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Abstract. We give a necessary and sufficient criterion for a normal CP-map on a von Neumann

algebra to admit a restriction to a maximal commutative subalgebra. We apply this result to

give a far reaching generalization of Rebolledo’s sufficient criterion for the Lindblad generator

of a Markov semigroup on B(G).

1. Introduction. The irreversible evolution of an open quantum system with associated

Hilbert space G is described by a (quantum) Markov semigroup on the von Neumann

algebra B ⊂ B(G) of observables. This is, from a purely mathematical point of view, a

generalization of the classical Markov semigroup on some L∞(Ω, µ) space, that is, on a

commutative von Neumann algebra L∞(Ω, µ) ⊂ B(L2(Ω, µ)).

B ⊂ B(G) may contain several commutative subalgebras. Therefore, when it turns

out that one of them is invariant with respect to the action of the Markov semigroup

on B, there is a classical Markov semigroup (and a classical stochastic process) embed-
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ded in the (quantum) Markov semigroup. The (classical probabilistic) information about

this semigroup allows us to find valuable information on the quantum evolution. Several

remarkable Markov semigroups on B(G) admit nontrivial invariant commutative subalge-

bras. Indeed, all Markov semigroups arising from the stochastic limit [ALV01] do. Some of

them like the so-called quantum Ornstein-Uhlenbeck semigroup admit an infinite number

of such invariant subalgebras; see Cipriani, Fagnola and Lindsay [CFL00].

The interest in commutative invariant subalgebras is also motivated by the study of

decoherence in open quantum systems; see, for instance, Rebolledo [Reb05a, Reb05b]. This

phenomenon takes place when the quantum system tends to a classical one because the

off-diagonal terms (in a certain basis) of the density matrix tend to zero (and this happens

on a scale faster than convergence towards an invariant state or escape to infinity). When

decoherence happens the system “chooses” an invariant commutative algebra and the

relevant evolution turns out to be given by a classical Markov semigroup.

In several important physical models on B(G) the candidate for a commutative alge-

bra is evident by looking at the generator. Rebolledo [Reb05a] gave a condition on the

operators Li in the Lindblad form of the generator (see 2.8) for the maximal abelian

algebra generated by a certain self-adjoint operator to be invariant. This is, however,

only a sufficient condition. In order to determine all invariant commutative subalgebras

of a given Markov semigroup, we need to find also necessary conditions. (Indeed, there

are several Markov semigroups describing some phenomenological model that perhaps do

not admit any nontrivial invariant commutative subalgebra. It would be good to be able

to check whether, really, there is none.)

The scope of these notes is to provide a sufficient and necessary condition for that a

Markov semigroup on B ⊂ B(G) leaves invariant a commutative subalgebra. Our criterion

is inspired very much by a simple generalization of Rebolledo’s sufficient criterion for

B = B(G); see Corollary 3.4 and Remark 3.5. The proof uses consequently the Hilbert

module picture of the Kraus decomposition of a CP-map and the Lindblad form the

generator of a Markov (or, more generally, of a CP-) semigroup. Apart from being very

clear and elegant already in the case B = B(G), this proof has the advantage that all

statements remain true for Markov semigroups on more general von Neumann algebras

B ⊂ B(G) and commutative subalgebras C ⊂ B that are maximal in the sense that B does

not admit bigger commutative subalgebras. However, we come always back to the case

B = B(G) (see Corollary 3.4, Remark 3.5 and Examples 4.1 and 4.3). We never forget

that it was the sufficiency part of Corollary 3.4 that inspired us to formulate Theorem 3.1.

In Section 2 we start with a careful introduction, explaining both the module descrip-

tion and how it fits together with the special versions for B(G). In Section 3 we proof

the criterion for a single CP-map (Theorem 3.1). In Section 4 we proof the criterion for

CCP-maps (Theorem 4.2) or, what is the same, for a whole CP-semigroup.

