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Abstract. The Wigner Theorem states that the statistical distribution of the eigenvalues of a

random Hermitian matrix converges to the semi-circular law as the dimension goes to infinity.

It is possible to establish this result by using harmonic analysis on the Heisenberg group. In fact

this convergence corresponds to the topology of the set of spherical functions associated to the

action of the unitary group on the Heisenberg group.

On the vector space Vn = Herm(n,F) (F = R,C or H) one considers a Gaussian

probability measure

Pn(dx) =
1

Cn
exp(−γ tr(x2))m(dx),

where m is the Lebesgue measure. For a Borel set B ⊂ R, the random variable ξ
(n)
B is

defined by

ξ
(n)
B (x) =

1

n
♯{eigenvalues of x in B}.

We write its expectation as

En(ξ
(n)
B ) = µn(B).

This defines a probability measure µn on R; this is the statistical distribution of the
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eigenvalues. If ϕ is a bounded Borel function on R,
∫

R

ϕ(t)µn(dt) =
1

n

∫

Vn

tr(ϕ(x))Pn(dx).

Here ϕ(x) is the n × n Hermitian matrix defined by using the functional calculus: if

λ1, . . . , λn are the eigenvalues of x, then the eigenvalues of ϕ(x) are ϕ(λ1), . . . , ϕ(λn).

The semi-circle law of radius a > 0 is the probability measure σa on R defined by
∫

R

ϕ(t)σa(dt) =
2

πa2

∫ a

−a

ϕ(t)
√
a2 − t2dt.

The Wigner Theorem says that, after scaling, the statistical distribution of the eigenvalues

µn converges weakly to the semi-circle law σa with radius

a =

√
β

γ
, β = dimR F = 1, 2, 4.

More precisely:

Theorem 1 (Wigner). For a bounded continuous function ϕ on R,

lim
n→∞

∫

R

ϕ

(
t√
n

)
µn(dt) =

2

πa2

∫ a

−a

ϕ(u)
√
a2 − u2du.

[Wigner, 1955, 1958].

This means that, for large n, the density of eigenvalues is approximately

2

πa2

√
na2 − λ2,

if |λ| ≤ a
√
n, and 0 if |λ| ≥ a

√
n.

To a random matrix X with values in Herm(n,F) one associates the random proba-

bility measure µX :

µX =
1

n
(δλ1(X) + · · · + δλn(X)),

where λ1(X), . . . , λn(X) are the eigenvalues of X. It is called the empirical eigenvalue

distribution of X.

One shows also:

For every n let X(n) be a random matrix with values in Herm(n,F), and law Pn.

Define

Y (n) =
1√
n
X(n).

Then the empirical eigenvalue distribution of Y (n) almost surely converges weakly to the

semi-circle law σa.

In the original proof Wigner considers the moments of the measure µn:

Mk(µn) =

∫

R

tkµn(dt) =
1

n

∫

Vn

tr(xk)Pn(dx),
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and by combinatorial computations determines the asymptotics of Mk(µn) as n goes to

infinity: for k fixed,

M2k(µn) ∼
(
β

4γ

)k
(2k)!

k!(k + 1)!
nk (n→ ∞).

Note that the moments of odd order vanish. On the other hand it is easy to compute the

moments of the semi-circle law:

M2k(σa) =

(
a2

4

)k
(2k)!

k!(k + 1)!
.

The proof by Pastur uses the Cauchy transform ([Pastur, 1972, 1996]). Recall that

the Cauchy transform of a probability measure µ on R is the function Gµ defined on C\R

by

Gµ(z) =

∫

R

1

z − t
µ(dt).

For µ = µn, writing Gµn
= Gn,

Gn(z) =
1

n

∫

Vn

tr((zI − x)−1)Pn(dx).

After scaling one has to look at the functions

G̃n(z) =
√
nGn(

√
nz).

The proof amounts to showing that the functions G̃n converge,

lim
n→∞

G̃n(z) = f(z),

and that f is a holomorphic function satisfying

f(z)2 − 4

a2
zf(z) +

4

a2
= 0.

Since ImGn(z) < 0 and hence Im f(z) < 0 for Im z > 0, necessarily

f(z) =
2

a2

(
z −

√
z2 − a2

)
,

which is the Cauchy transform of the semi-circle law σa.

In this paper we will see that harmonic analysis on the Heisenberg group provides a

proof of Wigner Theorem. It amounts to determining asymptotics of the Fourier transform

of the measure µn:

µ̂n(τ ) =

∫

R

eiτtµn(dt) =
1

n

∫

Vn

tr(eiτx)Pn(dx).

