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1. Introduction. Local Cohomology, in Commutative Algebra, may be seen as the
algebraic counterpart to the cohomology groups of a topological space X with coefficients
in an Abelian sheaf on X, and supports in a locally closed subspace, introduced by
A. Grothendieck.

It may be defined as follows: Let R be a (commutative) noetherian ring, I ⊂ R an
ideal of R, and M an R-module. The local cohomology modules of M supported on I are
the right derived functors of the functor of sections of M with support on I:

Hr
I (M) = Rr(ΓI(M))

where ΓI(M) =
⋃
n≥0(0 :In M). It may be seen that:

Hr
I (M) ' ind.lim ExtrR(R/In,M) ' Hr(C(a1, . . . , at;M))

where C(a1, . . . , at;M) denotes the Čech complex of M with respect to any system of
generators a1, . . . , at of I, with

C(a1, . . . , at;M)r =
⊕

i1<···<ir
Mai1 ···air

and differentials given by the natural localization morphisms.
After R. Hartshorne’s notes on A. Grothendieck’s 1961 Harvard University Seminar

[14] and subsequent work [15], Local Cohomology became a fundamental and effective tool
in Commutative Algebra. It provides a great amount of information about the module
M and the ideal I, mainly when M is a finitely generated R-module. Let us recall some
basic vanishing (and non-vanishing) results:

a) Assume that M is a finitely generated R-module. Then, for any I

gradeI(M) = min{r|Hr
I (M) 6= 0} <∞.
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b) For any I and M

Hr
I (M) = 0, for any r > dimR(M).

c) If (R,m) is a local ring with maximal ideal m, and M is a finitely generated R-
module then

dimR(M) = max{r|Hr
m(M) 6= 0}.

For any ideal I ⊂ R let the arithmetical rank ara(I) of I be the least number of
elements of R required to generate an ideal which has the same radical as I, that is,
the minimal number of elements needed to define set theoretically the same variety as I.
Then

d) Hr
I (R) = 0 for any r > ara(I).

Usually it is difficult to determine the structure (vanishing, support, injective dimen-
sion, ...) of the local cohomology modules as R-modules, mainly due to the fact that,
even for the ring R itself, they are in general not finitely generated.

In this sense, several deep conjectures concerning local cohomology modules were
stated by R. Hartshorne, a central idea behind them being that local cohomology modules
behave as finitely generated ones in some aspects, and this would be enough to obtain
useful information about their structure, see C. Huneke [16] for an account of these
conjectures.

Let us mention now the following result proved a few years ago:

Theorem 1 (1993). Let R be a regular ring containing a field and I ⊂ R an ideal
of R. Let Hr

I (R) be the r-th local cohomology module of R supported on I. Then the
following hold:

i) Hj
m(Hr

I (R)) is injective for any maximal ideal m of R.
ii) inj.dimR(Hr

I (R)) ≤ dimRH
r
I (R).

iii) The set of associated primes of Hr
I (R) is finite.

iv) The Bass numbers of Hr
I (R) are finite.

(Recall that if M is an R-module and p is a prime ideal of R, the Bass number
µiR(p,M) is the number of copies of the injective envelope ER(R/p) of R/p that appear
in the i-th step of a minimal injective resolution of M , and it is given by

µiR(p,M) = dimk(p)ExtiRp
(k(p),Mp).

The proof of this theorem depends on the characteristic of the field, and was obtained
by:

• C. Huneke and R.Y. Sharp [17] if the field is of positive characteristic, by using the
Frobenius.
• G. Lyubeznik [18] if the field is of characteristic zero, by using the theory of D-

modules: When R is a polynomial ring or a formal power series ring over a field of
characteristic zero, the local cohomology modules of R have a D-module structure,
where D is the ring of differential operators. In fact, they are holonomic as D-
modules.
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The main goal of this paper is to survey some recent results by J. Àlvarez [1], [2]
and J. Àlvarez, R. Garćıa and S. Zarzuela [3] on the structure of the local cohomology
modules of a polynomial ring R over a field k of characteristic zero, particularly when
the support is a monomial ideal or, more generally, the defining ideal of an arrangement
of linear varieties in the affine space Ank . The obtained information is essentially given by
their structure as D-modules, specially by their characteristic cycles.