2. Preliminaries about von Neumann modules and GNS-constructions

2.1. Let T : A → B be a CP-map between unital C∗-algebras. Since Paschke [Pas73] we

know how to recover T in terms of a GNS-construction: Define a B-valued sesquilinear
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map 〈•, •〉 on the vector space tensor product A⊗ B by setting

〈a ⊗ b, a′ ⊗ b′〉 := b∗T (a∗a′)b′, (∗)

turning the right B-module A⊗ B into a semi-Hilbert B-module. The completion of the

quotient by the length-zero elements E (or the strong closure in the case of von Neumann

algebras) is a Hilbert (or a von Neumann) B-module on which A acts from the left by a

nondegenerate representation. In other words, E is a correspondence from A to B which

we call the GNS-correspondence associated with T .

The element 1⊗1 ∈ A⊗B gives rise to a cyclic vector ξ ∈ E, that is, E = spanAξB

and we recover T as T (a) = 〈ξ, aξ〉. The pair (E, ξ) is determined by these properties up

to suitable isomorphism. We refer to (E, ξ) as the GNS-construction for T .

2.2. Suppose that B ⊂ B(G) is a concrete C∗-algebra of operators on a Hilbert space

G. Then we may construct the Hilbert space H := E ⊙ G and the Stinespring repre-

sentation ρ of A on H by setting ρ(a) := a ⊙ idG. The cyclic vector ξ gives rise to a

mapping Lξ := ξ⊙ idG : g 7→ ξ⊙ g in B(G, H). We find T (a) = L∗
ξρ(a)Lξ. This is nothing

but the well-known Stinespring construction [Sti55].

2.3. Note that the definition of Lξ works for arbitrary elements x ∈ E. The mappings

Lx : g 7→ x ⊙ g fulfill L∗
xLy = 〈x, y〉 and Lxb = Lxb. We will, generally, identify E as a

subset of B(G, H) by identifying x and Lx.

If B ⊂ B(G) is a von Neumann algebra, then also the strong closure E
s

of E in

B(G, H) is a Hilbert B-module. In other words, E
s
is a von Neumann B-module. If also

A is a von Neumann algebra and if T is normal, then also the Stinespring representation

is normal. In other words, E
s

is a von Neumann correspondence from A to B.

Von Neumann modules and correspondences as strongly closed operator modules have

been introduced in Skeide [Ske00] (using the term two-sided module instead of the more

fashionable term correspondence). The up-to-date definition is in Skeide [Ske06]. Recall

that von Neumann B-modules are self-dual (that is, every bounded right linear map

E → B has the form x 7→ 〈y, x〉 for suitable y ∈ E) together with all consequences (like

adjointability of all bounded module maps, existence of projections onto strongly closed

submodules, and so forth).

2.4. If B = B(G), then E
s

= B(G, H). (E contains a norm dense subset of the finite-

rank operators in B(G, H).) If T is a normal CP-map on B(G), then the Stinespring

representation is a normal nondegenerate representation of B(G) on B(H). The theory of

these representations asserts that H factors into H = G ⊗ H for some multiplicity space

H and that ρ(a) = a⊗ idH. In other words, E
s

= B(G, G⊗H). Let (ei)i∈I denote an ONB

of H. Then it is not difficult to show that the family (idG ⊗ei)i∈I (where idG ⊗ei denotes

the mapping g 7→ g ⊗ ei) is an ONB of E
s

in the obvious sense. (See [Ske00] for quasi

ONBs.) Denote by Li := 〈idG ⊗ei, ξ〉 the coefficients of ξ with respect to this ONB. Then

T (b) =
∑

i

L∗
i bLi.

This is a so-called Kraus decomposition of the CP-map T on B(G).
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2.5. The formula Tt = etL establishes a one-to-one correspondence between uniformly

continuous semigroups T = (Tt)t∈R+
on a the unital C∗-algebra B and bounded linear

maps L on B. We refer to L as the generator of T . It is well-known that L is the generator

of a CP-semigroup (that is, all Tt are CP-maps), if and only if L is a conditionally

completely positive (CCP) map, that is, if and only if
∑

i,j

b∗iL(a∗
i aj)bj ≥ 0 whenever

∑

i

aibi = 0,

for finitely many ai, bi ∈ B. (See, for instance, Evans and Lewis [EL77].)

