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Abstract. The aim of this paper is to present two examples of non academic Hamiltonian
systems for which the Morales-Ramis theory can be applied effectively. First, we investigate the
Gross-Neveu system with n degrees of freedom. Till now it has been proved that this system is not
integrable for n = 3. We give a simple proof that it is not completely integrable for an arbitrary
n ≥ 3. Our second example is a natural generalisation of the Jacobi problem of a material point
moving on an ellipsoid. We formulate sufficient conditions for its non-integrability.

1. Introduction. It is a very difficult problem to decide whether a dynamical system

ẋ = v(x), x ∈Mk,(1)

where Mk is an analytic k-dimensional complex manifold, possesses or does not possess
first integrals. It is well known that having a large enough number of first integrals we can
integrate system (1) explicitly. On the other hand, the lack of first integrals can imply a
complicated behaviour of phase curves of the system.

One approach to the above problem relates the lack of first integrals to branching of
solutions as functions of complex time. Although this idea takes its origin in works of
S. V. Kovalevskaya and A. M. Lyapunov, the first mathematical results were obtained
quite recently by Ziglin [14, 15]. He showed that the existence of meromorphic first inte-
grals of system (1) imposes certain conditions on the monodromy group of the variational
equation corresponding to a particular solution. Ziglin’s basic theorems concern Hamil-
tonian systems, however, the main part of his theory is applicable for general systems.

In works of J. J. Morales, J.-P. Ramis and M. Singer, Ziglin’s theory was extended by
a differential Galois approach. For a detailed exposition see [9]. In this paper I present two
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applications of this approach for non-academic Hamiltonian systems. Our first example
is the Gross-Neveu system with n degrees of freedom. Till now it has been proved that
this system is not integrable for n = 3. This result was obtained in [4] by application of
the Ziglin theory. Our second example is a natural generalisation of the Jacobi problem
of a material point moving on an ellipsoid. It provides an example of application of
Morales-Ramis theory when the problem depends on parameters.

2. Basic facts. The aim of this section is to formulate basic facts concerning the
Ziglin and Morales-Ramis theories. This exposition is not formal. All details can be
found in [9].

We assume that for a holomorphic system of the form (1) we know a non-equilibrium
particular solution ϕ(t). The phase curve Γ corresponding to this solution is a Riemann
surface. The variational equation corresponding to Γ has the form

ξ̇ = T (v)ξ, ξ ∈ TΓM
k.(2)

We can reduce the order of this system by one. Let F := TΓM
k/TΓ be the normal bundle

of Γ, and π : TΓM
k → F be the projection. Then system (2) induces the following system

on F

η̇ = π?(T (v)π−1η), η ∈ F,(3)

which is called the normal variational equation along Γ. In [14] it was shown that if system
(1) has m meromorphic functionally independent first integrals, then the monodromy
group M ⊂ GL(k − 1,C) of (3) has m rational invariants. This statement is also true
if instead of the monodromy group we take the differential Galois group of (3), see [9,
Chapter IV]. Although this fact gives an excellent tool for proving the non-existence of
first integrals for an arbitrary , not necessarily Hamiltonian, system the author knows
only one example of its application [16].

It can happen that system (1) possesses l < k − 1 independent first integrals F =
(F1, . . . , Fl). Then, first we restrict it to the level F = F (ϕ(t)), and next we perform the
described reduction of the variational equation. We obtain the normal variational equation
of order k− l− 1. This situation happens, in particular, when (1) is Hamiltonian. In this
case k = 2n, and the monodromy group, as well as the differential Galois group of the
normal variational equation are subgroups of Sp(2(n− 1),C).

The basic theorem of Morales-Ramis theory states that if a Hamiltonian system pos-
sesses n meromorphic, functionally independent and commuting first integrals in a neigh-
bourhood of Γ, then the identity component G0 of the differential Galois group of the
normal variational equation is Abelian. For a detailed exposition and proof see [9].

In order to apply the Morales-Ramis non-integrability theorem it is necessary to know
how to check effectively if the identity component of the differential Galois group of a
given linear system is Abelian. In general, this is a hard problem. There exist, however,
effective methods to investigate this question for lower dimensional systems with rational
coefficients. In particular, for second order equations over C(x) the algorithm of Kovacic
[8] allows to decide whether the identity component of the differential Galois group is
solvable. For different improvements of the Kovacic algorithm and results concerning
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higher dimensional systems see [3, 10, 11, 13, 12, 2]. Thus, in applications, it is important
to find a transformation which does not change the identity component of the differential
Galois group and transforms the normal variational equation to an equation with rational
coefficients.

