] for more details about conditions 1. and 2.

DEFINITION 13. Let F = {Py,..., Py} CD with P, #0,1 <i <m, and let P € D.
We will say that P is reduced with respect to F if one of the following conditions holds:

e exp’(P) ¢ UL, (exp’(P;) + N")
e exp’(P) € U~ (exp’(P;) + N") and ¢ (P) & C(exp®(P); F).

Let F be a non-empty subset of D\ {0}. We denote
R(F)={R € D: Ris reduced with respect to F'}.
REMARK 14. R(F) is not necessarily a vector space over k.

THEOREM 15 (Reduction algorithm). Let F = {Py,..., Py} C D, with P, # 0, i =
1,...,m, and P € D. Then there exist Q1,...,Qm, R € D such that

1. P=Y",Q:P,+R.
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2. R e R(F).
3. maxi<i<m{exp’(Q; P;), exp’ (R)} = exp®(P).
Proof. We proceed by induction on exp®(P) = a.

If « =0, then P € H. So, we can consider two cases:

L If0 ¢ U, (exp’(P;) + N"), then

P=Y0P,+P,  with P¢cR(F).
i=1
2. If 0 € U, (exp®(P;) + N™), then we consider the set
A={i:0€ exp®(P;) + N"} = {i: exp®(P;) = 0}.
Thus for i € A we have P; € H and we can consider two cases:

(a) If P € H(P; : i € A) then P = .\ ¢;P; with ¢; € H (according to our
assumption on H we can calculate such elements ¢;). In this case we have
P=>%Q;P;+ R where Q; =¢;, fori € A; Q; =0for i ¢ A and R = 0.

(b) If P ¢ H(P; :i € A) then P € R(F).

Suppose a > 0 and the theorem is proved for exp? (P) < au
Let P € D be such that exp’(P) = a. We have two possible cases:
L Ifag U™, (exp’(P;) + N"), then P =", 0P, + P and P € R(F).
2. If a € Ui, (exp’(P;) + N") then we consider the set
A={i:a€cexp’(P)+N"}
and the following two cases are possible:

(a) If ¢°(P) € C(a; F), then there exists (g;)iea € H such that
A(P) =) ad’(P,).
ieA
We may write
PO P YR, with o renl(R)—o
i€A
By construction, exp®(P(1)) < exp®(P). Hence, by induction, we may write
P = 31 QP + R, with R € R(F) and finally P = 37,5, QiPi +
D ien(@i + 0" )P, + R'.
(b) If °(P) ¢ C(a; F) then P € R(F).
So, we have proved the existence of @1, ..., Qm, R satisfying conditions 1. and 2. of
the statement. Condition 3. is easy to verify. That ends the proof. m

REMARK 16. We call R € D a remainder of the reduction of P by (Py,...,Py) €

D™. We denote by R (P;Py,...,P,) the set of remainders of the reduction of P by
{P,...,P,}.

REMARK 17. The proof of Theorem 15 provides an algorithm to reduce an operator
P € D with respect to a subset F of D.
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THEOREM 18. Let I be a non-zero ideal of D and { P, ..., P.} C I. Then the following
statements are equivalent:

1. {Py,..., P} is a Grébner d-base of I.

2. For a € N", we have C(a; 1) = C(a; Py, ..., Pr).

3. For P € I we have R(P; Py,...,P.) ={0}.

Proof. 1. = 2.: C(a; Py, ..., P,) is clearly contained in C'(«; I). Conversely, let p(z) €
C(a;I) then there exists P € I\ {0} such that in’(P) = p()¢® and in®(P) € ind(I).
But by hypothesis, we have

in’(I) = H[CJ(in’ (Py), ..., in° (Py)).

Let us denote
in®(P;) = p; ()¢ with 1<i<r,

then

Z gi(z, O)pi )™,
where

qu )¢? e H[C] with g, (z) € H.

Thus,

Z qw CﬂJral
hence,

p()¢* € H[C](pi(#)¢™ - € a; + N™)

and so,

p(z) € Clay Py,..., Pp).
Therefore C (o; I) € C (o Py, ..., P.) and it follows that
CloI)=C(a;Pr,....P).