2.6. Also for CCP-maps we can construct a GNS-correspondence . Simply take the

subspace

(B ⊗ B)0 :=
{

∑

i

ai ⊗ bi

∣

∣

∣
n ∈ N; ai, bi ∈ B (i = 1, . . . , n);

∑

i

aibi = 0
}

of B ⊗ B, define an inner product on (B ⊗ B)0 by the same formula (∗), divide out the

length-zero elements and complete as much as necessary to obtain a correspondence E

over B. If B ⊂ B(G) is a concrete operator algebra, then, like for CP-maps, we may

construct a Hilbert H := E ⊙ G with a representation ρ(b) := b ⊙ idG like the Stine-

spring representation. This level of Stinespring-type constructions is known probably as

long as generators of CP-semigroups have been studied. The GNS-type construction of

the correspondence E, under the name tangent bimodule, is due to Sauvageot [Sau89].

Sauvageot’s construction is one of the very first emergencies of Hilbert modules in quan-

tum probability. (We should like to note that Sauvageot defines the inner product on all

of B ⊗ B by, first, projecting down to (B ⊗ B)0 via a ⊗ b 7→ a ⊗ b − 1 ⊗ ab and, then,

defining the same inner product as above. In [Sau89] this obscures slightly the origin of

the left multiplication as the natural left multiplication of the B-bimodule (B ⊗ B)0.)

As usual with generalizations of GNS-type constructions for positive structures to

conditionally positive versions, finding a substitute for the cyclic element that generates

everything is difficult, if not impossible. In our case, we note that the map d : B → E

that sends b ∈ B to the image of b ⊗ 1 − 1 ⊗ b in E is an E-valued derivation on B.

We also note that the range d(B) of d generates E as a right Hilbert (or von Neumann)

B-module. In this sense, we speak of the cyclic derivation associated with L. In the

C∗-case, in general, we do not have more than the (E, d). As usual, the pair (E, d) is

determined uniquely by L in the following sense: If (E′, d′) is another pair such that

d′(B) generates E′ (in the suitable topology) as right B-module and 〈d′(b), d′(b′)〉 =

L(b∗b′) − L(b∗)b′ − b∗L(b′) + b∗L(1)b′, then d(b) 7→ d′(b) determines an isomorphism

E → E′ of correspondences. We refer to the pair (E, d) as the GNS-construction for

L. Note that if L is even CP, then the GNS-construction for the CCP-map L may but

need not coincide with the GNS-construction for the CP-map L.

2.7. If B ⊂ B(G) is a von Neumann algebra, then the following result due to Christensen

and Evans [CE79] helps a lot: A bounded derivation d on B with values in a von Neumann

correspondence E over B is inner , that is, there exists an element ξ ∈ E such that

d(b) = bξ − ξb.
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(Of course, [CE79] do not use the language of Hilbert modules. See Barreto, Bhat, Lieb-

scher and Skeide [BBLS04, Appendix C].) ξ is not unique. Replacing E with spans d(B)B

we see that ξ may be chosen from the latter von Neumann submodule. Still, ξ is not

unique; see Examples 4.1 and 4.3.

Applying this crucial and hard result to the (strong closure of the) GNS-construction

(E, d) for a normal CCP-map L on a von Neumann algebra B ⊂ B(G), one obtains rather

easily that L has so-called Cristensen-Evans form , that is,

L(b) = L0(b) + bβ + β∗b,

where L0 is a normal CP-map and β ∈ B. In fact, if ξ is an element in E such that

d(b) = bξ − ξb, then L0 := 〈ξ, •ξ〉 does the job. (See the appendix of [BBLS04] for a

Hilbert module version of the original argument in [CE79].) Like ξ, the Christensen-Evans

form of L is not unique.

