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1. Preliminaries. Let X be a finite, linearly ordered set. By a moncrossing partition
of X we will mean a collection 7 of nonempty, pairwise disjoint subsets (called blocks of
m) such that |J7m = X, which satisfies the following condition: if 27 < z3 < z3 < x4,
with x1,23 € U; € 7w and z4,24 € Us € m, then U; = U,. The class of all noncrossing
partitions of X will be denoted by NC(X). We also define NCy 2(X) as the family of
those o € NC(X) for which every block has at most 2 elements. We will write NC(m)
and NCj 3(m) instead of NC({1,2,...,m}) and NCy2({1,2,...,m}).

Every m € NC(X) admits a natural partial order. Namely, for U,V € n we write
U < V whenever there are r,s € V such that r < £ < s holds for every k € U. We
define the depth of a block as d(U,7) := {V € w : U < V}|. A block is called outer if
d(U,m) = 0, otherwise it is called inner. Note that for every inner block U € 7 there is a
unique block in 7, denoted by U’, such that U < U’ and d(U,7) = d(U’,7) + 1. We also
define derivatives of higher orders by V() := V and V%) .= (V(k_l))/.
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Let p be a compactly supported probability measure on the real line, with the moment
sequence

%wwzﬁmwww. (1)

Then there is a unique sequence {P,,(x)}5°_, of monic polynomials, with degP,,, = m,
which are orthogonal with respect to u. It is known that they satisfy the recurrence
relation: Py(x) =1 and for m > 0

'TPm(x) :Pm+1(x)+ﬁmpm(x)+7m—lpm—1(x); (2)

under convention that P_; = 0, where the Jacobi coefficients satisfy: 3, € R, v, > 0
and if ~y,, = 0 for some m then 7, = 3, = 0 for every n > m (see [Ch]). These coefficients
show up in the continued fraction expansion of the Cauchy transform of p, namely:

Gul) = | dp®) _ ! . (3)
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There is a combinatorial formula, due to Accardi and Bozejko, connecting moments
and the Jacobi coefficients of y, namely

Sm(,u) = Z H ﬁd(v,a) H Vd(V,o)- (4)
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Another important numbers related to p are the free cumulants rp, (), m > 1 (see
[S1, S2]), which are defined by:

sm) = Y. [ i) (5)

TeNC(m)Uen

Their generating function
Ru(2) = ripa(n)2* (6)
k=0
is called the R-transform. These two functions are related by

= 2~ Ru(G,(2))- (7)

Gu(z)

From now on we will confine ourselves to a special class of measures p. For a > 0,

b > 0 and u,v € R we define u(a,b,u,v) as the unique p € M such that its Jacobi
coefficients are:

aifm=0,
’ym_{bifmzl, (8)
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wif m =0,
vifm=1,
B = vifm>1andb>0, )

0ifm>1andb=0.

This class of measures was first studied by Cohen and Trenholme [CT] from the point
of view of harmonic analysis. Then Saitoh and Yoshida studied them from the point of
view of free probability. For u = p(a, b, u,v) they calculated the Cauchy transform:

_ 2b(z —u) —a(z —v) —ay/(z —v)? —4b

G = 10
w(2) 2b(z —u)? —2a(z — u)(z — v) + 2a? (10)
and the R-transform:
R, (w)=u+ S — (11)
. 1+ (u—v)w
if a = b and
B a 1—@w-—uww+/((v—uw-—1)2—4(0b— a)w?
Ry(w) =u+ - 2w (12)
otherwise. For a < b the authors of [SY] found the Lévy-Khinchin formula:
z
R.(z) =u-+ a/]R T tzdl/(t), (13)

where if ¢ = b then v = §,_,, and if a < b then v is absolutely continuous with density

m\/él(b—a)— (t— (v —w)? (14)

on the interval (t — (v — u))2 < 4(b — a). Basing on this they proved that u(a,b,u,v)
is infinitely divisible with respect to the free convolution if and only if a < b. Bozejko
and Bryc [BB] observed that one can use (13) to find the free cumulants of u(a, b, u,v)
when a < b. Now, since every free cumulant r,,(u(a, b, u,v)) is a polynomial in a, b, u, v,

the resulting formula holds for all p(a,b,u,v). The aim of this paper is to find the free
cumulants of p(a,b,u,v) in a purely combinatorial way.