To apply the Morales-Ramis theory we have to find a non-constant particular solu-
tion of the considered Hamiltonian system. This is a non-trivial task. For all problems
investigated till now a particular solution has been found by restricting the Hamiltonian
system to a two dimensional invariant symplectic manifold. Thus, in fact, we can always
work with a one parameter family of particular solutions. It seems to be typical for cases
when Morales-Ramis (or Ziglin) theory is applicable. Thus, it is reasonable to consider to
what extend this fact can be used to formulate a stronger version of the non-integrability
theorem. In [17] Ziglin showed that several classical problems of mechanics do not possess
additional real meromorphic first integrals. In his proof he used explicitly the fact that
for those systems we know families of particular solutions containing a homoclinic or
heteroclinic orbit.

Another important step is the ‘rationalisation’ of the normal variational equation.
Generally, it is not obvious how to find a transformation of a given linear system to
a system with rational coefficients. It seems that it is necessary to develop Kovacic-
like algorithms for linear systems with coefficients which are elliptic functions. In some
cases, e.g. when the normal variational equation coincides with the Lamé equation, a
transformation to a rational form is unnecessary.

A typical system contains parameters and this introduces additional problems when
one applies a Kovacic-like algorithm. Typically, we are able to show the non-integrability
of the system for almost all parameters’ values. For the remaining (usually countably
many), the algorithm must be applied separately. This point is very important because,
as it is believed, almost all systems are not integrable and thus, among the remaining
values of parameters, it is possible to find the ones corresponding to integrable systems.
In other words, although a proof of the non-integrability can be a nontrivial task, finding
a non-trivially integrable system is the true aim.

3. Gross-Neveu Hamiltonian system. In this section we investigate the so called
Gross-Neveu Hamiltonian system given by the Hamiltonian

H =
1
2

n∑

i=1

p2
i +

∑

1≤k<j≤n

(
ujuk + u−1

j u−1
k

)
+
∑

k 6=j
uju
−1
k ,(4)

where we denote ui := exp[qi], for i = 1, . . . , n, and (q1, . . . , qn, p1, . . . , pn) are the canon-
ical coordinates on C2n. This system appears in theoretical physics and its construction
is related to the Lie algebra so(2n), for details see [1]. We introduce the non-canonical
variables (u1, . . . , un, v1, . . . , vn) where vi = pi exp[−qi], i = 1, . . . , n. Then the equations
of motion have the form

u̇j = vju
2
j , v̇j = −v2

juj −
(
1− u−2

j

)∑

k 6=j

(
uk + u−1

k

)
, j = 1, . . . , n.(5)
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We can easily find a particular solution if we notice that the two dimensional plane defined
by vl = 0 ul = 1 for l = 2, . . . , n is invariant with respect to the flow generated by (5).
On this plane equations (5) read

u̇1 = v1u
2
1, v̇1 = −v2

1u1 − 2(n− 1)
(
1− u−2

j

)
.

As the above system has the first integral

h =
1
2
v2

1u
2
1 + 2(n− 1)

(
u1 + u−1

1

)
,

we have at our disposal a one parameter family of particular solutions parameterized by
the value of h. Let u = u1(t), v = v1(t) be a particular solution corresponding to h = c.
For further considerations we choose c = 4(n− 1). One can easily notice that the normal
variational equation is the direct sum of (n− 1) copies of the system

ξ̇ = η, η̇ = −2[u+ u−1 + 2(n− 2)]ξ.(6)

It is clear that to prove the non-integrability of the Gross-Neveu system it is enough to
show that the identity component of the differential Galois group of (6) is not Abelian.
To this end we rewrite (6) in the form

ξ̈ + bξ = 0, b = 2[u+ u−1 + 2(n− 2)],

and then we make the transformation

t→ z := u(t),

which does not change the identity component of the differential Galois group. We obtain

ξ′′ + pξ′ + qξ = 0, ′ ≡ d

dz
,

where

p =
1
2z

+
1

z − 1
, q = −z

2 + 2(m− 1)z + 1
2mz2(z − 1)2 ,

with m = n− 1. This equation is a Fuchsian one. It has three regular singular points at
z = 0, z = 1 and z =∞. Thus it is the Riemann equation and to determine its differential
Galois group we can apply the Kimura theorem from [7]. However, in this particular case
it is simpler to proceed in a different way. First, we transform the above equation into
the standard form

w′′ = rw,(7)

where

w := ξ exp
[

1
2

∫
p

]
, r =

1
2
p′ +

1
4
p2 − q.