In [Haagerup, Thorbjørnsen, 2003], the asymptotics of µ̂n(τ ) are determined by using

properties of Laguerre polynomials.

More general results are obtained by using logarithmic potential theory (see [Deift,

2000]). One defines the energy of a probability measure µ on R by

I(µ) =

∫

R2

log
1

|s− t|µ(ds)µ(dt) +

∫

R

Q(t)µ(dt).

For Q(t) = γt2, the semi-circle law appears as equilibrium measure: measure which

realizes the minimum of the energy.
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1. Mehta’s formula. Let Q be a continuous real valued function on R such that, for

all m ≥ 0, ∫

R

|t|me−Q(t)dt <∞.

One considers on the space Vn = Herm(n,F) the probability measure defined by

Pn(dx) =
1

Cn
e− tr(Q(x))m(dx),

with

Cn =

∫

Vn

e− tr(Q(x))m(dx).

Let f be a function on Vn, invariant under the unitary group:

f(uxu∗) = f(x) (u ∈ U(n), x ∈ Vn).

Then f(x) only depends on the eigenvalues λ1, . . . , λn of x,

f(x) = F (λ1, . . . , λn),

where F is a function on R
n which is symmetric, i.e. invariant under permutation. If f

is integrable, then, by a Weyl integration formula,∫

Vn

f(x)m(dx) = cn

∫

Rn

F (λ)|∆(λ)|βdλ1 . . . λn,

where ∆ is the Vandermonde polynomial:

∆(λ) =
∏

1≤i<j≤n

(λj − λi).

If f is integrable with respect to Pn,∫

Vn

f(x)Pn(dx) =

∫

Rn

F (λ)qn(λ)dλ1 . . . dλn,

with

qn(λ) =
1

Zn
e−(Q(λ1)+···+Q(λn))|∆(λ)|β,

and

Zn =

∫

Rn

e−(Q(λ1)+···+Q(λn))|∆(λ)|βdλ1 . . . λn.

In particular, if

f(x) =
1

n
tr(ϕ(x)),

where ϕ is a bounded measurable function on R, then

F (λ) =
1

n
(ϕ(λ1) + · · · + ϕ(λn)),

and
∫

R

ϕ(t)µn(dt) =
1

n

n∑

i=1

∫

Rn

ϕ(λi)qn(λ)dλ1 . . . λn =

∫

Rn

ϕ(λ1)qn(λ)dλ1 . . . dλn

=

∫

R

ϕ(t)wn(t)dt,
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with

wn(t) =

∫

Rn−1

qn(t, λ2, . . . , λn)dλ2 . . . dλn.

In the case of F = C (β = 2) the density of the statistical distribution µn of the

eigenvalues can be expressed in terms of orthogonal polynomials. Let us consider the

sequence of orthogonal polynomials p0, . . . , pm, . . . with respect to the measure e−Q(t)dt,

normalized by the condition

pm(t) = tm + · · ·
Let am denote the squared norm of pm:

am =

∫

R

|pm(t)|2e−Q(t)dt.

Define

hm(t) =
1√
am

e−
1

2
Q(t)pm(t).

The functions hm are orthonormal in L2(R). Define also

Kn(s, t) =

n−1∑

k=0

hk(s)hk(t).

Up to an exponential factor, this is the Christoffel-Darboux kernel of the sequence of

the orthogonal polynomials pm. This is also the kernel of the orthogonal projection of

L2(R) onto the subspace spanned by the functions h0, . . . , hn−1. According to a notation

introduced by Fredholm, let us write, for a kernel K(s, t),

K

(
s1 s2 . . . sm

t1 t2 . . . tm

)
= det(K(si, tj))1≤i,j≤m.

Theorem 2 (Mehta’s formulas).

qn(λ1, . . . , λn) =
1

n!
Kn

(
λ1 . . . λn

λ1 . . . λn

)
, wn(t) =

1

n
Kn(t, t) =

1

n

n−1∑

k=0

hk(t)2.

[Mehta, 1991], pp. 91, 92.

In the following we will consider the case Q(t) = t2 (γ = 1). Then the orthogonal

polynomials pm are, up to normalization, the Hermite polynomials:

pm(t) = 2−mHm(t),

and the hm are Hermite functions:

hm(t) = (2mm!
√
π)−

1

2 e−
1

2
t2Hm(t).