2.8. L is the generator of a Markov semigroup T (that is, Tt(1) = 1 for all t ∈ R+) if

and only if L(1) = 0. In this case, the real part β+β∗

2 of β is necessarily given by −L0(1)
2 ,

while the imaginary part h = β−β∗

2i
can be any self-adjoint element h of B. We find that

L(b) = 〈ξ, bξ〉 −
b〈ξ, ξ〉 + 〈ξ, ξ〉b

2
+ i[b, h]

is the sum of a purely dissipative part 〈ξ, bξ〉− b〈ξ,ξ〉+〈ξ,ξ〉b
2 and a hamiltonian perturbation

i[b, h]. In the case when B = B(G), so that again E = B(G, G ⊗ H), we find

L(b) = i[b, h] +
∑

i

(

L∗
i bLi −

bL∗
i Li + L∗

i Lib

2

)

where the Li = 〈idG ⊗ei, ξ〉 are the coefficients of ξ with respect to some ONB
(

ei

)

i∈I

of H. This analogue of the Kraus decomposition of a CP-map is called the Lindblad

form of the generator L. The proof in the case B = B(G) is much simpler than the

general case in [CE79]. Lindblad’s proof in [Lin76] uses essentially that B(G) may be

“approximated” by finite-dimensional matrix algebras Mn, and the proof for Mn uses

the harmonic analysis of the (compact!) group of unitaries in Mn.

3. Globally invariant commutative subalgebras for CP-maps. We are interested

in when a normal CP-map T on a von Neumann algebra B ⊂ B(G) leaves (globally)

invariant a commutative von Neumann subalgebra C ∋ idG of B, that is, T (C) ⊂ C.

We will give a necessary and sufficient criterion in terms of the GNS-construction

(E, ξ) for T ; see 2.1. For the proof of sufficiency we shall show that validity of our

criterion implies that [T (C), C] = {0}. In order that this suffices to show that T (C) ⊂ C,

it is necessary to restrict to maximal commutative subalgebras C of B, in the sense

that C ⊂ D ⊂ B and D commutative implies D = C. It is an easy exercise to show that

this is equivalent to [b, C] = {0} ⇒ b ∈ C.

We emphasize that the notion of a maximal commutative subalgebra of a von Neu-

mann algebra B should not be confused with the notion of a maximal abelian von Neu-

mann algebra. A commutative von Neumann algebra on a Hilbert space G is maximal

abelian if it is a maximal commutative subalgebra of B(G).
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3.1. Theorem. Let B ⊂ B(G) be a von Neumann algebra on the Hilbert space G and let

T be a normal CP-map T on B. Denote by (E, ξ) its (strongly closed) GNS-construction.

Furthermore, let C ∋ idG be a maximal commutative von Neumann subalgebra of B. Then

T leaves C globally invariant if and only if there exists a ∗-map α : C → B
a(E) fulfilling

the following properties:

(1) The range of α commutes with the left action of elements of C on E, that is, for

all c1, c2 ∈ C and x ∈ E we have

c1α(c2)x = α(c2)c1x.

(2) For all c ∈ C we have

α(c)ξ = cξ − ξc.

Proof. Sufficiency : If there exists a ∗-map α : C → B
a(E) fulfilling Properties (1) and (2),

then

[〈ξ, c1ξ〉, c2] = 〈α(c∗2)ξ, c1ξ〉 − 〈ξ, c1α(c2)ξ〉 = 0 (3.1)

for all c1, c2 ∈ C. As C is a maximal commutative subalgebra of B, it follows that 〈ξ, cξ〉 ∈ C

for all c ∈ C.

Necessity : Suppose T (c) ∈ C for all c ∈ C. Then the strongly closed linear subspace

F := span
s CξC

of E is the GNS-correspondence (over C!) of T ↾ C considered as CP-map on C with the

same cyclic element ξ. For every c ∈ C we may define the map δ(c) ∈ B
a(F )

δ(c) : y 7→ cy − yc.

