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1. Preliminaries. Let X be a �nite, linearly ordered set. By a non
rossing partitionof X we will mean a 
olle
tion π of nonempty, pairwise disjoint subsets (
alled blo
ks of
π) su
h that ⋃

π = X, whi
h satis�es the following 
ondition: if x1 < x2 < x3 < x4,with x1, x3 ∈ U1 ∈ π and x2, x4 ∈ U2 ∈ π, then U1 = U2. The 
lass of all non
rossingpartitions of X will be denoted by NC(X). We also de�ne NC1,2(X) as the family ofthose σ ∈ NC(X) for whi
h every blo
k has at most 2 elements. We will write NC(m)and NC1,2(m) instead of NC({1, 2, . . . , m}) and NC1,2({1, 2, . . . , m}).Every π ∈ NC(X) admits a natural partial order. Namely, for U, V ∈ π we write
U ≺ V whenever there are r, s ∈ V su
h that r < k < s holds for every k ∈ U . Wede�ne the depth of a blo
k as d(U, π) := |{V ∈ π : U ≺ V }|. A blo
k is 
alled outer if
d(U, π) = 0, otherwise it is 
alled inner. Note that for every inner blo
k U ∈ π there is aunique blo
k in π, denoted by U ′, su
h that U ≺ U ′ and d(U, π) = d(U ′, π) + 1. We alsode�ne derivatives of higher orders by V (0) := V and V (k) :=

(

V (k−1)
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166 M. HINZ AND W. MŁOTKOWSKILet µ be a 
ompa
tly supported probability measure on the real line, with the momentsequen
e
sm(µ) :=

∫

t∈R

tmdµ(t). (1)Then there is a unique sequen
e {Pm(x)}∞m=0 of moni
 polynomials, with degPm = m,whi
h are orthogonal with respe
t to µ. It is known that they satisfy the re
urren
erelation: P0(x) = 1 and for m ≥ 0

xPm(x) = Pm+1(x) + βmPm(x) + γm−1Pm−1(x), (2)under 
onvention that P−1 = 0, where the Ja
obi 
oe�
ients satisfy: βm ∈ R, γm ≥ 0and if γm = 0 for some m then γn = βn = 0 for every n > m (see [Ch℄). These 
oe�
ientsshow up in the 
ontinued fra
tion expansion of the Cau
hy transform of µ, namely:
Gµ(z) :=

∫

t∈R

dµ(t)

t − z
=

1

z − β0 −
γ0

z − β1 −
γ1

z − β2 −
γ2

z − β3 −
γ3. . .

. (3)

There is a 
ombinatorial formula, due to A

ardi and Bo»ejko, 
onne
ting momentsand the Ja
obi 
oe�
ients of µ, namely
sm(µ) =

∑

σ∈NC1,2(m)

∏

V ∈σ

|V |=1

βd(V,σ)

∏

V ∈σ

|V |=2

γd(V,σ). (4)
Another important numbers related to µ are the free 
umulants rm(µ), m ≥ 1 (see[S1, S2℄), whi
h are de�ned by:

sm(µ) =
∑

π∈NC(m)

∏

U∈π

r|U|(µ). (5)Their generating fun
tion
Rµ(z) :=

∞
∑

k=0

rk+1(µ)zk (6)is 
alled the R-transform. These two fun
tions are related by
1

Gµ(z)
= z − Rµ(Gµ(z)). (7)From now on we will 
on�ne ourselves to a spe
ial 
lass of measures µ. For a > 0,

b ≥ 0 and u, v ∈ R we de�ne µ(a, b, u, v) as the unique µ ∈ M su
h that its Ja
obi
oe�
ients are:
γm =

{

a if m = 0,
b if m ≥ 1, (8)
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βm =















u if m = 0,
v if m = 1,
v if m > 1 and b > 0,
0 if m > 1 and b = 0. (9)

This 
lass of measures was �rst studied by Cohen and Trenholme [CT℄ from the pointof view of harmoni
 analysis. Then Saitoh and Yoshida studied them from the point ofview of free probability. For µ = µ(a, b, u, v) they 
al
ulated the Cau
hy transform:
Gµ(z) =