Namely, if I ⊂ R is a square free monomial ideal, we will see how the multiplicities
of the characteristic cycles of the local cohomology modules Hr

I (R) recover the basic
combinatorical invariants of the simplicial complex whose Stanley-Reisner ring is R/I.
And if I ⊂ R is the defining ideal of an arrangement of linear varieties on the affine space
Ank we shall compute the multiplicities of the characteristic cycles of the corresponding
local cohomology modules as the Betti numbers of the complement of the arrangement
defined by I.

No proofs will be given here. We will use M. Brodmann and R. Y. Sharp [8] as a basic
reference for Local Cohomology, and H. Matsumura [19], W. Bruns and J. Herzog [9] for
any unexplained terminology of Commutative Algebra. Finally, all the concepts we need
on D-module theory can be found in S. C. Coutinho [10], J.-E. Björk [5] and A. Borel
et al. [7].

This paper is based on the talk given by the author at the Workshop on Differential
Galois Theory, held at the Mathematical Research and Conference Center of the Institute
of Mathematics of the Polish Academy of Sciences, in Będlewo, from May 28th to June
1st 2001. The author would like to thank the organizers, Teresa Crespo and Zbigniew
Hajto, for their work and for inviting him to participate in it. Thanks are also due to
Josep Àlvarez and Ricardo Garćıa for their valuable comments improving the readability
of this paper.

2. Holonomic D-modules, local cohomology, and characteristic cycles. In
this section we will recall some basic concepts on D-module theory in order to fix the
aspects we are interested in to study local cohomology modules.

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a field k of charac-
teristic zero. Recall that in this case the ring of differential operators of R is isomorphic
to the (noncommutative) R-algebra

D = R < ∂1, . . . , ∂n >

generated by the partial derivatives ∂i = d
dxi

with the relations given by

∂i∂j = ∂j∂i, ∂ir − r∂i =
dr

dxi

where r ∈ R. This algebra, usually called the Weyl algebra of R, is left and right Noethe-
rian. Here we will always consider left D-modules.

The category of holonomic D-modules is a full abelian subcategory of the category of
D-modules with very good properties. In particular, holonomic D-modules are of finite
length as D-modules. As the basic examples for our purposes we have:

• R itself is holonomic as a D-module.
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• All the localizations Rf , f ∈ R, are holonomic.
• From the construction of the Čech complex we have that for any ideal I ⊂ R, the

local cohomology modules Hr
I (R) are holonomic D-modules too.

The algebra D has an increasing filtration {Σv}v≥0 (the order filtration) such that its
associated graded ring is isomorphic to a (commutative) polynomial ring in n variables
over R. Namely,

grΣ(D) =
⊕

v≥−1

Σv+1/Σv = R[y1, . . . , yn]

where yi = ∂̄i ∈ Σ1/Σ0 and Σ−1 = 0.
Also, for any finitely generated D-module M there exists a good filtration, that is,

there is an increasing sequence of finitely generated R-submodules Γ0 ⊆ Γ1 ⊆ · · · ⊆ M

satisfying:

i)
⋃

Γk = M

ii) ΣvΓk ⊆ Γv+k, ∀ k, v ≥ 0,

and such that grΓ(M) =
⊕

k≥−1 Γk+1/Γk (Γ−1 = 0) is a finitely generated grΣ(D)-
module.

By Bernstein’s inequality we have that n ≤ dim grΓ(M) ≤ 2n, the holonomic modules
being exactly those for which n = dim grΓ(M).

Now, for any finitely generated D-module M we can consider its characteristic ideal
J(M):

J(M) =
√
AnngrΣ(D)(grΓ(M)),

which is independent of the chosen good filtration, as well as its characteristic variety
C(M):

C(M) = V (J(M))⊆Spec (grΣ(D)).