Simple calculations show that

r =
8− 3m
16mz2 +

3
4z

+
3

4(z − 1)2 −
3

4(z − 1)
,

and exponents ρ±i at singular points i ∈ {0, 1,∞} are

ρ±1 = −1
2
,

3
2
, ρ±0 = −ρ±∞ =

1
2

(1±∆), ∆ =

√
1
4

+
2
m
.

We have the following.
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Lemma 1. The differential Galois group G of (7) for m > 1 is not conjugate to a
finite imprimitive subgroup of SL(2,C).

Proof. It is easy to show that ∆ 6∈ Q for m > 1, m ∈ N, and thus ρ±0 6∈ Q and ρ±∞ 6∈ Q.
Hence, by Theorem 3.6 in [11], the necessary conditions for G to be a finite imprimitive
subgroup of SL(2,C) are not satisfied, i.e. case 3 of the Kovacic algorithm is excluded,
see Theorem on page 8 in [8].

Lemma 2. The differential Galois group G of (7) for m > 1 is conjugate to a trian-
gular subgroup of SL(2,C) or it is SL(2,C).

Proof. Let us investigate the local monodromy around z = 1. At this point the differ-
ence between exponents s = ρ+

1 − ρ−1 = 2. One local solution has the form

w1(z) = (z − 1)ρ
+
1 f(z), f(z) = 1 +

∞∑

k=

fk(z − 1)k,

where the series defining f(z) converges in a neighbourhood of z = 1. The second solution,
linearly independent of w1(z) is defined by the integral

w2(z) = w1(z)
∫ z dζ

w1(ζ)2 = w1(z)
∫ z

(ζ − 1)−s−1 dζ
f(ζ)2 .

Let us denote
1

f(z)2 = 1 +
∞∑

k=1

gk(z − 1)k.

Then the solution w2(z) can be written in the form

w2(z) = w1(z)gs ln(z − 1) + (z − 1)ρ
−
1 v(z),

where v(z) is holomorphic in a neighbourhood of z = 1. The form of the local monodromy
depends on the presence of the logarithmic term. To check if it is present in our case we
have to calculate if g2 6= 0. It is easy to calculate that

f1 = −1
4
, f2 =

2 + 3m
32m

, g2 = 3f2
1 − 2f2 = − 1

8m
.

Thus, the monodromy M1 corresponding to a small loop around z = 1 has the form

M1 =
[

1 2πi
0 1

]
.

The monodromy group M is a subgroup of G (in our case it generates topologically G).
A subgroup of SL(2,C) generated by a triangular matrix cannot be finite and thus the
differential Galois group cannot be finite as it contains the triangular matrix M1. This is
in fact another proof of Lemma 1. There is only one possibility that we have to exclude.
The group G can be conjugate to a subgroup of

D† =
{[

c 0
0 c−1

] ∣∣∣∣ c ∈ C∗
}
∪
{[

0 c

c−1 0

] ∣∣∣∣ c ∈ C∗
}
,

see [8, p. 7]. However, the group D† cannot contain a non-diagonalizable triangular ma-
trix.

Basing on the above lemmas we are able to show that:
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Theorem 1. For n > 2 the Gross-Neveu system is not integrable.

Proof. Assume that the Gross-Neveu system is integrable. Then the identity compo-
nent G0 of (7) is Abelian. From Lemma 1 and Lemma 2 it follows that G is conjugate to
a subgroup of the triangular group. G cannot be a diagonal as it contains M1. Thus, it
must be a proper subgroup of the triangular group. However, in this case the elements
of G have eigenvalues which are k-th roots of unity for certain k ∈ N, see Lemma 4.2 in
[10]. However, the local monodromy matrix M0 ∈ G corresponding to the singular point
z = 0 has eigenvalues λ± = exp[2πiρ±0 ]. Hence ρ±0 6∈ Q, and thus λ± are not roots of
unity and G0 is not Abelian. This contradiction finishes the proof.

In [4] it was proved that the Gross-Neveu system is not integrable for n = 3 with
the help of an important extension of the Ziglin theorem to a case when the monodromy
group contains only resonant elements of special form. However, this extension works
only for a system with three degrees of freedom. The reader will find it interesting to
compare the reasoning in [4] with our, very simple, considerations.