2. = 3.: Let P € I\ {0}, then by Theorem 15, there exist Q1,...,Q,, R € D such
that

i=1
where R € R(P; Py, ... ,Pr).
Suppose R # 0. Since R = P — ZZZI Q;P; € I, we can consider two cases:
i) If exp’(R) & U;_; (exp’(P;) + N"), then C(exp®(R); P1,...,P,) = (0). Therefore
(R) € C(exp’(R); Py,..., P,) and by hypothesis 2, c’(R) ¢ C(exp®(R);I). But
this is impossible since R € 1.
ii) If exp®(R) € U;_; (exp’(P;) +N"), then
A(R) € C(exp®(R); Py, ..., P,) = C(exp’(R); I)
because R is reduced with respect to {Py, ..., P.}, and this contradicts that R € I.
Therefore R = 0.
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3. = 1.: We must show that in®(I) = H[¢](in’ (P}),...,in°(P,)). Clearly (in’(P),. ..,
in®(P,)) Cin’(I). Let P € I be a non-zero operator. Then we can write
P =p,,0% + P

where po, € H \ {0} and exp®(P) < ay.
Then, by hypothesis and by Theorem 15, we have:

o9 € U (expg(Pi) +N") and A (P)eC(ap; Py,y...,P).
i=1
We consider the set A = {i : ag € exp?(P;) + N"}. Then ¢*(P) = Y, qi(l)c‘s(Pi).
Let ‘
PO =p-3"¢Mo" P,  with ' +exp’(P) = ao,
i€EA
then P € I and exp®(PW) < ap.

Now we can consider two cases:

i) If P =0, then P = DieA qi(l)EWiPi and it can be checked that
in’(P) =" g’ (P).
ieA
ii) If P(W £ 0, then by repeating the same procedure, we can obtain a family P(*) ¢ T

with exp?(P®*)) < exp®(P*~1). So, as < is a well-ordering in N™, there exists
such that P = 0.

This completes the proof. m
As a straightforward consequence of Theorem 18 we get the following result:

COROLLARY 19. Any Grobner d-base of an ideal I C D is a system of generators of
I. Moreover, if {P1,...,P.} is a Grébner 6-base of I then

.,
Exp’ (1) = | J(exp®(P) + N™).
1=1
4. S%-operators. Let F = {Py,...,P.} C D\ {0}. Let
K(F)={aeN":3N CF, a=lcm{exp’(P); P € N}},
where lem stands for least common multiple, and
F, = {(Al,...,Ar) eH > Me®(Py) = 0 where A, = 0 if a ¢ exp?(Py) +N"} CH

k=1
F,, is isomorphic to the H-module of syzygies of

{(Py):a€exp’(Py) + N", 1<k <r}.

Since H is a noetherian algebra F,, is finitely generated (as an H-module). Let
{(A\,...; A1)}, 1 <1 <r,, be a system of generators of F,.
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DEFINITION 20. With the notations as above, for 7 = 1,...,7,, the element
- Z Apo* " (P p,
k=1
will be called an S®-operator of the set F,,.
PRroPoOSITION 21. With the notations as above, we have
exp’ (S2.,) < o
Proof. We can write

- Z Azaafexp‘s(Pk)pk
k=1

.
_ Azaa_expé(pk)cé(Pk)aexp‘s(Pk) + Z Z A;@a_EXpé(Pk)pﬁ,kaﬂ-

k=1 k=1 B<exp?®(Px)

<

Since
9o’ (P b (py = ()9 (P) 4 A, with  exp(Ax) < a — exp’(Py),
(90‘_9"1’6(13"')175);@ = p@k@o‘_e"p&(P’“) + B with exp‘s(Bk) <a-— exp‘;(Pk)
and >, _, ALc®(Py) = 0, finally

Z)‘T aexp 5(Py) + Z Z ()\;;pﬁ’kaafexpﬂ‘(Pk)Jrﬁ +Bkaﬁ) -

k=1 B<exp?®(Py)
PROPOSITION 22. Let I be a non-zero ideal of D and {Py,...,P.} be a system of

generators of I. Then the following are equivalent:

1. {P,..., P} is a 6-Grébner base of 1.
2. For all P € I, we have R(P; Py,..., P, )—{O}
3. For every S°-operator, S3, ., of {P1,...,P,} we have 0 € R(S?

o, T

‘P, P).