Observe that if M is holonomic then dimC(M) = n.
The characteristic variety allows to describe the support of M as R-module, since if

π : Spec (R[y1, . . . , yn])→ Spec (R)

is the natural contraction then SuppR(M) = π(C(M)).
The characteristic cycle of M is then defined as:

CC(M) =
∑

mαVα

where the sum is taken over all the irreducible components Vα of C(M), and the mα’s
are certain attached multiplicities, in such a way that

Vα ⊂ C(M)⇔ mα 6= 0.

The characteristic cycle is additive with respect to exact sequences.
Local cohomology modules are regular: A holonomic D-module is called regular if

there exists a good filtration such that the annihilator of the associated graded module
is a radical ideal.

Over C, the field of complex numbers, the characteristic variety of a holonomic D-
module M has a particular shape (see [21]). Namely, if we think of Spec (grΣ(D)) as T ∗X,
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the cotangent bundle of X = Spec (R), and then consider the projection

π : T ∗X→X
one can see that the irreducible components Vα of C(M) are of the form

Vα = T ∗YαX

where Yα is the projection of the component and T ∗YαX the conormal bundle of X with
respect to Yα.

As a consequence, the characteristic variety of a holonomic module M has a decom-
position of the form

C(M) =
⋃
T ∗YαX

where Yα are the projections of the irreducible components of C(M). In particular, we
have a description of the support of M as an R-module. Namely,

SuppRM =
⋃
Yα.

By flat base change, and over any field k of characteristic zero, one has a similar
description of the characteristic cycles of the local cohomology modules Hr

I (R), and
so an explicit description of their support. In particular, one can determine from their
characteristic cycles when they vanish. Furthermore:

Theorem 2 (J. Àlvarez [1]). For any ideal I ⊂ R, and for any r ≥ 0, the multiplici-
ties of the characteristic cycle of Hr

I (R) are invariants of R/I.

For any I ⊂ R set
CC(Hn−i

I (R)) =
∑

mα T ∗YαX.

We may then consider the following numbers:

γp,i(R/I) :=
{∑

mα : dimYα = p
}
.

These are also invariants of R/I, and if dimR/I = d they satisfy the following nice
properties:

Proposition 3 (J. Àlvarez [1]). With the above notations,

i) γp,i(R/I) = 0 if i > d.
ii) γp,i(R/I) = 0 if p > i.

iii) γd,d(R/I) 6= 0.

In particular, we can consider the triangular matrix given by the invariants γp,i:



γ0,0 · · · γ0,d

. . .
...

γd,d




that we call the characteristic matrix of I.
Now our objective is twofold:

1) To compute the multiplicities of local cohomology modules.
2) To give adequate interpretations of these multiplicites.
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As we shall see, one is able to do this for local cohomology modules supported on
monomial ideals and, more generally, for the definition ideals of arrangements of linear
varieties.

3. Local cohomology supported on monomial ideals. The study of local co-
homology modules supported on monomial ideals has received much attention recently,
and they have been explicitely computed from several points of view and using different
techniques, see for instance F. Barkats [4], U. Walther [24], M. Mustaţă [20], and K.
Yanagawa [25].

In this section we want to review a formula by J. Àlvarez [1], describing the char-
acteristic cycles of the local cohomology modules supported on a monomial ideal by
means of the face ideals in its minimal primary decomposition. Also, we will see how the
corresponding attached multiplicities provide combinatorial information.

The easiest case is when I is a face ideal: Let I = p = (xi1 , . . . , xih) ⊂ R, h = ht(p).
Then

Hr
p(R) = 0 if r 6= h and CC(Hh

p (R)) = T ∗{xi1=···=xih=0}X.

For the general case, and since it is enough to compute local cohomology for radical
ideals, we may always assume that I is a squarefree monomial ideal.

So let I = p1 ∩ . . . ∩ pm be a minimal primary decomposition, where pj are face ideals,
j = 1, . . . ,m. Note that sums pj1 + · · ·+ pjk of face ideals are again face ideals. Then,

Theorem 4 (J. Àlvarez [1]). With the above notations,

CC(Hn−i
I (R)) =

∑

pj∈Ω1,i

CC(Hn−i
pj

(R)) +
∑

pj+pk∈Ω2,i

CC(Hn−i+1
pj+pk

(R))

+ · · ·+
∑

p1+···+pm∈Ωm,i

CC(Hn−i+(m−1)
p1+···+pm

(R))

where Ωj,i are subsets of the sets of sums of j face ideals that one computes by using an
algorithm. They have height n− i+ j − 1.