2b(z − u) − a(z − v) − a
√

(z − v)2 − 4b

2b(z − u)2 − 2a(z − u)(z − v) + 2a2
(10)and the R-transform:

Rµ(w) = u +
aw

1 + (u − v)w
. (11)if a = b and

Rµ(w) = u +
a

b − a

1 − (v − u)w +
√

((v − u)w − 1)2 − 4(b − a)w2

2w
(12)otherwise. For a ≤ b the authors of [SY℄ found the Lévy-Khin
hin formula:

Rµ(z) = u + a

∫

R

z

1 − tz
dν(t), (13)where if a = b then ν = δv−u and if a < b then ν is absolutely 
ontinuous with density

1

2π(b − a)

√

4(b − a) −
(

t − (v − u)
)2 (14)on the interval (

t − (v − u)
)2

≤ 4(b − a). Basing on this they proved that µ(a, b, u, v)is in�nitely divisible with respe
t to the free 
onvolution if and only if a ≤ b. Bo»ejkoand Bry
 [BB℄ observed that one 
an use (13) to �nd the free 
umulants of µ(a, b, u, v)when a ≤ b. Now, sin
e every free 
umulant rm(µ(a, b, u, v)) is a polynomial in a, b, u, v,the resulting formula holds for all µ(a, b, u, v). The aim of this paper is to �nd the free
umulants of µ(a, b, u, v) in a purely 
ombinatorial way.2. The result. Now we are ready to state the result.Theorem. For the free 
umulants rm := rm(µ(a, b, u, v)) we have: r1 = u and for n ≥ 1

r2n = a

n
∑

k=1

(2n − 2)!

(2k − 2)!(n − k)!(n − k + 1)!
(b − a)n−k(v − u)2k−2, (15)

r2n+1 = a

n
∑

k=1

(2n − 1)!

(2k − 1)!(n − k)!(n − k + 1)!
(b − a)n−k(v − u)2k−1. (16)Proof. Putting sm := sm(µ(a, b, u, v)) we have from the Bo»ejko-A

ardi formula:

sm =
∑

σ∈NC1,2(m)

aout2(σ)uout1(σ)binn2(σ)vinn1(σ), (17)where out2(σ), out1(σ), inn2(σ), inn1(σ) denotes the number of outer or inner blo
ks
V ∈ σ, with |V | = 2 or |V | = 1, respe
tively. For �xed σ ∈ NC1,2(m) the related
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an be written as
aout2(σ)uout1(σ)

(

(b − a) + a
)inn2(σ)(

(v − u) + u
)inn1(σ)

. (18)After expanding we get a sum of produ
ts of fa
tors of the form a, u, (b−a), (v−u), whi
h
an be des
ribed in terms of signed non
rossing partitions. By a signing of σ ∈ NC1,2(m)we will mean a fun
tion ǫ : σ → {0, 1} su
h that ǫ(V ) = 0 whenever V ∈ σ is an outerblo
k. We will denote by Sign(σ) the family of all signings of σ. Now we de�ne the weightof a signed blo
k:
w(V, ǫ) :=















u if |V | = 1 and ǫ(V ) = 0,
v − u if |V | = 1 and ǫ(V ) = 1,
a if |V | = 2 and ǫ(V ) = 0,
b − a if |V | = 2 and ǫ(V ) = 1, (19)

and the weight of a signed partition:
w(σ, ǫ) :=

∏

V ∈σ

w(V, ǫ). (20)Then the expansion of the produ
t (18) 
an be written as
∑

ǫ∈Sign(σ)

w(σ, ǫ). (21)Now, for a �xed pair (σ, ǫ), with σ ∈ NC1,2(m), ǫ ∈ Sign(σ) we de�ne a partition
Π(σ, ǫ) by gluing a blo
k V with V ′ whenever ǫ(V ) = 1. More pre
isely, de�ne a relation
R on σ: URV i� V = U ′ and ǫ(U) = 1. Let ∼ be the smallest equivalen
e relation on σ
ontaining R. Then we de�ne a partition Π(σ, ǫ) of {1, 2, . . . , m} whose blo
ks are of theform ⋃

