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Abstract. Accardi et al. proved a central limit theorem, based on the notion of projective
independence. In this note we use the symmetric projective independence to present a new
version of that result, where the limiting process is perturbed by the insertion of suitable test
functions. Moreover we give a representation of the limit process in 1-mode type interacting Fock
space.

1. Introduction. The aim of this paper is to present a quantum central limit theorem
based on the symmetric projective independence and give a GNS representation for the
limit in an interacting Fock space (IFS).

Projective independence was introduced in [1] as a notion which abstracts, into an
algebraic setting, the factorization rule to compute the mixed moments underlying the
central limit theorem of [3]|. Indeed, in the paper [3], the authors proved that each mean
zero probability measure on the real line with finite moments of any order can be obtained
as a central limit (in the sense of convergence of moments) of self-adjoint random vari-
ables, which are sum of creation, annihilation and preservation operators in 1-mode type
interacting Fock spaces (see [2], [3], [6], [7] for more details on interacting Fock spaces).
This result was also alternatively proved in [8] by a convolution of measures approach.

Moreover the projective independence was used by the authors to prove an algebraic
central limit theorem and show that, under some conditions, a GNS representation for
the limit can be realized in 1-mode type interacting Fock space.

In this note we investigate what happens, either for the central limit theorem or the
GNS representation, after perturbing each term of the limiting process considered in [1]
with a Riemann integrable function on the unit interval of the real line.
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The paper is organized as follows. Section 2 is devoted to recall some definitions,
such as algebraic probability space, singleton condition and uniform boundedness of the
mixed moments, which will be used in the successive sections. In Section 3 the notion of
symmetric projective independence is given and its relation with the singleton condition
is analyzed. This allows us to prove our main result, i.e. a central limit theorem. The
main difference between the result presented in these notes and that obtained in [1]
consists in the fact that here each term of the limiting process is perturbed by a Riemann
integrable function on the unit interval. As a consequence the central limit theorem has
to be modified: we need some stronger conditions on the limiting process and, moreover,
the notion of independence used is less general with respect to that considered in [1]. In
Section 4 we find a suitable representation for the limit obtained in our main theorem. In
fact, by the reconstruction theorem of [4], the limit process of an algebraic central limit
theorem is given by a family of elements of an algebraic probability space (B, ). We show
that a GNS representation of such a space is realized by a 1-mode type interacting Fock
space on L2([0,1]). More precisely the 1-moments of a family of elements of B are the
vacuum moments of creation and annihilation operators in 1-mode type interacting Fock
space, whose test functions are exactly the perturbational terms of the limiting process.

2. Definitions and notations. This section can be seen as a collection of notations
and definitions which are the preparatory tools to reach our main result.

An algebraic probability space is a pair {A, ¢} where A is a unital x-algebra with
unit 1 and ¢ : A — C is a linear, normalized (p(1) = 1) and positive (¢(a*a) > 0, for all
a € A) functional.

If (A;)iez is a family of (unital) x-subalgebras of A, we will suppose that each *-
subalgebra is generated by a set of generators {a5; ¢ € F'}, where F is a finite set such
that ' = F,UF, with F,NF, = (. F, and F, are called respectively the symmetric and
non-symmetric part of F. The upper suffices in (a5);cz are needed by concrete examples
of central limit theorems and are natural whenever {A, ¢} can be constructed starting
from the 1-mode type interacting Fock space (IFS), as shown in the following example
(see[1] also).

EXAMPLE 1. Let H be a separable Hilbert space and {\, }en a sequence of positive, real
numbers such that Ay = A\ := 1 and for any m > n A\,, = 0 if \,, = 0. For each n > 2,
on the algebraic tensor product space H®" we define a pre-scalar product as follows:

(1® @ frng1 ® - @ gn) = Hfg,gj

for any f1,..., fn,91,--.,9n € H. After taking quotient and completing one gets a Hilbert
space H,, and, with the conventions Hy := C, H; := H, the 1-mode type IFS over H with
interacting functions {\, }nen is given by

L(H{An}tnen) =CoaH e PH,

n=2
where ®: =190 0@ --- denotes the vacuum vector.
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The creation operator A*(f) with f € H as the test function is defined in the following
way:

AT (f)® = f,
AT AQ @) =fR @@ fn, VREN, V fi,..., fn€H.