4. Generalised Jacobi problem. Let a point P of unit mass move on an ellipsoid

E :=
{
x ∈ R3 | 〈x,Ax〉 − 1 = 0

}
(8)

under the action of a force given by the potential

V (x) :=
1
2
〈x,Bx〉,(9)

where A = diag(a1, a2, a3), a1 ≥ a2 ≥ a3 > 0, B is a symmetric matrix, and 〈·, ·〉 denotes
the scalar product in R3.

Equations of motion of the point can be written in the form

ẋ = y, ẏ = −Bx− λAx,(10)

where the Lagrange multiplier is

λ :=
〈y,Ay〉 − 〈Bx,Ax〉

〈Ax,Ax〉 .(11)

We consider equations (10) on the tangent bundle

TE =
{

(x,y) ∈ R6 |x ∈ E , 〈y,Ax〉 = 0
}
.(12)

On TE equations (10) possess the energy integral

E(x,y) =
1
2
〈y,y〉+ V (x).(13)

As the system has two degrees of freedom, for its integrability it is necessary to have one
additional first integral. All known integrable cases are the following:

1. Jacobi case: B = bE where b ∈ R and E is the unit matrix,
2. Neumann case: a1 = a2 = a3,
3. symmetric case: B = diag(b1, b2, b3), ai = aj , bi = bj , i 6= j,
4. ‘no tangent force’ case: B = αA, α ∈ R.
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In what follows, we consider the case of diagonal potential B = diag(b1, b2, b3). Then, all
the above integrable cases satisfy the condition

b1(a2 − a3) + b2(a3 − a1) + b3(a1 − a2) = 0.(14)

When this condition is satisfied then the Hamilton-Jacobi equation for the Jacobi and the
‘no tangent force’ cases separates in the ellipsoidal coordinates. This fact was discovered
by C. G. J. Jacobi who introduced the ellipsoidal coordinates especially for the purpose
of explicit integration of the geodesic motion on an ellipsoid, see [6].

From now on we will work with the complexified system (10), i.e. we assume that
(x,y) ∈ C6 and t ∈ C.

It is obvious that the three hyper-planes

Πk =
{

(x,y) ∈ C6 |xk = 0, yk = 0
}
, k = 1, 2, 3,(15)

are invariant with respect to the flow generated by (10). System (10) restricted to Ξk :=
Πk ∩ TE describes the motion of a point moving in an ellipse. As it is a system with one
degree of freedom, we can integrate it explicitly. In this way we are able to obtain three
families of particular solutions of (10) which are used in our application of Morales-Ramis
theory.

Let us consider a constant energy level

Σh := {(x,y) ∈ TE | E(x,y) = h} .(16)

We assume that h ∈ C is such that for k = 1, 2, 3, the intersection Σh ∩ Ξk is non-empty
and contains a solution

x = ϕ(t), y = ϕ̇(t), t ∈ C,(17)

which is not an equilibrium. We denote by Γhk the Riemann surface associated with the
selected solution lying in Ξk . The linear variational equation along solution (17) can be
written in the form

ξ̈ + [B + λA]ξ + [〈∇ � λ, ξ〉+ 〈∇ � λ, ξ̇〉]Aϕ(t) = 0,(18)

where λ, ∇ � λ and ∇ � λ are calculated at (x,y) = (ϕ(t), ϕ̇(t)), and ξ = (ξ1, ξ2, ξ3). The
considered solution lies on Ξk and for it we have ϕk(t) ≡ 0 and ϕ̇k(t) ≡ 0. Thus, the
normal variational equation for this solution corresponds to the k-th component of ξ and
it has the form

ξ̈k + [bk + λak]ξk = 0.(19)

This equation is considered as an equation on Γhk , where t is taken as a local coordinate.
We transform it choosing another local coordinate z in such a way that the resulting
equation will have coefficients in C(z). To simplify further exposition we restrict our
attention to the case k = 3. Notice that Γh3 is an algebraic curve given by the following
equations:

a1x
2
1 + a2x

2
2 = 1, x3 = 0, y3 = 0,

a1x1y1 + a2x2y2 = 0, y2
1 + y2

2 + b1x
2
1 + b2x

2
2 = 2h.