C, with C ∈ σ/ ∼. This means that k and l are in the same blo
k of Π(σ, ǫ) if andonly if there are blo
ks U, V ∈ σ, with k ∈ U , l ∈ V , and numbers r, s ≥ 0 su
h that
ǫ(U) = ǫ(U ′) = · · · = ǫ(U (r−1)) = 1,

ǫ(V ) = ǫ(V ′) = · · · = ǫ(V (s−1)) = 1and U (r) = V (s). It is easy to see that Π(σ, ǫ) is non
rossing.On the other hand, for �xed π ∈ NC(m), we have Π(σ, ǫ) = π if and only if σ is �nerthan π (i.e. for every V ∈ σ there is U ∈ π su
h that V ⊆ U) and for every U ∈ π, if
U = {k1, k2, . . . , kr}, k1 < k2 < · · · < kr, then we have {k1, kr} ∈ σ, with sign 0, andall the blo
ks of σ whi
h are 
ontained in {k2, . . . , kr−1} have sign 1. In parti
ular, everyone-element blo
k U ∈ π must be a blo
k of σ with sign 0. Therefore the sum of weights
w(σ, ǫ) with Π(σ, ǫ) = π is equal to

∑

σ∈NC1,2(m),

ǫ∈Sign(σ)
Π(σ,ǫ)=π

w(σ, ǫ) = uN1(π)
∏

U∈π

|U|>1

∑

σU∈NC1,2(|U|−2)

a(v − u)N1(σU )(b − a)N2(σU ), (22)
where N1(σ), N2(σ) denotes the number of one- and two-element blo
ks in σ. Hen
e

sm =
∑

σ∈NC1,2(m)

aout2(σ)uout1(σ)binn2(σ)vinn1(σ)

=
∑

σ∈NC1,2(m)

aout2(σ)uout1(σ)
(

(b − a) + a
)inn2(σ)(

(v − u) + u
)inn1(σ)
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=

∑

π∈NC(m)

uN1(π)
∏

U∈π

|U|>1

∑

τ∈NC1,2(|U|−2)

a(v − u)N1(τ)(b − a)N2(τ)

=
∑

π∈NC(m)

∏

U∈π

c|U|,where c1 = u and for m ≥ 2

cm = a ·
∑

τ∈NC1,2(m−2)

(v − u)N1(τ)(b − a)N2(τ). (23)
Sin
e the numbers cm satisfy the same re
urren
e relation (5) as rm, we have rm = smfor every m ≥ 1. It is well known that the number of those π ∈ NC(2j) for whi
h |V | = 2for every V ∈ π is equal to the Catalan number 1

j+1

(

2j
j

). Hen
e the number of partitions
σ ∈ NC1,2(m) with i blo
ks of order one and j blo
ks of order two, i + 2j = m, is equalto (

m
i

)

1
j+1

(

2j
j

), whi
h leads to the 
oe�
ients in (10) and (11).Observe that the sub
lass {µ(a, 0, u, v) : a > 0, u, v ∈ R} 
oin
ides with the family oftwo-point probability measures on R, namely:
µ(a, 0, u, v) = p−δx−

+ p+δx+
, (24)where

p± =

√

(u − v)2 + 4a ± (u − v)

2
√

(u − v)2 + 4a
, (25)

x± =
u + v ±

√

(u − v)2 + 4a

2
. (26)and, on the other hand,

a = p+p−(x+ − x−)2, (27)
u = p+x+ + p−x−, (28)
v = p+x− + p−x+. (29)Corollary. For a, b > 0, u, v ∈ R and t ≥ 0 the free power µ(a, b, u, v)⊞t exists if andonly if b − a + ta ≥ 0 and then

µ(a, b, u, v)⊞t = µ(ta, b − a + ta, tu, v − u + tu). (30)In parti
ular, µ(a, b, u, v) is in�nitely divisible if and only if a ≤ b.If 0 ≤ b < a then µ(a, b, u, v) is a free power of a two point measure:
µ(a, b, u, v) = µ

(

a − b, 0,
a − b

a
u, v − u +

a − b

a
u

)⊞
a

a−b

. (31)Proof. The �rst statement holds be
ause one 
an see from the theorem that for every
m ≥ 1

rm(µ(ta, b − a + ta, tu, v − u + tu)) = t · rm(µ(a, b, u, v)). (32)The rest is an obvious 
onsequen
e.
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