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Abstract. In this paper we give a construction of operators satisfying ¢-CCR relations for ¢ > 1:
A(N)A™(9) = A (QA) = ¢ (f,9)]
and also g-CAR relations for ¢ < —1:
B(f)B"(9) + B*(9)B(f) = la|" {f. 9)I,
where N is the number operator on a suitable Fock space F,(H) acting as
N1 ® - ®@Zn =nr1 Q-+ Q Tn.

Some applications to combinatorial problems are also given.

1. Introduction. Generalized Brownian motion (Gaussian random field) (GBM), G(f)
were introduced in our papers with R. Speicher [15, 16, 18], where the main examples
came from the ¢-CCR relation for ¢ € [—1, 1]

a(f)a*(g) —qa*(g)a(f) = (f, 91,

here f, g are in a real Hilbert space H and

G(f) = a(f) +a*(f).
Other examples of (GBM) were constructed by M. Bozejko and M. Guti [10], M. Bo-
zejko and J. Wysoczariski [19, 20], M. Gutd and H. Maassen [26, 27|, M. Bozejko and

H. Yoshida [21] and recently A. Buchholz [23] discovered a very interesting new class of
(GBM).
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In this note we present a construction of ¢-CCR relations for ¢ > 1 and ¢-CAR
relations for ¢ < —1.

We also give a simple application to a combinatorial problems on the set Py(2n) of
2-partitions of the set {1,2,...,2n}.

Namely for a 2-partition V € P3(2n) we have

1
pbr(V)+cer(V) = iip(V).

Here cr(V) is the number of crossings, which is given by the number of pairs of blocks of
VY which cross, that is:

cr(V) = #{((a,b), (c,d)) : (a,b),(c,d) €V, and a < ¢ < b < d}.
Also for V € P5(2n) we define the number of pairs embracings introduced by de Medicis
and Viennot [37] and also studied by A. Nica [39] as

pbr(V) = #{((a,b), (¢,d)) : (a,b), (¢,d) € V, and a < ¢ < d < b}.
In the same way we define the number of inner points

ip(V) = inpt(i, j),
(3,9)€V

where for a block (4,j) € V we let inpt(i, j) be the number of natural k with ¢ < k < j.

2. Generalized Brownian motion. Let H be a real Hilbert space. A family of self-
adjoint operators G(f) = G(f)*, f € H, is called Generalized Gaussian random variables
or Generalized Brownian Motion (GBM), if there exists a state £ on the von Neumann
algebra generated by G(f), f € H and a function

t: U Pa(2n) — C
n=1

such that the following generalized Wick formula holds:

0 if k£ is odd,
@) CUD =9 S ) T (fufy) ifk=12n.
VEP,(2n) (i,)EV

If the dimension of the Hilbert space is infinite, then the above definition is equivalent
to the following one (see F. Lehner — II part, [35]): for each orthogonal linear map O :
H—-H

e(G(f1)---G(fr) = e(G(O(f1)) - .- G(O(fr)))-

A typical example of (GBM) was obtained by R. Speicher and myself [15, 16] in 1991
using ¢-CCR relations for —1 < ¢ < 1, then putting G(f) = a(f) + a*(f) and knowing
that a(f)Q2 = 0 we obtain the following Wick formula interpolating between ¢ = 1
(Bose-Einstein statistics), ¢ = —1 (Fermi-Dirac statistics) and ¢ = 0 (Maxwell statistics):

G- Gl = S ¢ T Ui fy).
VeEP,(2n) (i.§)eV
Here ¢r(V) is the number of crossings, which is given by the number of pairs of blocks of
V which cross.
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To obtain the above Wick formula we need a deformed Fock space F,(Hc) constructed
by the completion of the free Fock space

F(He)=CQaHcaH & ...

by introducing a new scalar product on H%" as follows. For &,7n € H%’" we define a
g-deformed scalar product

(& m)g = (P{ME,m),

Pq(n): Z qcr(‘n')ﬂ_’
TeS(n)

where

and for a permutation m € S(n),
er(m) =4 {(4,7) : 1 <i<j<n,and n(7) > n(j)}.