Proof. We know, by Theorem 18, the equivalence between 1. and 2.

2. = 3.: Since ng € I, then, by assumption, 0 € R (Si PP

3. = 1. Let P € I be a non-zero operator. We must show that in’(P) €
H[C](in’ (Py), ..., in°(P.)). We may write P = >_;_, H;P;, with H; € H[J].

Suppose

ap = mlax{exp‘s(HiPi)} and exp® (Hy, P,) = v, k=0,...,t.
Hence, by Lemma 4,
exp® (H;,) + exp® (P;,) = ao, k=0,...,t.
We can consider two cases:

a) If 325 _o ¢ (Hy,) ¢ (Pi,) # 0 then

t
in®(P) = ¢®(P)¢™, with ¢ Z & (H. (B) -
k=0
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Therefore,
t
in®(P) =3 ¢ (Hi) e (Py) cao—Zc o) 0T Pind (P, )

and so, in®(P) € H[¢](in (Pl), o, ind(P)).

Suppose now Zk 0 (Hy,)e ( ;1) = 0. Let us denote o' = exp®(P;),i=1,...,7;
we consider the set A= {i : exp? (H;)+a’ = ap}, and we suppose v = lem{exp?®(P;) :
i € A}. We may write

P=N"HP+ Y AH)O™ P+ ST (H; — ¢ (H,)o™ ) p,.

iZA iEA i€A

We can identify (c‘;(Hi))ieA with an element of F,. Let A',...,\” be a family of
generators of F,, where

A =(A[,...,AI)  with  AT=0 if y¢exp’(P;)+N".

) (a

Now for each ¢ € {1,...,7} we define s; as follows:
. — S(H;) if ieA
10 if idgA.
Hence s = (s1,...,8,) € Fy, and then there exist ui,...,u, € H such that s =

SP_ u;A". Let us denote 3¢ = exp?(H;), for i € A, then
. p r .
S SH) P =Y u, (Z A;aﬂlpi) .
ieA =1 i=1
The element g is, by definition, a common multiple of the elements {exp®(P;) :

i € A} then there exists ¢ € N™ such that ag =y + ¢ and so f* = — o’ +e.
If j ¢ A and 7y € exp®(P;) + N™ we denote 37 = v — o’ + €. Therefore,

S R = Y (0N R) 4 Yo Y mroe)
€A i|y—at>0
where exp®(B]) < e. Therefore, by Definition 20,

> CHNT P =Y u 08+ > (zp:uTBg)av—a’Pi.

1€EA T=1 ily—ai>0 7=1

But by hypothesis, we have

I
_ YT
=>.Q"p;,
Jj=1

with 7y > exp?(S) ) = max; <;<,{exp’(Q]" P;)}. Hence,

> S (H) P = Z(ZuTaEQ”)P+ 3 (zp:uTB;)m*ajpj

AN j=1 7=1 jly—ai>0 T=1
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Therefore ,
P=> H/P
i=1
where
o Ifie A,

o p P v
H{=H; = O (H)O" +3 u:0'Q)T + 3w B[O
T=1 T=1
o IfigAand y—a' >0,

p P .
HY = Hy+ Y u0°Q) 7 + Y u Blov .

T=1 T=1

e If i ¢ A and v — o' is not greater than 0,

P
H=H;+» u.0°Q]".
=1
Hence, we have obtained an expression for P as a combination of the P; where
exp® (H!P;) < ay, then max;{exp’ (H!P;)} < ap. But this process stops because <
is a well-ordering in N™. So, there exists an expression of P with the conditions of
case a). m

5. Construction of a Grobner J-base. Let I be a non-zero ideal of D and let
F = {Py,...,P.} be a system of generators of I. We will show here how to build a
Grobner d-base of the ideal I (with respect to an ordering <). We will follow the main
lines of Buchberger’s algorithm, adapted to our case (see [BUCH], [TRI] and [ASS-1]).

