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This note is based on the thesis [1] of the first author written under the guidance of
the second author. The main technical input is Theorem 6 below. It will be proved in
more generality in the subsequent paper [4].

Let f1, . . . , fl be differential polynomials in one derivative and N variables with co-
efficients in R. Suppose I ⊆ R is an open interval and c : I → RN is a C∞-map with
f1(c(t)) = . . . = fl(c(t)) = 0 (t ∈ I). Let a be the differential ideal generated by f1, . . . , fl
in the differential polynomial ring R{X1, . . . , XN}. Then a is certainly a semireal ideal,
i.e. for all g1, . . . , gm ∈ R{X1, . . . , XN} we have 1 +

∑m
j=1 g

2
j 6∈ a. This follows immedi-

ately from our assumption that c is a differential solution of the generators f1, . . . , fl of
a. We’ll prove here the converse of this observation, in other words we’ll prove

Theorem 1. If a is a differential ideal of R{X1, . . . , XN} and a is semireal, then there
is some nonempty open interval I ⊆ R and an analytic map c : I → RN with f(c(t)) = 0
(f ∈ a, t ∈ I).

In order to find an analytic map c = (c1, . . . , cN ) : I → RN solving each relation
f = 0 with f ∈ a it is enough to find a nonempty open interval I of R together with
a differential homomorphism R{X1, . . . , XN}/a → Cω(I) and then take ci := the image
of Xi mod a under this map. We divide this problem into an algebraic part (Theorem 2)
and an analytic part (Proposition 3).

Theorem 2. Let F be a differential field and let A be a differentially finitely generated
F -algebra. Suppose A is semireal, i.e. −1 is not a sum of squares in A. There is a real,
differential F -algebra C, which is an integral domain and finitely generated as an F -
algebra together with a differential F -algebra homomorphism A→ C.
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Proposition 3. Let C be a real, differential R-algebra, which is an integral domain
and finitely generated as an R-algebra. Then there is a differential R-algebra homomor-
phism C → Cω(I) for some open interval I ⊆ R.

Clearly 1 follows from 2 and 3 applied to A = R{X1, . . . , XN}/a. Before we prove
Theorem 2 and Proposition 3 we need some real algebraic preparations.

Definition 1. A ring A is called semireal if −1 is not a sum of squares in A. A
is called real if a2

1 + . . . + a2
n = 0 implies a1 = . . . = an = 0 for all n ∈ N and all

a1, . . . , an ∈ A. An ideal a of A is called (semi) real if the ring A/a is (semi) real.

Definition 2. Let A be a differential ring in K derivatives and let a be an ideal of A.
We define

a# := {a ∈ a | every derivative of a is in a}.
The useful construction a# was first introduced by Keigher in [2]. Clearly a# is the

largest differential ideal of A contained in a. Let σ : A→ B a ring homomorphism into a
ring B. Let B[[T ]] be the power series ring over B in one variable T . B[[T ]] is a differential
ring with the standard derivative d

dT . We define the Taylor morphism Tσ : A → B[[T ]]
by

Tσ(a) :=
∑

n≥0

σ(dna)
n!

Tn.

Here dna denotes the n-th derivative of a ∈ A.
The Leibniz rule implies that Tσ is a differential homomorphism. If σ : A → A/a is

the residue map corresponding to an ideal a of A, then clearly a# is the kernel of Tσ.

Proposition 4. Let a be an ideal in the differential ring A. If a is prime, semireal,
real respectively, then a# is prime, semireal, real respectively.

Proof. If a is prime, semireal, real respectively, then A/a is a domain, semireal, real
respectively. Hence the power series ring A/a[[T ]] is a domain, semireal, real respectively,
and so a# = Ker(TA→A/a) is prime, semireal, real respectively.

Proposition 5. Let A be a differential ring and let p ⊆ A be a differential ideal.
Then p is maximal among the proper, semireal and differential ideals of A if and only if
p is maximal among the proper, real and differential ideals of A. In this case p is prime.

Proof. Let p be maximal among all proper, semireal and differential ideals of A. The
Proposition is proved if we can show that p is real and prime. By classical real algebra
(cf. [3], III, §3, Satz 2), there is a real prime ideal q of A containing p. By Proposition
4, q# is a real, differential prime ideal of A. Since q# contains p, the maximality of p

implies p = q#, thus p is real and prime.

Finally we use a structure theorem for differential algebras (in one derivative), as
explained in [4].

Theorem 6. Let S = (S, d) be a differential domain in one derivative, containing Z,
and let R = (R, d) ⊆ (S, d) be a differential subring such that S is differentially finitely
generated over R. Then there are R-subalgebras B and U of S and an element h ∈ B,
h 6= 0 such that:
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(a) B is a finitely generated R-algebra and Bh is a finitely presented R-algebra.
(b) Sh = (B ·U)h is a differentially finitely presented R-algebra.
(c) The homomorphism B⊗R U → B·U induced by multiplication is an isomorphism of

R-algebras.
(d) U is a differential polynomial ring over R in finitely many variables.

Proof. This is Theorem 1 in [4] for the case of one derivative. Take U := P{d} and
replace B by B ·P∅ in [4], Theorem 1.

Proof of Theorem 2. Since A is semireal, A contains an ideal p, which is maximal
among all proper, semireal and differential ideals of A. By Proposition 5, p is a real,
differential prime ideal. Let S be the differential F -algebra S := A/p. Take F -subalgebras
B,U of S and an element h ∈ B, h 6= 0 as in Theorem 6. Since S is real, B and Bh are
real, too. It is enough to show that U = F , then the differential map A → A/p =
S ↪→ Sh = Bh =: C has the required properties. Suppose U 6= F . Since Bh is a finitely
generated, real F -algebra, Tarski’s principle gives a homomorphism ϕ : Bh → F into a
real closed field F containing F . Since U 6= F is a differential polynomial ring, there is a
differential F -algebra homomorphism τ : U → F with nontrivial kernel. By Theorem 6,
there is an F -algebra homomorphism σ : S → F , extending ϕ|B and τ . Thus q := Kerσ
is a real ideal of S containing Ker τ . By Proposition 4, q# is a real, differential ideal of
S. Since τ is a differential homomorphism, q# contains Ker τ , hence q# is a nontrivial,
real, differential ideal of S, which contradicts the maximality of p.

Proof of Proposition 3. Let C = R[a1, . . . , an] and let gi ∈ R[X1, . . . , Xn] such that
gi(a) is the derivative of ai in C. We consider the ring R[X1, . . . , Xn] as a differential
ring with derivation d : R[X1, . . . , Xn] → R[X1, . . . , Xn] defined by dXi = gi. Then the
homomorphism λ : R[X1, . . . , Xn] → C sending Xi to ai is differential. Since C is a
real, finitely generated R-algebra, there is an R-algebra homomorphism ε : C → R. The
fundamental theorem on ordinary differential equations gives an open interval I of R
containing 0 and analytic maps ci : I → R (1 ≤ i ≤ n) such that ci(0) = ε(ai) and

c′i(t) = gi(c1(t), . . . , cn(t)) (1 ≤ i ≤ n).

Now a straightforward computation shows that the Taylor morphism Tε of ε : C → R
maps ai to the Taylor expansion of ci at 0. By shrinking I if necessary, we get that Tε
has values in Cω(I), which proves Proposition 3.
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