2. Harmonic analysis on the Heisenberg group. We will recall classical facts about

the representation theory of the Heisenberg group: Bargmann representation on the Fock

space, and Schrödinger representation on L2(Rd) (see [Faraut, 1987] for instance).

The Heisenberg group Hd is the set Hd = Cd × R equipped with the product

(z, t) · (z′, t′) = (z + z′, t+ t′ + Im (z′|z)).
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The Fock space Hλ (λ ∈ R
∗) is the space of holomorphic functions ϕ on C

d with

‖ϕ‖2
λ =

( |λ|
π

)d ∫

Cd

e−|λ|‖ζ‖2 |ϕ(ζ)|2m(dζ) <∞.

The Bargmann representation Tλ is the representation of Hd on Hλ given by:

(Tλ(z, t)ϕ)(ζ) = eλ(it− 1

2
‖z‖2−(ζ|z))ϕ(ζ + z).

The unitary group U(d) acts on the Heisenberg group Hd by automorphisms:

(z, t) 7→ (uz, t) (u ∈ U(d)),

and also on the Fock space Hλ:

(τuϕ)(ζ) = ϕ(u−1ζ),

so that

Tλ(uz, t) = τuTλ(z, t)τu−1 .

Let Pm denote the space of polynomials in d variables, homogeneous of degree m. The

space Pm, which is a subspace of the Fock space Hλ, is invariant under U(d), and irre-

ducible for this action. Furthermore

Hλ =
⊕̂∞

m=0
Pm.

Let L1(Hd)
♭ be the space of U(d)-invariant integrable functions (radial in z). It is a

commmutative convolution algebra [Korányi, 1980]. The characters of the commutative

Banach algebra L1(Hd)
♭ are of the form:

χ(f) =

∫

Hd

f(z, t)ω(z, t)m(dz)dt,

here ω is a bounded spherical function, i.e. a U(d)-invariant bounded continuous function

on Hd such that ∫

U(d)

ω((z, t)(uz′, t′))ν(du) = ω(z, t)ω(z′, t′),

where ν is the normalized Haar measure of U(d), or
∫

U(d)

ω(z + uz′, t+ t′ + Im(z∗uz′))ν(du) = ω(z, t)ω(z′, t′).

The spectrum of the commutative Banach algebra can be identified with the set of

bounded spherical functions, and its topology is induced by the topology of uniform

convergence on compact sets.

For f ∈ L1(Hd), define

Tλ(f) =

∫

Hd

Tλ(z, t)f(z, t)m(dz)dt.

If f is U(d) invariant: f ∈ L1(Hd)
♭:

f(uz, t) = f(z, t),

then the operator Tλ(f) commutes with the U(d)-action:

τuT (z, t) = T (z, t)τu (u ∈ U(d)).
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Therefore, by Schur’s Lemma, Pm is an eigenspace for Tλ(f): there is a complex number

f̂(λ,m) such that, for ϕ ∈ Pm,

Tλ(f)ϕ = f̂(λ,m)ϕ.

The map f 7→ f̂(λ,m) is a character of L1(Hd)
♭, hence can be written

f̂(λ,m) =

∫

Hd

f(z, t)ωλ,m(z, t)m(dz)dt,

where ωλ,m is a spherical function. (The functions ωλ,m can be written in terms of La-

guerre polynomials.)

The monomials of degree m form an orthogonal basis of Pm. Let uα be the normalized

monomials:

uα(ζ) =

√
|λ||α|

α!
ζα,

with

α = (α1, . . . , αd) ∈ N
d, |α| = α1 + · · · + αd = m, α! = α1! . . . αd!.

Proposition 3.

ωλ,m(z, t) =
1

dm

∑

|α|=m

(Tλ(z, t)uα|uα), where dm = dimHm =
(m+ d− 1)!

m!(d− 1)!
.

Proof. If f ∈ L1(Hd)
♭, ϕ ∈ Pm with ‖ϕ‖λ = 1, then

(Tλ(f)ϕ|ϕ)λ = f̂(λ,m),

and this can be written

f̂(λ,m) =

∫

Hd

f(z, t)(Tλ(z, t)ϕ|ϕ)m(dz)dt.

and also

f̂(λ,m) =
1

dm

∑

|α|=m

∫

Hd

f(z, t)(Tλ(z, t)uα|uα)m(dz)dt

=

∫

Hd

f(z, t)

(
1

dm

∑

|α|=m

(Tλ(z, t)uα|uα)

)
m(dz)dt.

Therefore
ωλ,m(z, t) =

1

dm

∑

|α|=m

(Tλ(z, t)uα|uα).