In fact, δ is the difference of the canonical homomorphism C → B
a(F ) and the map that

sends c ∈ C to right multiplication by c. The former is a ∗-map into B
a(F ) and its range

mutually commutes with all left actions of elements of C, because C is commutative.

The latter is a well-defined homomorphism into (actually, onto) the center of B
a(F ).

So, both parts are ∗-maps whose ranges commute with the left actions of elements of C.

Consequently, the same is true for δ.

The strongly closed linear subspace

FB := span
s CξB

of E is a von Neumann B-submodule of E. (It is, in fact, the GNS-correspondence of

T ↾ C considered as CP-map C → B with the same cyclic element ξ.) So, there is a

projection p ∈ B
a(E) onto FB. Clearly, FB is invariant under the left action of C, that is,

cpx = pcpx for all c ∈ C, x ∈ E. From

cpx = pcpx = (pc∗p)∗x = (c∗p)∗x = pcx

we see that p commutes with the left action of all c ∈ C.

We note that we may identify FB with the tensor product F ⊙̄s B, the von Neumann

version of the tensor product over C of the von Neumann C-module F with the corre-

spondence B from C to B. (The left action of C on B is simply the restriction of the
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multiplication map B × B → B to C × B. Note that this left action is nondegenerate as

idG ∈ C.) In fact, the identification y⊙ b = yb defines an isomorphism. Clearly, under this

identification the canonical left actions of C on F ⊙̄s B and on FB coincide.

Every element a ∈ B
a(F ) gives rise to an element a ⊙ idB in B

a(F ⊙̄s B) = B
a(FB).

(On FB this operator acts simply as yb 7→ (ay)b.) If a commutes with the left action of

elements of C, then so does a ⊙ idB.

Summarizing the steps we have so far in our proof of necessity, for every c ∈ C we may

define the operator α(c) = (δ(c) ⊙ idB)p considered as an element in B
a(E) that leaves

FB invariant. As product of operators that commute with the left actions of elements of

C, so does α(c). As (δ(c)⊙ idB)p = p(δ(c)⊙ idB)p and δ is a ∗-map, so is α. Finally, since

ξ ∈ F ⊂ FB, we have

α(c)ξ = (δ(c) ⊙ idB)pξ = (δ(c) ⊙ idB)ξ = δ(c)ξ = cξ − ξc.

In other words, we have a ∗-map α fulfilling conditions (1) and (2).

3.2. Observation. Note that the map δ on F and its amplification to FB are determined

uniquely by conditions (1) and (2) restricted to F and to FB, respectively. This implies

that also α is unique, if we put it 0 on the complement of FB.

3.3. Observation. The preceding proof does not depend on that the pair (E, ξ) is the

GNS-construction. It works for every vector ξ in a von Neumann correspondence E over

B such that T = 〈ξ, •ξ〉.

3.4. Corollary. Suppose that B = B(G) and let T be a normal CP-map on B(G) with

Kraus decomposition T (b) =
∑

i∈I L∗
i bLi. Then T leaves invariant a maximal abelian

von Neumann algebra C ⊂ B(G) if and only if for every c ∈ C there exist coefficients

cij(c) ∈ C (i, j ∈ I) such that

cij(c
∗) = cji(c)

∗ and cLi − Lic =
∑

j∈I

cij(c)Lj . (3.2)

Proof. Let E = B(G, G ⊗ H) an arbitrary von Neumann correspondence over B(G) and

let ξ =
∑

i∈I Li⊗ei be a vector expressed with respect to some ONB
(

ei

)

i∈I
of H; see 2.4.

Consider the CP-map T (b) = 〈ξ, bξ〉 =
∑

i∈I L∗
i bLi. Let α : C → B

a(E) be a map and for

every c ∈ C define the coefficients

cij(c) := 〈(idG ⊗ei), α(c)(idG ⊗ej)〉

of α(c) with respect to that ONB, so that α(c)(idG ⊗ej) =
∑

i∈I cij(c) ⊗ ei. We observe

that α(c) commutes with all elements of C, if and only if cij(c) ∈ C′ = C. Further, α is a

∗-map, if and only if cij(c
∗) = cji(c)

∗ for all c ∈ C and i, j ∈ I. We see that there exists a

∗-map α fulfilling conditions 3.1(1) and (2) if and only if there exist cij(c) ∈ C satisfying

conditions (3.2).