2. The result. Now we are ready to state the result.
THEOREM. For the free cumulants ro, := rp,(u(a, b, u,v)) we have: r1 = u and forn > 1

(2n — 2)!
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Proof. Putting s, := spy(u(a, b, u,v)) we have from the Bozejko-Accardi formula:

Sm = Z CLoth(a),U,outl(a)binng(a)vinnl(a)7 (17)
JENCLQ(m)

where outy (o), outi(0), inng(o), inng (o) denotes the number of outer or inner blocks
V € o, with |V| = 2 or |V| = 1, respectively. For fixed ¢ € NCj3(m) the related
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summand can be written as
aOute (a)uoutl(a) ((b o (l) + a)inrm(o') ((’U o ’LL) + ’LL) inng (a’). (18)

After expanding we get a sum of products of factors of the form a,u, (b—a), (v—u), which
can be described in terms of signed noncrossing partitions. By a signing of o € NCjy 2(m)
we will mean a function € : 0 — {0,1} such that e(V) = 0 whenever V' € o is an outer
block. We will denote by Sign(o) the family of all signings of . Now we define the weight
of a signed block:

u if [V|=1and e
v—uif |V|=1ande
a if [V|=2ande
b—aif |[V|=2ande

and the weight of a signed partition:

)

V)=0
V) =1,

. (19)
=1
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)= ] wVie). (20)

Veo
Then the expansion of the product (18) can be written as
> w(oe). (21)
e€Sign(o)

Now, for a fixed pair (o,€), with 0 € NCj 2(m), € € Sign(o) we define a partition
(0, €) by gluing a block V with V'’ whenever ¢(V) = 1. More precisely, define a relation
Rono: URV if V. =U' and ¢(U) = 1. Let ~ be the smallest equivalence relation on o
containing R. Then we define a partition II(o, €) of {1,2,...,m} whose blocks are of the
form (JC, with C € o/ ~. This means that k and [ are in the same block of II(o, €) if and
only if there are blocks U,V € o, with k € U, [ € V, and numbers r, s > 0 such that

(U)=eU) = =eU"V) =1,
(V)=e(V)=-=¢VED)=1
and U(") = V() Tt is easy to see that II(c, €) is noncrossing.

On the other hand, for fixed m € NC(m), we have II(o, €) = 7 if and only if o is finer
than 7 (i.e. for every V € o there is U € 7 such that V C U) and for every U € , if
U = {ki,ka,..., -}, k1 < ko < --- < k;, then we have {k1,k.} € o, with sign 0, and
all the blocks of o which are contained in {ks, ..., k._1} have sign 1. In particular, every
one-element block U € 7 must be a block of o with sign 0. Therefore the sum of weights
w(o, €) with II(o, €) = 7 is equal to

Z U)(J, 6) _ ,LLN1(7T) H Z (l(’U o ’LL)NI(UU)(b . a)Nz(O’U), (22)

gENCy o(m), Uem eNC Ul|—2
e€Sign(o) [U[>1 v 12([U1=2)
O(o,e)=m

where Ni(0), Na(o) denotes the number of one- and two-element blocks in . Hence
S = Z a0Ut2(U)u0Ut1(U)binnz(U)Uinnl(U)
UEN01,2(m)

— Z aoutg(o)uoutl(a) ((b o a) + a)inng(o) ((U _ u) T u) inny (o)
c€NCq 2(m)
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Z uNm H Z a(v — )N (b — q)N2(7)

mENC(m) oy TENC1L2(JU]-2)

>, Il ew

TeENC(m)Uern

where ¢; = uw and for m > 2

Cm=a- Z (v —u)M (b — a)N2(7), (23)
TENCLQ(’H’sz)

Since the numbers ¢, satisfy the same recurrence relation (5) as r,,, we have r,, = s,,
for every m > 1. It is well known that the number of those 7 € NC(2j) for which |V| =2

j% (233 ) Hence the number of partitions
o € NCj 2(m) with ¢ blocks of order one and j blocks of order two, ¢ + 2j = m, is equal

to () Jﬁ(ij), which leads to the coefficients in (10) and (11). =

for every V' € 7 is equal to the Catalan number

Observe that the subclass {u(a,0,u,v) : a > 0,u,v € R} coincides with the family of
two-point probability measures on R, namely:

p(a,0,u,v) =p_6, +pyds,, (24)

where

V(@ —v)2+da=E (u—0v)
b= 2y/(u—v)?2+4a ’ (25)

u+vt/(u—v)2+4a (26)
5 .

r+ =

and, on the other hand,

0= pep_(zs — 3 )2, (27)
U=piry +por, (28)
V=prT_+p_xy. (29)

COROLLARY. For a,b >0, u,v € R and t > 0 the free power p(a,b,u,v)®

only if b —a+ta > 0 and then

exists if and

(@, b, u, ) = p(ta,b— a + ta, tu, v — u + tu). (30)

In particular, u(a,b,u,v) is infinitely divisible if and only if a < b.

If 0 < b < a then p(a,b,u,v) is a free power of a two point measure:

a—0>b a—b \Faw
wla,byu,v) = p (a —b,0, —u, v —u-+ u) . (31)
a

a

Proof. The first statement holds because one can see from the theorem that for every
m>1

rm(p(ta,b —a+ta, tu,v —u+tw)) =t - rp,(p(a, b, u,v)). (32)

The rest is an obvious consequence. m
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