Let S(Cd) denote the unit sphere in C
d, and σ the normalized uniform measure on

S(Cd). For µ ≥ 0, define

ωµ(z, t) =

∫

S(Cd)

eiµIm (z|ζ)σ(dζ).

The function ωµ is spherical.

Theorem 4. The spectrum of L1(Hd)
♭, i.e. the set of bounded spherical functions, can

be described as follows:

Spect(L1(Hd)
♭) = {ωλ,m | λ ∈ R

∗, m ∈ N} ∪ {ωµ | µ ≥ 0}.
[Korányi, 1980].
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The topology of the spectrum Spect(L1(Hd)
♭) is given by the following embedding

into R
2:

(λ,m) 7→ (λ, 4(m+ d/2)|λ|), µ 7→ (0, µ2).

([Bougerol, 1981]). In particular:

Corollary 5.

lim
λ→0,4m|λ|→µ2

ωλ,m(z, t) = ωµ(z, t),

uniformly on compact sets.

Theorem 4 can be proven by using the fact that the spherical functions are eigenfunc-

tions of the differential operators on Hd which are left Hd-invariant, and invariant under

the U(d)-action. The algebra of these operators is generated by the sublaplacian ∆0 and

the first order differential operator T :

∆0 =
d∑

j=1

(X2
j + Y 2

j ), T =
∂

∂t
,

where, writting z = x+ iy,

Xj =
∂

∂xj
− yj

∂

∂t
, Yj =

∂

∂yj
+ xj

∂

∂t
,

and

∆0 ωλ,m = −4(m+ d/2)|λ|ωλ,m, Tωλ,m = iλ ωλ,m,

∆0 ωµ = −µ2 ωµ, Tωµ = 0.

3. Schrödinger representation. The Schrödinger representation Uλ of the Heisenberg

group Hd on L2(Rd) is given by

(Uλ(z, t)f)(ξ) = eiλ(t+(x|y)+2(y|ξ))f(ξ + x),

where z = x+ iy.

The representations Tλ and Uλ are equivalent. The Hermite-Weber transform:

Aλ : Hλ → L2(Rd),

given by

(Aλϕ)(ξ) =

(
2|λ|
π

) 1

4

ϕ

(
− 1

2|λ|
∂

∂ξ

)
e−|λ|‖ξ‖2

,

intertwines both representations:

AλTλ = UλAλ,

and maps monomials to Hermite functions, modified by a suitable scaling. Recall the

Hermite functions:

hm(x) = (2mm!
√
π)−

1

2 e−
x
2

2 Hm(x).

For α = (α1, . . . , αd) ∈ Nd, ξ = (ξ1, . . . , ξd) ∈ Rd, let

hα(ξ) = hα1
(ξ1) . . . hαd

(ξd),
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and, for λ ∈ R
∗,

hλ
α(ξ) = (2|λ|)− d

4 hα(
√

2|λ|ξ).
By using the Rodrigues formula

Hm(x) = ex2

(
− d

dx

)m

e−x2

,

one sees that

Aλu
λ
α = hλ

α.

The Hermite-Weber transform is a unitary isomorphism whose inverse

Bλ : L2(Rd) → Hλ

is the Segal-Bargmann transform:

(Bλ)(ζ) =

(
2|λ|
π

) 1

4

e−
1

2
|λ|ζtζ

∫

Rd

e−|λ|(ζ−ξ)t(ζ−ξ)f(ξ)m(dξ).

Proposition 6.

ωλ,m(z, t) =
1

dm

∑

|α|=m

(Uλ(z, t)hλ
α|hλ

α).

Proof. In fact

(Uλ(z, t)hλ
α|hλ

α) = (Uλ(z, t)Aλu
λ
α|Aλu

λ
α) = (AλTλ(z, t)uλ

α|Aλu
λ
α)

because Aλ intertwines Uλ and Tλ, and, since Aλ is a unitary isomorphism, the above

equals (Tλ(z, t)uλ
α|uλ

α)λ. The statement then follows from Proposition 3.

Now take z = iy (x = 0), y ∈ Rd, t = 0:

ωλ,m(iy, 0) =

∫

Rd

e2iλ(y|ξ)

(
1

dm

∑

|α|=m

|hλ
α(ξ)|2

)
m(dξ).

Let us consider the probability measure ηm on Rd given by

ηm(dξ) =

(
1

dm

∑

|α|=m

|hλ
α(ξ)|2

)
m(dξ),

and let η̂m denote its Fourier transform

η̂m(x) =

∫

Rd

ei(x|ξ)ηm(dξ).