In the construction of F,(Hc) we need the positivity of the operator Pq(") for -1 <
q < 1, which was done by[11] and [15, 16]. Then we form a creation operator

at(flE=fo¢

and an annihilation operator

n
aq(f)x1®...®xn:qu71<f,:17k>z1®...®jk...®:cn.
k=1

Hence for f € H on the ¢-Fock space F,(Hc) we have
[ (N = aq(f).

Moreover for —1 < ¢ < 1 and || f|| = 1 we obtain

1—¢) 2 if0<qg<1,

||a(f)||||a+(f)||{1 if —-1<q<0,

and the vacuum state
e() = {20

is a trace on the von Neumann algebra generated by G(f), f € H.
Also for || f]| = 1, we have

oo

SG()) = / dpg(x),

— 00
where
—
w27

1 _ Y
d#q(I) = gq 1/8@1(

1
- log q) dx,
i

here ©; is the well-known Jacobi function (see Maassen, van Leuven [36]) and 2 cosd =
The corresponding orthogonal polynomials with respect dy,(z) are ¢g-Hermite poly-
nomials satisfying the following recurrence relations, see Szego [46]:

2Ho(2) = Hup1 (@) + (" = 1)/(q — 1) Hoa (2).
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3. ¢-CCR for ¢ > 1. In this section we prove the existence of g-Gaussian fields

G(f) = A(f) + AT (f)
for ¢ > 1 satisfying the following ¢-CCR relation:

A(f)A*(9) — A (DA(f) = ™V {f, 9)1,
where f, g are in a real Hilbert H. The operator N is the number operator on a suitable
Fock space F,(H) acting as
Nxi® - Qxp, =121 Q- Q Tp.

For this sake we consider the operator

P = P = wi P,

(n)
0

where wy ’ = wy is the permutation (1,n)(2,n —1)(3,n —2)....

Since for o € S(n) we have
1
er(owp) = er(woo) = En(n —1)—cr(o)

therefore we get

So if ¢ > 1, we have that the operator Pq(n) is positive, since by the results of [11, 15, 16],

the operator P™ g positive.

1/q
We repeat the construction as before; we define a new scalar product on H%” as

follows. For &,7 € H%’" we define a g-deformed scalar product

(&g = (P3VE ).
Let F,(Hc) be the completion of the free Fock space under the new scalar product. The
creation operator is equal to

AT(f)e=f®€, for € € Fy(He) and f € H.
One can calculate that the annihilation operator
A(f) = [AT (A
is of the form:
A )1 ®...@x,) = Zq"‘k<f,xk>as1 R..Q%...Q T, = q"_lal/q(f)xl R...Q Ty
k=1

REMARK 3.1. If H is one-dimensional and ¢ > 1, then the left and right g-annihilation
operators are the same and

A(f) = aq(f) for feN.

This fact will be useful for us later.
The proof follows from the fact that if H = C f, then

Af)f@-@f =A+q+-+¢"" VWL =@+ +aq+ D). f) =ag(f) f@--- f.

Now we can state
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PROPOSITION 3.1. (i) For f,g € H, and q > 1, we have ¢-CCR relations
A(N)A (9) = A (@A) = aV{f, 9)1,

where
Nz ®...0x,) =n(x1 ® ... xy,).
(ii) If
fi € H, G(f;) = A(f;) + AT(fy),
then the following Wick formula holds:
(G(f). Gl = > " T (i fy)-
VEPa(2n) (5,§)EV

(i1i) For f € H the operator G(f) = A(f) + AT (f) is symmetric and of the deficiency

indez (1,1) and the corresponding orthogonal polynomials are q-Hermite for ¢ > 1

!
4 = H,1 ().

aHn(z) = Hnpa(2) +

Since A(f) = AT(f)*, A*(f) is the closure of AT(f).
Proof. (i) Since
A(f) = "ty q(f) on HE"
and also
asq(fla*(g) —a at(g)ars (f) = (f.9)1,
multiplying the last equation by ¢" we get

(a"a1/q(£)a*(g) = a™(9)(a" aryy(f)) = ¢"{f.9)1,
and this gives
A(H)A*(9) = A (9)A(f) = " (f.9)1.