The annihilation operator A(f) is defined as the adjoint of the creation operator:

A(f)® =0,
An
with the convention 3 := 0. Given a := (o) € I°°(R) and the identity operator I €

B(H), we define the preservation operator with intensity («, I):
AD)(fi® @ fn) =an(fi® - ®f,) YREN, V fi,...,fn €H.
Furthermore we consider
A= x-alg{l, A(f), Aa(I): f € H,a = (am) € I (R)},
p=(2,-®),
hence it follows {A, ¢} is an algebraic probability space. If ¢ € {—1,0,1} and
A(f) ife=-1,
A(foa, 1) =< A () ife=0,
AT(f) ife=1,
then F = {-1,0,1}, Fy = {~1,1}, F, = {0}.

Let S be a nonempty ordered set. Recall that a partition of S is a family o = (V;);ez
of mutually disjoint nonempty subsets of S whose union is .S and Z is an index set. Any
V; € o is called a block of the partition o. Denote by P(S) the set of all partitions of S
and for any ¢ € N*, let P(q) := P({1,...,q}). We identify two partitions o1 = (V;);ez
and oy = (Uj) ez in P(S) if there exists 7 a permutation on Z such that for any i € Z
Vi = Ur(;)- A partition o of S uniquely defines an equivalence relation ~, on S where,
for each 7,j € S, i ~, j if and only if 4, j belong to the same block of o.

o={Vi,...,Vi} € P(S) is called a pair partition if |V;| = 2 for any ¢ = 1,...,[, where
| - | denotes the cardinality of a set.

Let ¢ € N*. Givenamap k : {1,...,q} — Z, forany I = 1,...,q we indicate its image
by k; or k(l) and denote

e Range(k) the range of k, i.e.
Range(k) := {k1,...,km} CZ, m e N*, m < q,k; # k; for i # j
o forj=1,....m,Vy; =k t(k;)={le{l,....q} : k(l) = k;}.

Clearly the Vj ;’s are the blocks of a partition ¢ := {Vi1,...,Vim} € P(g). If j =
1,---,m, for a fixed Vi ; = k~*(k;), denote v, , the restriction of € to Vj j, i.e. ey, , :=
{El cle Vk,j}-
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The symbol Z{19} denotes the set of all mappings from {1,...,¢} into Z. If k,
| € 7114} we say that k is equivalent to [, and we write k ~ [, if they induce the same
partition of {1,...,q}. Namely:

(i) |[Range(k)| = [Range(l)| =: m;

(ii) k=1 (k;) = 17%(;), forall j = 1,...,m.

We denote [k] := {I € Z{1:++9} such that k ~ [} the ~-equivalence class of k.

Conversely, any partition o € P(q) defines a unique equivalence class [k] where k is any
map taking constant value on every block of o. Therefore we have a natural identification
{4} = P(g) and in the following we will often use the identification [k] = o.

In Section 3 we deal with projective independence and the related central limit the-
orem, where an important role is played by the singleton and the uniform boundedness
of the mixed moments conditions.

DEFINITION 2.1. Let {A, ¢} be an algebraic probability space and{A;};cz a family of
x-subalgebras of A. A family {a5; i € Z, e € F'} in {A, ¢} such that for any i € Z and
e € F, a§ € A;, is said to satisfy the singleton condition (with respect to ¢) if for any

n = 1, for any choice of 4y,...,i, €7, €1,...,64 € F
pla7r - ait) =0 21)
whenever {i1,...,i,} has a singleton i and ¢(a;*) = 0.

DEFINITION 2.2. The family {a$; € € F, i € T} in the algebraic probability space {A, ¢}
is said to satisfy the condition of uniform boundedness of mixed moments if for each
m € N*| there exists a positive constant D,,, such that

p(ag - ail)] < D (2.2)

K3

for any choice of 4y,,...,71 € Z and and €,,...,61 € F.