(20)

As a local coordinate on it we can take e.g. x2
1. Thus we make a transformation

t→ z = ϕ1(t)2.(21)
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First let us note that after this transformation λ = λ(ϕ(t), ϕ̇(t)) is a rational function of
z and we denote it λ(z). Moreover, we have

d
dt

= 2ϕ1(t)ϕ̇1(t)
d
dz
,

d2

dt2
=
[
2ϕ̇1(t)2 − 2(λ(z)a1 + b1)z

] d
dz

+ 4zϕ̇1(t)2 d2

dz2 .

(22)

To obtain the last relation we use the explicit form of the right hand side of equation
(10) for ẍ1. From (20) it follows also that ϕ̇1(t)2 = y2

1 is a rational function of z which
we denote y1(z)2. The normal variational equation (19) after transformation (21) reads

d2ξ3
dz2 + p(z)

dξ3
dz

+ q(z)ξ3 = 0,(23)

where

p(z) =
1
2

(
1
z
− λ(z)a1 + b1

y1(z)2

)
, q(z) =

λ(z)a3 + b3
4zy1(z)2 .

Making the change of the dependent variable

w = ξ3 exp
[
−1

2

∫ z

z0

p(ζ) dζ
]
,(24)

we transform (23) into the standard form

d2w

dz2 − J(z)w = 0,(25)

where

J(z) = −q(z) +
1
4
p(z)2 +

1
2

dp(z)
dz

.(26)

Finally, in order to reduce the number of parameters we perform the re-scaling z → z/a1

and we obtain
d2w

dz2 − r(z)w = 0,(27)

where

r(z) =
1
a2

1
J(z/a1).

Now the rational function r(z) depends on five parameters, namely

αk =
ak
a1
, βk =

bk
b1
, k = 2, 3, and µ = 2

ha1

b1
.(28)

In what follows we assume that:

1. the ellipsoid is tri-axial, i.e. αk 6= 1 for k = 2, 3, and µ 6= 1,
2. we exclude the ‘no tangent force’ case,
3. β3α2 − β2α3 6= 0.

The case of an axially symmetric ellipsoid, as well as that excluded by condition 3 above
must be considered separately.

It is easy to notice that equation (27) is Fuchsian. It has five singular points

z1 = 0, z2 = 1, z3 =
β2 − µα2

β2 − α2
, z4 =

α2

α2 − 1
, z5 =∞,
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with exponents ρ+
i , ρ−i (see [5])

ρ±i =
1
4
,

3
4
, for i = 1, 2, 3,

ρ±4 = −1
4
,

5
4
, ρ±5 = −1

2
(1±∆3),

where

∆3 =

√
α3(1− β2) + β3(α2 − 1)

α2 − β2
.

We can repeat the above calculation for Γh1 and Γh2 . In both cases we obtain a Fuchsian
equation of the form (27) with five singular points. In all cases the exponents of singular
points are the same except z5 =∞. For Γh1 and Γh2 they are

ρ±5 = −1
2

(1±∆k), k = 1, 2,

where

∆1 =

√
α2 − β2 + β3 − α3

β3α2 − β2α3
, ∆2 =

√
α2(β3 − 1) + β2(1− α3)

β3 − α3
.

The main result of this section is the following theorem.

Theorem 2. If there exists k ∈ {1, 2, 3} such that

∆k 6=
p

q
, p ∈ N, q = 1, . . . , 6,(29)

then system (10) is not integrable.

In the above theorem it is understood that the three assumptions given above are
satisfied.

Proof. Assume that system (10) is integrable. Then for every particular solution the
identity component G0 of the differential Galois group of the respective NVE is Abelian.
We show that if condition (29) is satisfied, then, for NVEs corresponding to Γhk , k = 1, 2, 3,
we have G = G0 = SL(2,C), except for one special value of µ. Our proof is heavily based
on the Kovacic algorithm [8] and some computer algebra calculations.

For all three cases NVE is Fuchsian so all four possibilities given by Lemma on p. 7
in [8] can occur. Thus, we have to follow the Kovacic algorithm from Case I to Case III.
We are going to consider NVE corresponding to Γh3 , but for the other two the procedure
is the same.

Case I. We check if G can be conjugate to a triangular subgroup of SL(2,C), or,
equivalently, if (27) has a solution of the form w = P exp

∫
ω, where P ∈ C[z] and

ω ∈ C(z). According to the algorithm described on pp. 11–12 in [8], for each singular
point we calculate the auxiliary set Ei. In our case we have

E5 =
{

1
2

(1±∆3)
}
, E4 =

{
−1

4
,

5
4

}
,

Ei =
{

1
4
,

3
4

}
, for i = 1, 2, 3.