The proof of (i) is classical and coming by simple induction on n, so we omit it.

To get (iii) we need to consider the one-dimensional case and it is well known (see
Krolak [32]) that for ¢ > 1 we get undeterminate moment problem, so the operator has
index (1,1), (see Achieser [2], Ismail, Manson [31]) and from the construction of the
creation and annihilation operators we get g-Hermite polynomials. m

4. Combinatorial applications. Next we obtain de Medicis-Viennot (see [37]) inter-
esting combinatorial formula:

COROLLARY 4.1. For q € C we have
Z qcr(V) _ Z qpb'r‘(V).

VeEP2(2n) VEP2(2n)

Proof. Since for ¢ > 1 and H = Ce is one dimensional and ||e|| = 1, we have
e((Al) + AT () = Y "W
V€P2(2n)

On the other hand

At(e) =at(e) and A(e) = a,(e).
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Therefore by [15, 16] we get

e((Ale) + AT () = Y

VeP2(2n)
Hence for ¢ > 1 we obtain
Z qcr(V) _ Z qpbr(V)7
VeP2(2n) VEP2(2n)

and then by analytic continuation that equality holds for all g € C. m

Now we present another application of the ¢-Gaussian field to get a new combinatorial
identity between the three functions on 2-partitions of 2n-element set:
er(V), pbr(V) and ip(V).
From Proposition 3.1 and Theorem 6 in Bozejko and Yoshida’s paper [21], putting
1/2 and q—l

there s = ¢ instead ¢ we obtain the following proposition:

PROPOSITION 4.1. If ¢ > 1, f; € H and G(f;) = A(f;) + AT (f;) are q-Gaussian random
variables, then

(G(f1). Gl = > g /2P0 T (£ )

VeP2(2n) (i,5)€V
= > ¢TI a hi)-
VeP2(2n) (i,5)€V

As a corollary we get the following combinatorial result:

COROLLARY 4.2. For 2-partitions V € P2(2n) we have:

pbr(V) + er(V) = % ip(V).

The proof of the corollary follows at once from the following lemma:

LEMMA 4.1. If for f; € H and t; : P2(2n) — C we have
> um I = > &0 [T h)
VeP2(2n) (i,4)€V VeP2(2n) (i,5)ev
then
t1(V) = t2(V) for allV € P2(2n).

Proof. It is not difficult to show that for a given 2-partition V € Py (2n) we can find a
suitable family f; € H such that

Y. a0 I (fufi=u®)
VeP2(2n) (i,5)€V
and this finishes the proof of Lemma 4.1 and Corollary 4.2.

5. Remarks on ¢-CAR relations for ¢ < —1. For ¢ < —1, a possible definition of
¢-CAR relations is the following:

B(f)B*(g9) + B*(9)B(f) = lqg|" (f, 9)I.
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For the construction of such relations we introduce again a new scalar product on the
free Fock space

F(He)=CQ@Hc ...
using as before the new positive operator
P = 1g|G)P(7).
Then if we take, as always, the new creation as the free left creation operator BT (f) =

a™(f), and the annihilation operator B(f) = |g|""'a;/4(f) then one can verify that the
¢-CAR relation holds:

B(f)B*(9) + B*(9)B(f) = la|™ (f. 9)1.
Similarly one can show that the following proposition holds:

PROPOSITION 5.1. If ¢ > 1, f; € H and G(f;) = B(f;)+B*(f;) are ¢-Gaussian random
variables, then

(G(f). Gl = > g'**g O T (£, £5)

VePs(2n) (i,5)€V
= > g0 T (s £i)-
VEP2(2n) (i,5)EV

Also B*(f) is the closure of B*(f).

REMARK 5.1. As in previous cases also for ¢ < —1, we obtain a similar recurrence re-
lation for the g-Hermite polynomials from the above construction of the g-creation and
g-annihilation operators:
n—1 qn -1
PH@) = Higa () + (<1 S Hoa @)
PROBLEM 5.1. Try to get the g-Mehler formula for ¢ < —1 similar to that in the case
q > 1, which was done in the paper of Ismail and Masson [31].
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