Let K(F) = {a!,...,a°} (see Section 4). Let {Sijj}, 1<j<s,1<7<r; bethe
family of S%-operators associated to F.

We suppose that {Py, ..., P,} is not a Grébner é-base for I, then (by Proposition 22)
there exists SgD,T such that 0 ¢ E(S5 ; Py, ..., P.), then let

«o,T)
Pr+1 € R(Sgo,T;Plﬂ' "aPT’)
and repeat this process with {Py,..., P, Pry1}.

REMARK 23. If a S%-operator, S, of F satisfy that 0 € E(S’; Py,...,P.) then 0 €
R(S;Pl,...,PT7PT+1).

The following Proposition assures that this procedure terminates.

PRrOPOSITION 24. With the notations as aAlfove, there exists p € N such that for all
Sd-operator S of {P1,...,Pry,} we have 0 € R(S; Py,..., Pry,).

Proof. See [MOR, pages 131-133]. =

6. Grobner bases and Grobner §-bases. In this section we will first work on the
Weyl algebra A, (k) = k[X][9)], so we suppose for the moment H = k[X| = k[z1,...,Zy].
Let <., < be monomial orderings in N™.
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We denote by X®9° the monomial
I ot A
Let us define on N™ x N™ the total ordering (denoted <) by
B(1) <o B(2)
(a(1), 8(1)) < (a(2),8(2)) & § or
B(1)=p(2) and o(l) <z a(2).
REMARK 25. The relation <, defined in N™ x N", is a monomial ordering. This

well-ordering is called an elimination order (see for example [CLO]).

For the notion of Grobner base on A, (k) and some related results we follow here
[CAS-1] (see also [CAS-2]).

THEOREM 26. Let G = {P,...,P.} be a system of generators for a non-zero ideal
I c A,(k). If G is a Grébner base for I, with respect to <, then G is a Grébner §-base
for I with respect to <p.

Proof. Let P € I be a non-zero operator. We must show that

in®(P) € H[¢)(in’(Py), ..., in’(P,)).

Fori=1,...,r, we may write P; = ;0% + ]31 where exp®(P;) = a;, exp’( Ai) < «; and
a; € H. Thus in’(P;) = a;(%. By the division algorithm in A, (k), (see [CAS-1] and
[CAS-2]) there exist Q;,,...,Qiy € An(k), 1 < i; < r, satisfying P = Q;, P, + ...+
Qiy Pi where exp_(Q;P;) # exp_(Q;P;) for i # j.

We can suppose

eXp<(QiNPiN) < expc (QiN—IPiN—l) <...< eXp<(Qi1Pi1)'

We can write

Qi; = ci 0% + @z,
where exp?(Q;,) = B;,, exp®(Qy,) < By, ¢i, € H. Thus exp_(Q;;) = (exp__ (ci,). Bi,)-

Therefore,

N N N N N
P =Y e, 0 Y e A0+ Y e 0B+ Y Bya 0% + 0P,
j=1 j=1 j=1 j=1 j=1

where
N
exp’ (Z Cij i, 8ﬁij+aij) = 1I<r;‘a<XN{6ij Fauk
i=1 o
N
exp® (Z ci; A 3ai1) < max {8i, +ai; },
j=1 -
N
! (S50, 0R,) < 5, )
j=1 N
N
eXp6 (Z t aha 7']‘) < 11<nax {@’ * az]}’
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1<j<N

N
exp? (Z Q\” ﬁ”) < max {B% + i, )
j=1

Let jg be such that

ﬂijo-%—l + Qi 41 < Bijo + Qijy = ﬁiio—l + Qijoqy = = ﬂil + Q.
Since Z;ll ci;a;; # 0, we have in’(P) = ( §11 ci;a;, )Pt Therefore,

Zczﬂn i) P;,)¢%

and so in’(P) € H[¢](in’(Py), .. ., m‘s(PT)). This completes the proof. m
The converse of the above result is not true as we show in the following example:

EXAMPLE 2. Let I C As(C) = Clxy,22][01,02] be the left ideal generated by the

operators
P, =201 +ady +b, P,= (fvg — fvl)ag —d

with a,b,d € Clzy, x2].