The above result can be written:

η̂m(
√

2|λ|y) = ωλ,m(iy, 0).

On the other hand

ωµ(iy, 0) =

∫

S(Cd)

eiµRe (y|ζ)σ(dζ).

Recall that σ is the normalized uniform measure on the unit sphere S(Cd). By projecting

σ onto R
d:

ωµ(iy, 0) =
1

Ad

∫

B(Rd)

eiµ(y|ξ)(1 − ‖ξ‖2)
d

2
−1mn(dξ),
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where B(Rd) is the unit ball in R
d, and

Ad =
π

d

2 Γ(d/2)

(d− 1)!
.

Let us also consider the probability measure η on Rd given by, for a bounded Borel

function f , ∫

Rd

f(ξ)η(dξ) =
1

Ad

∫

B(Rd)

f(ξ)(1 − ‖ξ‖2)
d

2
−1m(dξ).

Then, if η̂ denotes its Fourier transform,

η̂(µy) = ωµ(iy, 0).

Recall the classical Lévy-Cramér Theorem:

Theorem 7 (Lévy-Cramér). Let µm be a sequence of probability measures on Rd. One

assumes that the sequence of the Fourier transforms

ψm(x) =

∫

Rd

ei(x|ξ)µm(dξ)

converges at every point:

lim
m→∞

ψm(x) = ψ(x),

ant that the limit function ψ is continuous at 0. Then the measures µm converge weakly

to a probability measure µ whose ψ is the Fourier transform.

As an application we will obtain:

Theorem 8. For a bounded continuous function f on Rd,

lim
m→∞

∫

Rd

f

(
ξ√
2m

)
ηm(dξ) =

1

Ad

∫

B(Rd)

f(x)(1 − ‖x‖2)
d

2
−1m(dx).

Proof. Let us scale the measure ηm, and consider the measure η̃m:
∫

Rd

f(ξ)η̃m(dξ) =

∫

Rd

f

(
ξ√
2m

)
ηm(dξ).

Its Fourier transform is

̂̃ηm(x) = η̂m

(
x√
2m

)
.

Recall Corollary 4:

lim
λ→0,4m|λ|→µ2

ωλ,m(z, t) = ωµ(z, t).

For λ = 1
4m

,

̂̃ηm(y) = η̂m

(
y√
2m

)
= ω 1

4m
,m(iy).

Therefore, since η̂(y) = ω1(iy),

lim
m→∞

̂̃ηm(y) = η̂(y).

Hence Theorem 8 follows from the Lévy-Cramér Theorem (Theorem 7).
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For d = 2, we obtain, for a bounded continuous function f on R
2,

lim
m→∞

∫

R2

f

(
ξ1√
2m

,
ξ2√
2m

)(
1

m+ 1

∑

α1+α2=m

hα1
(ξ1)

2hα2
(ξ2)

2

)
dξ1dξ2

=
1

π

∫

x2

1
+x2

2
≤1

f(x1, x2)dx1dx2.

and by projecting onto R:

Corollary 9. For a bounded continuous function ϕ on R,

lim
m→∞

∫

R

ϕ

(
ξ√
2m

)(
1

m+ 1

m∑

k=0

hk(ξ)2
)
dξ =

2

π

∫ 1

−1

ϕ(x)
√

1 − x2dx.

By using the second Mehta’s formula (Theorem 2), this proves Wigner Theorem.

Remark. In his paper [Biane, 1997], Biane establishes a link between the semi-circle law

and harmonic analysis on the Heisenberg group Hd, but this link is of a different nature

than the one we consider in the present paper. In particular Biane considers asymptotics

as the dimension of the Heisenberg group goes to infinity, whereas we keep this dimension

fixed.
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A. Korányi (1980), Some applications of Gelfand pairs in classical analysis, in Harmonic Analysis

and Group Representations, CIME, 333–348.
M. L. Mehta (1991), Random Matrices, Academic Press.
L. Pastur (1972), On the spectrum of random matrices, Theor. Math. Phys. 10, 67–74.
L. Pastur (1996), Spectral and probabilistic aspects of matrix models, in: Algebraic and Geometric

Methods in Mathematical Physics, Kluwer, 207–242.
E. P. Wigner (1955), Characteristic vectors of bordered matrices with infinite dimensions, Annals

of Math. 62, 548–564.
E. P. Wigner (1958), On the distribution of roots of certain symmetric matrices, Annals of Math.

67, 325–327.