3. Projective independence and central limit theorem. The notion of projective
independence was introduced in [1]. In this paper we will use only its symmetric (i.e.
F, = () part. The following notations are useful to describe it. Given {A,»} an alge-
braic probability space and a family {a5; ¢ € F;, ¢ € I} of elements of A, for any
k:{1,...,q} — Z, and azz,...,a,‘: € A, we denote:

o aVki = H;VM az® where [T~ denotes the product of the aj!s in the same order
J

as they appear in ai‘; ~~ai11 and, as usual, V3 ; = k’l(Ej) for any j. We use the
convention o([[~ a?) := 1.
DEFINITION 3.1. Let {4, ¢} be an algebraic probability space. The family {a5; ¢ €
Fs, i € I} of elements of A is called ¢-symmetric projectively independent if for any
g€ N, any € = (g4,...,61) € F4, k: {1,...,q} = Z, and aii,...gzﬁ € A, there exist
w(k,e) > 0 such that
[Range (k)|
ol af) =wlhe) [ wla™) (3.1)
j=1
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From now on we will write indifferently w(k,e) or w(7,¢€), where 7 is the partition
induced by the map k on {1,...,q}.

REMARK 3.1. This definition abstracts the situation described in the paper [3], relative
to 1-mode type interacting Fock spaces (see Example 1). In that case the explicit form
of Fsis {—1,+1}, whereas the coefficients w(k, ) are products of the symmetric Jacobi
coefficients {w, } of the distribution uniquely associated with the interacting Fock space
by the Accardi-Bozejko theorem (see [2] for more details). In order to be more explicit
we present the following example.

ExAMPLE 2. Let H be a separable Hilbert space and consider the 1-mode type IFS
T'(H,{\n}nen) over H with interacting sequence {\,} C R, and vacuum vector @, as
introduced in Example 1. If A*(f) and A(f) are respectively the creation and annihilation
operators with test function f, e € {—1,1} and

5 e A(f) ifE:—L
a= {3 el

then Fy = {—1,1}. Let u be the one dimensional symmetric distribution associated with
the IFS with Jacobi parameters (w, := )\’\il)neN (see [2], Theorem 5.2). Then, fixed
fi, f2 € H, one has

(@, A(fL)A(f2) AT (f) AT (f1)®) = wi - wa (@, A(f1) AT (f1)P)(D, A(fo) AT(f2)P).

Therefore w(k, ) = wiws.

LEMMA 3.1. Let {a5;e € Fs, i € I} be a family of p-symmetric projectively independent
elements of an algebraic probability space { A, p} with mean zero, i.e. p(a5) =0 for any
e € Fs,i €. If (av)iez C C, then the family {c,as;e € Fy, i € T} satisfies the singleton
condition. If in particular for any i € T «; := 1, then {a5;e € Fs, i € T} satisfies the
singleton condition.

Proof. Fix ¢ € N* and k : {1,...,q} — Z. Consider the product (akqai‘;) o (agapt). IE
there exists [ € {1,...,q} such that |V ,;| = 1, by the p-symmetric projective indepen-
dence, one has

|Range(k)|—1
p(a®ri) = 0.
1

p((an,a50) - (an,af))) = wik,e) (H akj)ga(aill)

<.

£l

<

Hence the singleton condition is fulfilled. The last part of the statement clearly follows. m

LEMMA 3.2. Let {a;e € Fs, n € N} be a family in {A, ¢} satisfying the uniform bound-
edness of the mized moments and the singleton conditions. Let {f, : C — C}pen be a
family of bounded maps, i.e. there exists { M, }nen, sequence of positive numbers such

that for each n € N, z € C |f(2)| < M,,. Then, for anym € N, k: {1,...,m} - N and
N eN

. 1

lim N2 Z play” fm(zm) -+ agt fi(21))

N—o0
1<kt sk <N
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s equal to zero if m is odd. If m = 2p it 1s equal to

. 1 €2p 5
R > > Plasanop) for(220) ++ Ogona) f1(21))-
7:{1,....2p}—{1,...,p} o:{1,....p}—{1,....,N}
2—1 map order preserving

Proof. Indeed, arguing as in Lemmata 2.3 and 2.4 of [5]