The algorithm is based on a recursive use of Mayer-Vietoris sequences, by applying
the additivity of the characteristic cycle with respect to short exact sequences.

One can extract some consequences from this formula. For instance, the face ideals in
the sets Ωj,i describe the support of the local cohomology modules Hn−i

I (R). From the
algorithm one may also see that for any i,

Ω1,i = {pj | ht (pj) = n− i}.
In particular, if pj is a face ideal in the primary decomposition of I,

pj ∈ SuppR(Hn−i
I (R))⇔ ht (pj) = n− i,

and in this case it is a minimal prime ideal of Hn−i
I (R). (But there can be other minimal

primes.)
From the theorem we also have that

γp,i(R/I) = #Ωi−p+1,i.

And in terms of these invariants one may:
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• Give a vanishing criterion for Hn−i
I (R):

Hn−i
I (R) = 0⇔ γp,i = 0 ∀p.

• Compute the cohomological dimension cd(I, R) of I, that is, max{r|Hr
I (R) 6= 0}:

cd(R, I) = n−min{i|γp,i 6= 0 for some p}.
• Give a Cohen-Macaulayness criterion for R/I:

R/I is Cohen-Macaulay⇔ γp,i = 0 ∀ i 6= dimR/I, ∀p.
Now, let ∆ be a simplicial complex on the set of vertices {x1, . . . , xn} and

I∆ = (xα1
1 · · ·xαnn | (α1, . . . , αn) ∈ {0, 1}n, {xαii | α1 = 1} 6∈ ∆}

the defining ideal of the Stanley-Reisner ring of ∆:

k[∆] := k[x1, . . . , xn]/I∆.

I∆ is a square free monomial ideal, and in this way there is a bijection between the
set of simplicial complexes on the set of vertices {x1, . . . , xn} and the set of square free
monomial ideals in R. See R. Stanley [22] for more details.

Observe that sums of face ideals in the minimal primary decomposition of I∆ corre-
spond to the intersection of maximal faces of ∆.

Let dim ∆ = dim k[∆]− 1 = d− 1, and consider the f -vector of ∆:

f(∆) = (f−1, . . . , fd−1),

where fk is the number of k-dimensional faces of ∆, and the h-vector of ∆:

h(∆) = (h0, h1, . . . , hd).

Both are related by means of the equality
d∑

i=0

fi−1(t− 1)d−i =
d∑

i=0

hit
i.

Finally, consider the characteristic matrix of I∆:



γ0,0 · · · γ0,d

. . .
...

γd,d


 ,

and denote
Bk := γk,k − γk,k+1 + · · ·+ (−1)d−kγk,d.

Then we have the following relations:

Proposition 5 (J. Àlvarez [1]). With the above notations,

i) fk =
(

d

k + 1

)
Bd +

(
d− 1
k + 1

)
Bd−1 + · · ·+

(
k + 1
k + 1

)
Bk+1.

ii) 1 = f−1 = Bd + · · ·+ B0 =
∑

(−1)p+iγp,i.
iii) The Euler characteristic of ∆ is χ(∆) = 1− B0.

iv) hk = (−1)k
(( d

k

)
B0 +

(
d− 1
k

)
B1 + · · ·+

(
k

k

)
Bd−k

)
.
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Here we would like to point out that the invariants γp,i are finer than the f -vector or
the h-vector, but they are equivalent if the ring R/I∆ is Cohen-Macaulay.

Example. Let R = k[x1, x2, x3, x4, x5]. Consider:

I∆1 = (x1, x3) ∩ (x1, x4) ∩ (x1, x5) ∩ (x2, x3) ∩ (x2, x4).

Then f(∆1) = (1, 5, 9, 5) and the characteristic matrix of I∆1 is



0 0 0 0
0 0 2

0 6
5


 .

Now, consider

I∆2 = (x1, x4) ∩ (x1, x5) ∩ (x2, x5) ∩ (x3, x5) ∩ (x4, x5) ∩ (x1, x2, x3).