We will prove! that {P;, P} is a Grébner d-base which is not a Grébner base of I,
for a particular choice of the polynomials a, b, d.

We have

exp.(P1) = (1,0,1,0), exp_(P2) = (1,0,0,1).
Then
S(Pl, PQ) = 82P1 + (91P2 = 1‘23182 + 82a82 + 82b - 81d — 62,
and then
€XpP (S(P17P2)) = (07 17 la 1) ¢ <(13 07 170)v (1707()’ 1)> = <eXp<(P1)veXp< (P2)> .

So, G = {P1, P>} is not a Grdbner base of the ideal I, for any a,b,d € Clx1, z2).

We will prove that, for some a,b,d € Clxy, 2], the set G = {Py, P2} is a Grdobner
d-base of I.

We have

eXpé(P1> = (1,0), c’;(Pl) =
and
exp®(P2) = (0,1), A (Py) = xy — 1.

We will compute the associated S°-operators (see Definition 20).
As
a=lem((1,0),(0,1)) = (1,1)

we must first compute a system of generators of
F(l,l)(Pl,PQ) = {()\1,)\2) S C[:Ij‘l,ZEQ] : )\106(P1) + AZC(S(PQ) = 0} .
In fact we have

Syz(c’(P1), ¢’ (Py)) = F1,1)(P1, Py) = (w2 — w1, —71))

1By using the degree lexicographical order with 02 <y 01 and zs <z 1.
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and then
53171)7(£2_x17_£1) = (ZIZ‘Q — Zl)a(l’l)i(l’O)Pl — $1a(1’1)7(0’1)Pg
= (332 — 331)0;8% + (1‘2 - 1‘1)32(&)62 + (1‘2 - 1‘1)()82
—l—(xg — $1>82(b) + 2109 + x1d07 + xlal(d)

Now we reduce Sf, ;) by (P1, P»), say

To—T1,—T1)
S1). (2021, —ar) — APL — D2aPp — bP;
= (.IQ — .Il)ag(b) —+ :c182 + 1‘181 (d) — aag + aag(d) + 82([1)d
= (IQ — .’I?l)ag(b) + (3’51 - a)(’?g + xlal(d) + 82(ad)

Then {Py, P2} is a Grobner d-base of I if a = z1, b € Clz;] and d is a polynomial in
T, — T2.

REMARK 27. The preceding Example proves a little more. Let us consider H =
Clz1,...,2,] (for n > 3) and the ring of differential operators D = H|[0;, 2] (which
is a sub-algebra of the Weyl algebra A,,(C)).

Let I C D be the left ideal generated by the operators

P = 2101 + a0y + b, P, = (.112 — $1)82 —d

with a,b,d € Clzy,...,z,]. An analogous computation to the one of Example 2 proves
that { Py, P>} is a Grobner d-base of I'if a = x1,b € Clxy, 23, ..., x,] and d is a polynomial
in &1 — xo with coefficients in Clzs, ..., x,].

REMARK 28. The theory of Grébner §-bases can be extended to submodules of a
finite rank free D-module (see [MOR, Chapter 6]). As an application one can compute
free resolutions of finitely presented D-modules.

In the particular case of the ideal I C D = A5(C) generated by {P; = 2101 + 2102 +
x1, Py = (1 — 22)02}, which is a Grobner §-base according to Example 2, one can prove
that the syzygy S = (Ps, —Py) generates the first syzygies module of { P, P»}. This leads
to a free resolution of the quotient module A5(C)/A(C)I :

0—>A2 —>A§ —>A2 —>142/142[7

where As stands for A3(C).

Of course we can use Grobner bases, instead of Grobner d-bases, for the computation
of syzygies and free resolutions. In the example above, that technique will produce a free
resolution of length 4 where the ranks of the free D-modules involved are 1,3,3,1. So,
one can consider that, in this case, the use of Grobner d-bases produces a “better” free
resolution, a fact which surely merits some explanation for the general case, which cannot
be given here.