1
Jm s T (e fn(Em) - ag fal)
1<k, <N

1
= lim g g g a;™ fn(2m) -+ -ast fi(z
T Nooo NM/2 p(ag) fm(zm) rmJ1(21))
1<p<m r:{1,....m}—{1,....,p} o:{1,....p} —{1,...,N}
surjective order preserving

where for all k : {1,...,m} — {1,..., N}, p denotes the cardinality of the range of k. We
show the limit above vanishes when p < m/2. In fact, let C,, , be the cardinality of the
surjective maps from {1,...,m} onto {1,...,p} and In(p) the cardinality of the order
preserving maps from {1,...,p} in {1,..., N}. Then, from (2.2),

— 2 m
N/ ) S e faem) o fil=)
m:{l,....m}—{1,....,p} o:{1,....p}—{1,...,N}
surjective order preserving

m m N
< N2C,, Do| TT £5(2) I (p) < N=/2C Do | T] M5 (p)
Jj=1 j=1

Since

lim N~™/2 <N> = lim lN(P—m/”
N—oo p N—oo p

the result is achieved. Up to slight modifications, the remaining part of the proof runs
along the same arguments developed in [5], Lemma 2.4. m

Let {a%;e € Fs, n € N} be a family of elements in an algebraic probability space
{A, ¢}. Denote by L([0, 1]) the space of all complex valued Riemann integrable functions
defined on [0,1]. For 1 <n < N, f € £([0,1]), consider the centered sum

where ¢ € F.

THEOREM 3.1. Let {a$;e € Fs, n € N} be a family of elements of an algebraic probability
space { A, p} which is symmetric p-projectively independent, with mean zero, i.e. p(as) =
0 for all € € Fs and such that for any e1,e2 € Fs, p(aftas?) = C(ey1,e2) for any n € N.
We also suppose such a family satisfies the uniform boundedness condition. If m > 1,

fla"'vfm € L([O, 1]), then

Jm e (Sn(a ) Sn(a®, 1))

1
:1\}5%0 Nm/2 Z < Emfm< ) ak1f1< >)
1<k1,....km <N
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is zero if m is odd and, if m = 2p, is equal to

. 1 » ) k1
g, X2 () an(s)

k:A{1,....2p}—{1,...,p} 1<k1,..., kop<N

2—1 map j=1,...,p
p 1

= ¥ wwall(Cen) [ @i @) (32)
7€P.P.(2p) j=1 0

where P.P.(2p) denotes the set of all pair partitions of {1,...,2p} and {lj,rj}gzl 18 the
left-right index set relative to the pair partition T € P.P.(2p).

Proof. In fact

WSO(SN(GS"H Jm) - Sn(a®, f1))

— 1 Em km e1 kl
SN 1<k Zk <N<p<ak’”fm (W) maklfl N)) (3.3)
SR1yeesRm >

From Lemma 3.1 it follows that the family {aZ f(x),e € Fs, n € N,f € £(]0,1])} satisfies
the singleton condition and the same consequently occurs for {aS,c € F;, n € N}. More-
over the family {a%;e € F;, n € N} verifies the uniform boundedness condition. Then,
from Lemma 3.2, it follows that the limit of (3.3) can be different from zero only if m = 2p
and k: {1,...,2p} — {1,...,p} is a 2 — 1 map whose range {k,..., k., } takes values in
{1,...,N}; it is well known that such a map induces a pair partition on {1,...,2p}. If
{l;,r;} == k7' (k;) with [; > rj, for all j = 1,...,p, i.e. k, = k,, = kj, the limit for
N — oo of the right hand side in (3.3) can be written as follows

. 1 - kn ey 7
A}gnoom Z Z <H(fljfrj)<ﬁ>>90('”aklj"'a’krj )
ki{1,,2p)—{1,..,p} 1<ka,.. kop<N Nj=1
2—1 map j=1,...,p

By the definition of symmetric ¢-projective independence, (3.4) is equal to:

1
li —
dm oD e
T:={l;,r; }§:1€P.P.(2p)

< (T ) (%) ottt (3.5)

1<ki;=kr; <N *j=1
Jj=1,....p

where in the last equality we used the natural identification [k] = 7 between the set of
2 —1maps {1,...,2p} — {1,...,p} and P.P.(2p). Since

d ]. N kl,- El. Ep.
H(N > (fl_ffTJ.)(ZVJ)so(ak; %j,))
j=1 k

1=k =1

- f[C(slj,Erj)(% ZN: (fljf”)(%)>

7j=1 klj:krj:1
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on the right hand side above we recognize Riemann sums. Therefore the limit (3.5) is
equal to