3.5. Remark. The special case when cij(c) = δijci for self-adjoint elements ci (i ∈ I)

and when C is generated by a single self-adjoint operator c, is exactly Rebolledo’s suffi-

cient condition on the CP-part of a generator of a Markov semigroup in Lindblad form;
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see 2.8. In fact, it was the observation that also conditions (3.2) are sufficient that in-

spired us to the present notes. But, as Corollary 3.4 asserts, these conditions are also

necessary.

We leave it as an interesting open problem whether every suitable collection cij(c)

may be diagonalized by changing the ONB of H to obtain Rebolledo’s form. In the case of

a general operator α(c) in the relative commutant of C in B(G⊗ H) this is probably not

possible. But α(c) must also satisfy conditions with respect to the coefficients Li. It is

also possible that it might be necessary to consider only minimal Kraus decompositions.

(See the last chapter in Parthasarathy [Par92] for criteria, when the Lindblad form of

a generator of a Markov semigroup on B(G) is minimal.) In the affirmative case, this

would show that Rebolledo’s condition is also necessary if we allow to change the Kraus

decomposition of the given CP-map.

4. Globally invariant commutative subalgebras for CP-semigroups. In this

section, we are interested in when a normal uniformly continuous CP-semigroup T on a

von Neumann algebra B ⊂ B(G) leaves (globally) invariant a commutative von Neumann

subalgebra C ∋ idG of B, that is, Tt(C) ⊂ C for all t ∈ R+. It is clear that this is equivalent

to L(C) ⊂ C for the generator of L of T .

Of course, if for some Christensen-Evans form

L(b) = 〈ξ, bξ〉+ bβ + β∗b. (4.1)

of L we have that both the CP-part L0 = 〈ξ, •ξ〉 and the derivation-like part b 7→ bβ−β∗b

leave C globally invariant separately, then also L leaves C globally invariant. In particular,

if

L(b) = 〈ξ, bξ〉 −
b〈ξ, ξ〉 + 〈ξ, ξ〉b

2
+ i[b, h]

generates a Markov semigroup, then it is sufficient to check invariance for the CP-part L0

and for the hamiltonian part b 7→ i[b, h] separately; cf. Remark 3.5. But such a condition

is not necessary.

4.1. Example. Let G = C2, B = B(G) = M2 and C =
(

C 0

0 C

)

⊂ B. Put L =
(

1 1

0 1

)

and

define the CP-map L0(b) = L∗bL on B. By
(

1 0

1 1

)(

z1 0

0 z2

)(

1 1

0 1

)

=

(

z1 z1

z1 z1 + z2

)

we see that L0 does not leave C invariant. Nevertheless, if we put β = −
(

0 1

0 0

)

, then

L0

(

z1 0

0 z2

)

+

(

z1 0

0 z2

)

β + β∗

(

z1 0

0 z2

)

=

(

z1 0

0 z1 + z2

)

,

so that the CCP-map b 7→ L∗bL + bβ + β∗b leaves C globally invariant. This does not

change if we normalize this map. In fact, if we put h = β−β∗

2i
= 1

2i

(

0 −1

1 0

)

, then

L(b) := L∗bL −
bL∗L + L∗Lb

2
+ i[b, h]
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generates a Markov semigroup on B.