Then, as before, f(∆2) = (1, 5, 9, 5) while the characteristic matrix of I∆2 is



0 0 1 1
0 2 4

1 7
5


 .

There is still another combinatorial meaning for the multiplicities of the characteristic
cycles of the local cohomology modules supported on monomial ideals:

The ring R = k[x1, . . . , xn] has a natural Zn-graduation given by deg(xi) = εi where
ε1, . . . , εn is the canonical basis of Zn. There is also an obvious bijection between the
degrees α ∈ {0, 1}n and the face ideals of the form pα =< xi >αi=1. Note that if pα is
a face ideal then |α| = ht (pα), and that monomial ideals are exactly the homogeneous
ones for this Zn graduation of R.

On the other hand, for any given Zn-graded R-module M we may consider a minimal
Zn-graded free resolution

L•(M) : 0→ Lr → Lr−1 → · · · → L0 →M → O

where
Lj = ⊕α∈ZnR(−α)βj,α

and βj,α are the graded Betti numbers. The Castelnuovo-Mumford regularity of M de-
noted reg(M) is then defined as

reg(M) := max{|α| − j | βj,α 6= 0}.
For a given integer i, the i-linear strand of L•(M) is the subcomplex

L<i>• (M) : 0→ L<i>r → L<i>r−1 → · · · → L<i>0 → O

where
L<i>j = ⊕|α|=j+iR(−α)βj,α.

Now, recall that for a given square free monomial ideal I ⊂ R, the Alexander dual of
I is the ideal
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I∨ =<
∏

i∈S
xi | S ⊂ {1, . . . , n},

∏

i∈Sc
xi 6∈ I > .

In fact, the simplicial complex associated to the Stanley-Reisner ring R/I∨ is the Alexan-
der dual of the simplicial complex associated to R/I, see [22].

Let βj,α be the graded Betti numbers of the Alexander dual of I. Then:

Theorem 6 (J. Àlvarez [2], J. Àlvarez, R. Garćıa, and S. Zarzuela [3]). For any α

6∈ {0, 1}n, the Betti number βj,α = 0. Furthermore, if pα ∈ R is a face ideal, Xα is
the linear variety defined by pα, and mi,α the multiplicity of T ∗XαX in

CC(Hn−i
I (R)) =

∑
mi,α T

∗
XαX,

then

i) βj,α = 0 if pα 6∈ Ωj,i for any i.
ii) If pα ∈ Ωj,i then

βj,α = mi,α, with i = n− | α | −j + 1.

Note that each local cohomology module Hn−i
I (R) provides exactly the Betti numbers

of the n− i − 1 linear strand in the minimal free resolution of I∨. As a consequence we
get the following result, first proved by J. A. Eagon and V. Reiner [11]:

• I is Cohen-Macaulay if and only if I∨ has a linear resolution.

As well as the following generalization by N. Terai [23]:

• reg(I∨) = cd (R, I) = proj.dim(R/I).

Two different proofs of the above theorem may be given:

i) One may see that the local cohomology modules Hn−i
I (R) are also Zn-graded,

and that the multiplicities of their characteristic cycles are equal to the lengths of
appropriate graded pieces. Then one uses a result by M. Mustaţă [20] that identifies
these lengths as the Betti numbers of the Alexander dual of I [3].

ii) Consider the Taylor resolution of the Alexander dual of I. Then one sees that
the algorithm used to compute the characteristic cycles of the local cohomology
modules Hn−i

I (R) corresponds to an algorithm to get a minimal free resolution for
the Alexander dual of I from its Taylor resolution [2].

4. Local cohomology and arrangements of linear varieties. Let I be the def-
inition ideal of an arrangement of linear varieties in the affine space Ank . In this section
we want to relate, when k is the field of real or complex numbers, the multiplicities of
the characteristic cycles of the local cohomology modules supported on I with the Betti
numbers of the complement of the arrangement in the afine space. This will provide a
purely algebraic interpretation of these Betti numbers.

Let k be a field and R = k[x1, . . . , xn]. Consider an arrangement of linear varieties X
in the affine space Ank defined by the ideal I = pα1 ∩ . . . ∩ pαm ⊆ R.