P 1
Z w(T7E)H<C(Elj,ETj)/ flj(:v)f,«j(x)d:v) "
TEP.P.(2p) Jj=1 0

REMARK 3.2. The symmetric central limit theorem in [1] is achieved without the Rie-
mann integrable functions: in this sense the result above could seem more general.
On the other hand in [1] the authors performed the proof under a weaker condition
on the mean covariance. Namely the condition above such that for any 1,60 € Fj,
p(astat?) = C(ey,ez) for any n € N, is there replaced by

4. Representation of the limit process. Throughout this section we will take F :=
{~1,+1} and for any a € A, a~! = (a')*. Our goal consists in finding Fock represen-
tations for the limit process arising from Theorem 3.1. In fact, as a consequence of the
reconstruction theorem by Accardi, Frigerio and Lewis (see [4]), one knows that there
exist an algebraic probability space (B,) and random variables a;l, a}p in this space
such that

lim %@(SN(GEM7 fm) - Sn(a®, f1))

N—oco N™

p 1
= Y eIl (e [ @)= v e @
T€P.P.(2p) j=1 0

If (Hy, ®y) is a GNS space of (B, ), then
Plagm---ay') = (Py, A7 - AT Dy)

where the A%i’s are operators in H,,. We would like to write them concretely as operators
of creation and annihilation in a suitable Fock space. To this purpose it seems necessary
to make some constraints on the family {a$, € € F,,i € T} in {A, ¢} as defined in Section
3, i.e. we need something more than the projective independence. Therefore we suppose
that for any 1 e2 € F

c>0 ife; =-1, eg =1,

Cle1,e9) = {O

and without loss of generality we take ¢ = 1. Under this assumption, there are some terms

(4.2)

otherwise,

which do not give any contribution to the sum ETGP.P.(2p) above. In order to identify
them, we write € € {—1, l}ip if e € {—1,1}%*)and
2 .
b Z]‘i1 e(j) =0;
e forany k=1,...,2p Z?Zla(j) > 0.
Let 7 € P.P.(2p) and {lj,rj}gzl be the left-right index set relative to 7. It is easy

to check (4.2) implies that, if ¢ = (e(l1),...,e(lp),e(r1),...,e(rp)) does not belong to
{-1, 1}? , the corresponding term in the summation is zero. Furthermore from (4.2) one
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has that the nonzero contributions are determined exactly by those ¢ € {—1, l}ip such
that for any j = 1,...,p, €({;) = —1 and £(r;) = 1. To avoid the introduction of new
symbols, whenever we shall write € € {—1, 1}1” we will require the conditions (I;) = —1
and e(r;) = 1 are satisfied. Moreover we assume:

1. For any ¢ e N*;any e € {—-1,1}™ k: {1,...,m} =T
plag - aft) =0 (43)
when there is a crossing in k, i.e. there exist h < i < j < [ such that k, = kj,
k; = k;. As a consequence, only the noncrossing pair partitions appear in the sum
on the left hand side of (4.1). Since it is known (see 7], Lemma 22.6 for details)
that any noncrossing pair partition 7 in {1,...,2p} is uniquely determined by ¢ €
2p . .

{—=1,1}7F, from now on we will write w(7,¢) as w(e).

2. (Factorization principle) For any ¢ € {—1,1}37

Tdq Tdp 41
elai i) =o( IT air) e TI o) (4.4)
h=la, h:ldm+1
where m and {dj};":'ql are determined by ¢ = {l,rp},_; and 1 < m < 2p, 1 =
dl < e < dm+1 < 2]7, Td, = ldh—l —+ 1, h = 2,...,m+ 1,7’d1 = 1, ldm+1 = 2p
Each block {5ldj seesErg, },i=1,...,m+1is called a connected component of the

partition .
3. (Rule to compute the mixed moments) Let us introduce the following notation:
wr =w(e={-1,1})
and generally, for any n > 2
wp =wle={-1,...,—1,1,...,1}).
—_———— ——

n-times n-times

Let us take

plag ap,) = w (4.5)

and, if ¢ € {~1,1}” and
P lj
@(aizp cee aill) = H w; (4.6)
where r <p,l; €N, j=1,...,r, then

T
—1 E2p g1 1 _ lj
‘P(akz,,+1ak2p i aklaksz) =w H Wiy (4.7)
=1

For example, if

1 1

~1.1 -1 -1 1 1y_ 2
plag azay ay aya;) = wiws
then
-1 -11 -1 -1 1.1 1 2
play ag azay ay aya50,) = wiwyws.