We can also prove an analogue to Theorem 26 for the ring D of linear differential
operators with formal (resp. convergent) power series coefficients in n variables. In this
case the ring H will be k[[z1,...,z,]] (resp. k{z1,...,2,} for k =R, C).

Although the result could be stated in a more general way we restrict ourselves to the
case of monomial orderings (on N?") defined by linear forms (as in [CAS-1] and [CAS-2]).
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Let us denote by < such an ordering on N2" and by < its restriction to {0} x N™.
Then we have the following Theorem whose proof is similar to the one of Theorem 26.

THEOREM 29. Let G = {Py,...,P.} be a system of generators for a non-zero ideal
I CD. If G is a Grébner base for I, with respect to <, then G is a Grobner 6-base for I
with respect to <p.

The converse is not true as shown in the following example:

ExAMPLE 3. We can rewrite Example 2 in this new setting.

Let I € D = CJ[z1,2]][01,02] be the left ideal generated by the operators P =
101 +ady +b, Py = (.Tg — xl)ag —d with a,b,d € C[[Cbl, IQH

Let us consider (on N4) the graded lexicographic order < with zo < 1 < 99 < 0.
The restriction <’:=<y on {0} x N? is then the graded lexicographic order with 9> < 9.

For this particular choice of <, operators P; and P, have the same “privileged”
exponents, with respect to <, and the same J-exponents, with respect to <’, that in
Example 2 and an analogous argument shows that {Py, P>} isn’t a Grobner base, but
it is a Grobner d-base of the ideal I for a = z1, b € CJ[x;]] and d a power series in
T, — T2.

As in Remark 27 we can extend the previous computation to the case where b €
Cl[z1,x3,...,2,]] and d is a power series in x; — x5 with coefficients in C[[zs, ..., z,]].

7. Applications: Flatness and finiteness. As elementary applications of Grébner
d-bases, we have the effective solution for the ideal membership problem, variable elim-
ination problem and effective intersection of ideals. We can also calculate a generating
system of the D-module of syzygies of a finite subset {Py,...,P.} of D, as well as a
free resolution of a finitely generated (left) D-module. Calculating free resolutions of a
D-module, we have found examples where the use of Grébner §-bases is, in some sense,
more efficient than the one of Grébner bases (see Remark 28).

In this section the ring H is a noetherian sub-k-algebra of

k(X)) =k((z1,- s @Tn, Tnt1,-- s Totm)),
stable under the action of 9; for i = 1,...,n and satisfying the two additional conditions
of Remark 12. We denote as before D = H[d] = H[D1, ..., On].

The aim of this section is to characterize flatness and finiteness of a D-module by using
the notion of Grobuner d-bases, following the work of A. Assi [ASS-2] in the commutative
case.

We can see the quotient D/I as a family of A, (k)-modules, the space of parameters
being C™. In this section we will see when this family is flat.

Let S be a multiplicatively closed subset of H. The ring S™'H is a noetherian sub-
k-algebra of k((X)), stable under the action of the derivations 81, ..., d, and satisfying
the two additional conditions of Remark 12. So, we can consider the sub-k-algebra S~'D
of k((X))[8], generated by S~'H and 9, ...,d,.

One can define in S~'D the notions of section 2.

Let I C D a left ideal. We denote by S~'I the ideal of S~'D generated by I and
by in®(S'I) the ideal (of ST'H[(]) generated by {in®(P): P € (S~'I)\{0}}. Here
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S~1H](] denotes the polynomial ring in the variables ¢ = ((1,...,(,) and coefficients in
S—1H. We have:

PrOPOSITION 30. Suppose {Pi,...,P.} is a Grébner 6-base of I. If S z's a multi—
plicatively closed subset of H then in’®(S~ 1[) s generated by {m (Py), } n
STYH[¢]. In particular, in®(S™'I) = S~ (in°(I)) and {P,/1,. r/l} is a Grobner
d-base of S71I.

Let P be a prime ideal of H. Then S = H \ B is a multiplicatively closed subset of
H. We denote Hyy = S™'H, Dy = S™'D and Iy = S~'1.