L

(

z1 0

0 z2

)

=

(

z1 z1

z1 z1 + z2

)

−
1

2

(

(

z1 0

0 z2

)(

1 1

1 2

)

+

(

1 1

1 2

)(

z1 0

0 z2

)

)

+
1

2

(

(

z1 0

0 z2

)(

0 −1

1 0

)

−

(

0 −1

1 0

)(

z1 0

0 z2

)

)

=

(

z1 z1

z1 z1 + z2

)

−
1

2

(

(

z1 z1

z2 2z2

)

+

(

z1 z2

z1 2z2

)

)

+
1

2

(

(

0 −z1

z2 0

)

−

(

0 −z2

z1 0

)

)

=

(

0 0

0 z1 − z2

)

shows that the restriction of L to C generates a classical two-state death process, although

neither the CP-part L0 nor the hamiltonian part b 7→ i[b, h] leave invariant C, separately.

We want to give a sufficient and necessary condition.

4.2. Theorem. Let B ⊂ B(G) be a von Neumann algebra on the Hilbert space G and

let L be a (bounded) normal CCP-map L on B. Denote by (E, d) its (strongly closed)

GNS-construction. Furthermore, let C ∋ idG be a maximal commutative von Neumann

subalgebra of B. Then L leaves C globally invariant if and only if there exist an element

ζ ∈ E that reproduces d ↾ C as

d(c) = cζ − ζc,

a ∗-map α : C → B
a(E) and a self-adjoint element γ ∈ C such that the following conditions

are satisfied:

(1) The range of α commutes with the left action of elements of C on E, that is, for

all c1, c2 ∈ C and x ∈ E we have

c1α(c2)x = α(c2)c1x.

(2) For all c ∈ C we have

α(c)ζ = cζ − ζc.

(3) For all c ∈ C we have

L(c) − 〈ζ, cζ〉 = γc.

Proof. Sufficiency : By Theorem 3.1, conditions (1) and (2) imply that the CP-map b 7→

〈ζ, bζ〉 on B leaves C globally invariant. By condition (3), the same is true for L.

Necessity : Suppose L(c) ∈ C for all c ∈ C. Then F := spans d(C)C ⊂ E is just the

GNS-correspondence of L ↾ C considered as CCP-map on C; see 2.6. By [CE79] there

exist ζ ∈ F and γ0 ∈ C such that d(c) = cζ−ζc and L(c) = 〈ζ, cζ〉+cγ0 +γ∗
0c; see 2.7. By

commutativity of C, we have cγ0 + γ∗
0c = γc with γ = γ0 + γ∗

0 . This shows condition (3).

As in the proof of necessity in Theorem 3.1, by setting

δ(c) : y 7→ cy − yc.
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we define a ∗-map δ from C into the C-bilinear operators on F , that fulfills δ(c)ζ = cζ−ζc.

Again, by p ∈ B
a(E) we denote the projection onto the von Neumann B-submodule

FB := span
s d(C)B = {(cζ − ζc)b : c ∈ C, b ∈ B}

s

of E generated by F . By

c1(c2ζ − ζc2)b = (c1c2ζ − ζc1c2)b − (c1ζ − ζc1)c2b

we see that FB is invariant under the left action of C so that, once more, p commutes

with the left action of all c ∈ C. Also here, we may identify FB with the tensor product

F ⊙̄s B. In conclusion, the map α defined by setting α(c) = (δ(c) ⊙ idB)p considered as

an element in B
a(E) fulfills conditions (1) and (2).

It is noteworthy that this condition does not involve any Christensen-Evans form for

L but only a Christensen-Evans form for L ↾ C, if the latter exists. Even if we know

a Christensen-Evans form (4.1) for L, this does not really help to apply Theorem 4.2.

In Theorem 3.1, ξ is given from the beginning and it is essentially unique. Also, in

Theorem 3.1 there is not much choice how to define α. Here, before we can try to find α,

we must first find a candidate for ζ. We know that, if it exists, then we can find one in

spans d(C)C.