(30)
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Let E =
∏
Ei be the Cartesian product of all Ei. Then

degP := d(e) := e5 −
4∑

i=1

ei,

for some e = (e1, . . . , e5) ∈ E. However, for an arbitrary e ∈ E we have

d(e) = − l
k
± 1

2
∆3, k = 1, 2, 4, l ∈ N0 := N ∪ {0}.

Thus, if ∆3 satisfies (29), then d(e) 6∈ N0, and Case I cannot occur.
Case II. We check if G can be an imprimitive subgroup of SL(2,C), or, equivalently,

if there exists a solution of the form w = exp
∫
ω where ω belongs to the quadratic

extension of C(x). Now, the sets Ei are the following (see p. 18 in [8]):

E1 = E2 = E3 = {1, 2, 3}, E4 = {−1, 2, 5},
and

E5 = {2, 2± 2∆3} ∩ Z = {2},
because ∆3 satisfies (29). Now, we look for e ∈ E such that d2(e) := d(2)/2 ∈ N0. For
e = (1, 1, 1− 1, 2), d2(e) = 0, and this is the only possibility when d2(e) ∈ N0. Now, we
have to check if there exists a monic polynomial P of degree 0 satisfying a certain linear
differential equation, (see p. 18 in [8]). In this case it can be checked with the help of a
computer algebra system that such a solution exists only if

µ =
β2 − α2

2

α2(1− α2)
.(31)

If we exclude this value of µ then Case II cannot occur.
Case III. We check if G can be a finite subgroup of SL(2,C), or, equivalently, if there

exists a solution of the form w = exp
∫
ω where ω belongs to an algebraic extension of

C(z) of degree n = 4, 6 or 12. Each value of n must be considered separately, see pp.
22–23 in [8].

Subcase n = 4. Now the sets Ei are the following:

E1 = E2 = E3 = {3, 6, 9}, E4 = {−3, 6, 15}, E5 = {6}.
To calculate Ei we made use of condition (29). It is easy to notice that there is no e ∈ E
such that d4(e) := d(e)/3 ∈ N0. Thus this subcase cannot occur.

Subcase n = 6. We have now

E1 = E2 = E3 = {3, 4, 5, 6, 7, 8, 9} E4 = {−3, 0, 3, 6, 9, 12, 15}, E5 = {6},
and there is only one e ∈ E such that d6(e) := d(e)/2 ∈ N0. Namely, for e = (3, 3, 3,−3, 6),
we have d6(e) = 0. As in Case II we have to check if the polynomial P = 1 satisfies a
certain differential equation, if it does not, then this subcase is excluded. Using computer
algebra we checked that P = 1 satisfies this equation only for the value of µ given by
(31). As we have already excluded this value of µ, the subcase n = 6 cannot occur.

Subcase n = 12. Ei are the same as in the previous subcase. Again there is only one
e ∈ E, exactly the same as in the previous subcase, such that d12(e) := d(e) ∈ N0. With
the help of a computer algebra program we checked that an appropriate equation has



NON-INTEGRABILITY OF CERTAIN HAMILTONIAN SYSTEMS 149

no polynomial solution of degree 0 except for the value of µ given by (31). Thus, this
subcase, as well as the whole Case III must be excluded.

From the above considerations it follows that if µ is not given by (31), then the
considered NVE has no Liouvillian solution and its differential Galois group is SL(2,C).
Let us notice that we can always choose the curve Γh3 such that µ, which is a re-scaled value
of h, does not satisfy (31). Thus, for this choice the identity component of the differential
Galois group of NVE is not Abelian. This is a contradiction with our assumption that
the system is integrable.

If, instead of Γh3 in the above proof, we choose Γh1 or Γh2 , different values of µ have to
be excluded. It is interesting to see if it can happen that all these three values coincide.
If this is possible then for this particular choice for all three solutions G0 is Abelian. A
simple analysis shows that this can happen if and only if

b1a2a3(a3 − a2) + b2a1q3(a1 − a3) + b3a1a2(a2 − a1) = 0.(32)

Of course, even if this relation is satisfied, we cannot expect that the system is integrable.
However, restricting it to the energy level corresponding to the distinguished value of µ,
we can obtain an integrable system. In other words, we conjecture that the original system
can be integrable on the particular level of the energy integral.

We remark also that the investigations of cases which do not satisfy (29) seem to be
considerably more difficult than that presented above.

The result of this section is an effect of my common work with B. S. Bardin.
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