By means of (4.4),...,(4.7), one can inductively compute all the mixed moments.



78 V. CRISMALE

Fix e € {1, l}ip, and, as in [3], we introduce the depth function of the string ¢, i.e.
the map d. : {1,...,2p} — {0,%1,...,+2p} such that for any j € {1,...,q}

a:(j) = Y e (h).

k=1
Let H := L2([0,1]). If
)\0 = 17 Al = wWh (48)
and for any n > 2
)\n = )\n,lwn (49)

we consider the 1-mode type IFS over H as in Example 1. Since by the definition each
of the w,’s is nonnegative, from (4.8) and (4.9), it follows that the A,’s are nonnegative
for any n € N. As a consequence, on the algebraic n-th tensor product H®", we define a
pre-scalar product in the following way: for any f1,..., fn,91,---,9n € H

n

(L@@ fag1® - @gn) =X [ [ (Frr90)-
k=1

By taking quotient and completing, H®™ becomes a Hilbert space, which will be denoted
by H,. The 1-mode type IFS over H with interacting sequence {\, }, is

T(H, {An}n) = C® & @ H,

where ® is the vacuum vector. Since
AMm=0=X,=0 VYm>n, neN

one defines, as in Example 1 the creation operator with test function f € H and the
annihilation operator as its adjoint.

LEMMA 4.1. The family of creation and annihilation operators is symmetrically projec-
tively independent with respect to the vacuum state (®,-®) in I-mode type IFS over H.

Proof. In fact for any p € N, any € = (e(l1),...,e(lp),e(r1),...,e(rp)) € {—1,1}%,_107
fi,..., fap € H, by Lemma 4.2 of [3], one has

p

(@, Aéﬁfp)(fzp) A ()e) = [ wa.con(f, £2)

J=1

where {l;,7; }521 is the unique noncrossing pair partition induced by e. The statement
follows after noticing that the terms of the product on the right hand side above depend
onlyone. m

Let f be an element of £([0,1]) and Q(f) := A(f)+AT(f) the field operator in 1-mode
type IFS over H. As in example 1, we use the following notation: for any e € {—1,1}

€ R A(f) ife= _17
)= {A‘*‘(f) ife=1.
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Moreover we introduce the convention such that for any f € £([0,1]), e € {—1,1}
o= f ife=-1,
' [ oife=1
The next result gives us the Fock representation of the limit process.

THEOREM 4.1. The limit process {a;l, a}p} is represented in I'(H,{\,}), that is
: 1 .
Jim s e(Sn(a f5) - Sn(a®, i) = (8.Q(fm) - Q(1)®)

where f; € £([0,1]) for any j =1,...,m.
Proof. Indeed

(@,QUm) QU = 3 (2, A% (fn) - A (1)), (4.10)

ee{-1,1}m

One can check that the right hand side of (4.10) is equal to (see Lemma 4.2 of [3] for
details)

P
> @i ) (4.11)
ee{~1,1}% =1
where m = 2p and {l;, rj}j;:l is the noncrossing pair partition determined by €. By the

one to one correspondence between {—1, l}ip and the set NCP.P.(2p) of noncrossing pair
partitions on {1,2,...,2p}, we write (4.11) as

2 [ﬁwde(w><flj7frj>]

NCP.P.(2p) j=1

On the other hand, from (4.1) and the assumption 1., one has:

fm N:w/ﬁ(SN(aEm’fﬁz"‘) Sn(a®, fi*))
1
S IRC) (AT
NCP.P.(2p) j=1\0

From (4.4)—(4.7), it follows that

p
w(s) = dea(rj)' u
j=1
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