4.3. Example. Let us return to Example 4.1. We easily verify that E = B and ξ = L.

Definitely, ξ cannot serve as ζ, because 〈ξ, ξ〉 = L∗L =
(

1 1

1 2

)

/∈ C. We observe that

d

(

z1 0

0 z2

)

=

(

z1 0

0 z2

)(

1 1

0 1

)

−

(

1 1

0 1

)(

z1 0

0 z2

)

=

(

z1 z1

0 z2

)

−

(

z1 z2

0 z2

)

=

(

0 z1 − z2

0 0

)

,

so that d(C)C = C
(

0 1

0 0

)

. If we put L′ =
(

0 1

0 0

)

, we see that L′∗
(

z1 0

0 z2

)

L′ =
(

0 0

0 z1

)

and

L′∗

(

z1 0

0 z2

)

L −

(

0 0

0 1

)(

z1 0

0 z2

)

=

(

0 0

0 z1 − z2

)

gives back L ↾ C from Example 4.1. This shows that we may put ζ = L′ and γ =
(

0 0

0 1

)

.

Note that L = L′ + idG. So, L∗bL = (L′∗ + idG)b(L′ + idG) = L′∗bL′ + bL′ + L′∗b + b

and, therefore,

L(b) = L′∗bL′ + bL′ + L′∗b + b −
bL∗L + L∗Lb

2
+ i[b, h].

The real part of L′ is 1
2

(

0 1

1 0

)

, the imaginary part 1
2i

(

0 1

−1 0

)

= −h. We find

L(b) = L′∗bL′ + b −
1

2

(

b

(

1 0

0 2

)

+

(

1 0

0 2

)

b

)

= L′∗bL′ −
1

2

(

b

(

0 0

0 1

)

+

(

0 0

0 1

)

b

)

= L′∗bL′ −
bL′∗L′ + L′∗L′b

2
.

The example tells us two things: Firstly, it may happen that ζ can replace ξ. That is,

not only d(c) = cζ − ζc for all c ∈ C but even d(b) = bζ − ζb for all b ∈ B. Secondly, an

inconvenient choice for ξ may even cause a hamiltonian part that, otherwise, would not

be there.

For the first observation, it would certainly be good, if we could prove the converse,

namely, for every L leaving invariant a maximal commutative subalgebra C of B there is
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a Christensen-Evans form such that the CP-part alone leaves C invariant. Presently, we

do not yet have a feeling whether the answer might be affirmative.

For the second observation, this is settled by the following well-known lemma: A

hamiltonian part that leaves invariant C annihilates C.

4.4. Lemma. Suppose C ⊂ B(G) is a commutative von Neumann algebra, and let h ∈

B(G) be such that [c, h] ∈ C′ for all c ∈ C. Then [c, h] = 0. In particular, if C is a maximal

commutative subalgebra of the von Neumann algebra B ⊂ B(G) and h ∈ B, then h ∈ C.

Proof. Let p, q ∈ C denote projections such that pq = 0. Then

0 = [p, [q, h]] = pqh − phq − qhp + hqp = −phq − qhp.

Multiplying with p from one side, we find phq = 0 = qhp. It follows q[p, h] = 0 = [p, h]q

and, in particular, (1 − p)[p, h] = 0 = [p, h](1 − p). Further we compute

[p, h] = p[p, h] = ph − php, [p, h] = [p, h]p = php − hp.

Adding the two equations we find

2[p, h] = ph − hp = [p, h].

In other words, [p, h] = 0 for every projection p ∈ C. As every c ∈ C is the norm limit of

linear combinations of projections in C, it follows [c, h] = 0 for all c ∈ C.

It appears appealing to check our construction against the complete class of Markov

semigroups on M2 that leave invariant the diagonal subalgebra and the off-diagonal sub-

space and that admit an invariant state, as determined explicitly by Carbone [Car04].

Note added. To Remark 3.5: Meanwhile, we know that Rebolledo’s condition is not

necessary; see [BFS07]. To the question following Example 4.3: For B = M2, we may

always replace ξ with ζ. But for B = M3 this is false. That is, for B = M3 there exist

generators satisfying the conditions of Theorem 4.2 that do not possess a Christensen-

Evans form, where the CP-part of the generator leaves C invariant separately; see again

[BFS07].
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