The arrangement X defines a partially ordered set P (X) whose elements correspond
to the intersections of irreducible components of X. Observe that P (X) is the poset
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associated to the subvarieties

Xα = V (pα), where pα = pαi1 + · · ·+ pαik

ordered by reverse inclusion.
For any p ∈ P (X), denote by Xp the linear affine variety corresponding to p, by Ip

the radical ideal which defines Xp, and by h(p) the codimension of Xp, that is, the height
of the ideal Ip.

Further for any p ∈ P (X), let K(> p) (K(≥ p)) be the simplicial complex attached
to the subposet

{q ∈ P (X) | q > p}
({q ∈ P (X) | q ≥ p})

of P (X).
For k = R, the field of real numbers, M. Goresky and R. MacPherson gave a formula

for the homology of the complement of X in Ank that may be stated as follows:

Theorem 7 (M. Goresky and R. MacPherson [13]). With the above notations,

H̃i(AnR −X;Z) '
⊕

p∈P (X)

Hh(p)−i−1(K(≥ p),K(> p);Z).

In particular, this formula says that the Betti numbers of the complement of X can
be computed as the sum of non-negative integers, one for each non-empty intersection
of irreducible components of X. These integers are, in fact, dimensions of certain Morse
groups [13]. Other versions of this formula have also been proven by several authors. In
particular, A. Björner and T. Ekedahl [6] have proved a l-adic version of it.

Now, we can give a description of these Betti numbers, for k = R or k = C, in terms
of the multiplicities of the characteristic cycles of the local cohomology modules Hr

I (R).
Namely,

Theorem 8 (J. Àlvarez, R. Garćıa, S. Zarzuela [3]). Let k be a field of characteristic
zero. With the above notations,

i) CC(Hr
I (R)) =

∑
p∈P (X)mr,p T

∗
Xp
Ank .

ii) If k = R is the field of real numbers, then

dimQ H̃i(AnR −X;Q) =
∑

p∈P (X)

mi+1, p .

iii) If k = C is the field of complex numbers, then

dimQ H̃i(AnC −X;Q) =
∑

p∈P (X)

mi+1−h(p), p .

(The formula for the case k = C may be obtained from the case k = R regarding a
complex arrangement in AnC as a real arrangement in A2n

R .)
The proof of this result lies on the fact that, on the basis of the poset P (X), one may

construct a filtration

{F rj }r≤j≤n
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of the local cohomology module Hr
I (R) such that

F rj /F
r
j−1 '

⊕

h(p)=j

(Hj
Ip

(R))⊕mr,p

where
mr,p = dimk H̃h(p)−r−1(K(> p); k).

The additivity of the characteristic cycle with respect to short exact sequences gives then
part i) in the theorem, and the formula of Goresky-MacPherson gives parts ii) and iii).

In fact, the existence of a filtration with the above properties for the local cohomology
modules supported on the definition ideal of an arrangement of linear varieties is valid
in any characteristic. Its proof follows closely the method used by A. Björner and T.
Ekedahl [6].

Observe that, if I is a monomial ideal, we may combine theorem 8 with the interpre-
tation in terms of the Betti numbers of the minimal free resolution of the Alexander dual
of I obtained in theorem 6. In this way we get an interpretation of the Betti numbers of
the complement of the arrangement defined by I in terms of the Betti numbers of the
minimal free resolution of the Alexander dual of I, see also V. Gasharov, I. Peeva, and
W. Welker [12].

A natural question that arises in this context is to what extent the characteristic cycles
determine the local cohomology modules supported on monomial ideals. This would be
the case if, for the filtrations {F rj }r≤j≤n of the local cohomology modules introduced
above, all the extensions associated to the short exact sequences are trivial.

This is not the case. But, in our situation, we are able to solve all the extension prob-
lems attached to the exact short sequences, and so to precise the additional information
one needs to determine the local cohomology modules [3]. But this must be done in the
frame of the category of straight modules, introduced by K. Yanagawa in [25], which
includes the local cohomology modules supported on monomial ideals.
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