For each ideal K in H, we denote V(K) = { € Spec(H) : K C B}, which is a Zariski
closed subset of Spec(H). Here we endowed the set Spec(H) of prime ideals of H with
its Zariski topology.

Let us consider J = [[_, C (a(i);I) as an ideal in H, where {a(1),...,a(s)} is a
d-stair of the ideal I (see Remark 5). Let us denote U = Spec(H) \ V(J). We have:

THEOREM 31. With the notations as above, let P € U. Then Dy /Iy is a free (and
then a flat) Ho-module.

Proof. Let M be the free Hgp-module generated by {3 : o € N™\Exp’ (I)}. Obviously
we have Exp®(I) = Exp®(Iy). Let us consider a Grébner d-base {Py, ..., P.} of I. By
Proposition 30, {P1/1,..., P./1} is a Grébner d-base of Iyy. Now, applying the reduction
algorithm with respect to {Pi/1,...,P,./1} (see Theorem 15), each P € Dy can be
written as a sum

P=P +p"
with P’ € Iy and P” € M. Here we have used the equality C(a(i); Ip) = Hep for each
1=1,...,s

So, we have proved that Dy = Iy + M and it is obvious that Iy N M = (0), so the
Hy-modules Dy /Iy and M are isomorphic. Then M is a free Hg-module. =

PRroPOSITION 32. With the notations as above, we have

1. If C(0;I) = IN'H # (0), then U = Spec(H) \ V (C(0;1)) is the mazimal open set
of flatness.
2. If Cla(k); I) =H for each k € {1,...,s}, then D/I is a flat H-module.

Proof. 1. We have C(0;1) = H NI (see Remark 11). Suppose U is not maximal,
then there exists P € Spec(H) \ U such that Dy /Iy is Heyp-flat. If C(0;1) # (0) then
Hq N Ip # (0), which is impossible by flatness of Hy[0]/Ip over Hy.

2, We have C(ay;I) = H for each oy, in a -stair of I. So, we have U = Spec(H) and
then H[9]/I is H-flat. m

EXAMPLE 4. Let us denote C[[X]] = C[[z1, . .., z,]] and consider the ideal of Example
3. Namely, let us consider the differential operators {Py, P,} C D = CJ[[X]][01, 02] where
P1 :xlal +$182+b, PQ = (%27.%1)82 —

with b € Cl[[x1, 3, ...,2,]] and d a power series in x1 — z2 with coefficients in C[[zs, ...
Z,]]. We will also suppose b is a multiple of z;. In particular, D/I is not a flat
C|[[X]]-module, because the class of d; + 0> + b/x1 mod. I has z;-torsion.
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We know by Example 3 that {P;, P»} is a Grobner d-base of I. Then a d-stair of I is
{expé(Pl)a expé(PQ)}a Le. {(17 0)7 (07 1)}
Moreover, by Theorem 18, we have
C((1,0);1) = C((1,0); P, Py) = (z1),  C((0,1);1) = C((0,1); P1, Py) = (w2 — x1).

Let us consider J = C((1,0); 1)C((0,1); 1), i.e. J = (z1(x2 — x1)). By Theorem 31,
Cl[X]][01, 02]/ Iy is a flat C[[X]]g-module for P € U = Spec(C[[X]]) \ V(J).

THEOREM 33. Let I be an ideal of D. The following are equivalent:

1. D/I is a finitely generated H-module.
2. For eachi=1,...,n there exists a; € N such that

a(i) = ae; € Exp®(I)
and
C(a(i);I) =H,
here €; is the i-th element of the canonical base of N™.

Proof. 1 = 2.: For each i € {1,...,n} we consider the sub-H-module M C D/I
generated by the set
{1+10;+1,....0f+1,...}.

By the finiteness of M over H, there exists a(i) = a;e; € Exp®(I) such that C (a(i); I) =
‘H, for some a; € N.

2.=1.: Let us write A = N™\ |JI_, («(i) + N™). Let us consider M as the H-module
generated by the finite set {0% : a € A}. We have D = I+ M and then D/I is a quotient
of M. Thus D/I is finitely generated as H-module. =
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