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Abstract. The classical Bargmann representation is given by operators acting on the space of
holomorphic functions with the scalar product (z"|2*), = 6, x[n],! = F(2"Z"). We consider the
problem of representing the functional F' as a measure for ¢ > 1. We prove the existence of
such a measure and investigate some of its properties like uniqueness and radiality. The above
problem is closely related to the indeterminate Stieltjes moment problem.

1. Introduction. The g-commutation relations ajaz — qa;aj = d,Id were introduced
by Greenberg [Gre|, Frisch and Bourret [FB]. They were intensively investigated by
Bozejko and Speicher [BSp| as an interpolation between bosonic (¢ = 1) and fermionic
(¢ = —1) cases. The one dimensional case, which is the main object of this paper, was
studied by Bargmann [Ba]. We consider the Bargmann-Fock representation of the g-
commutation relation which is given by operators acting on the space of homomorphic
functions with the scalar product (z"|2*), = &, x[n],!. For ¢ > 1 we show a family of
measures such that

/ 22k dp(z) = 6,10y,
c

where [n], =1+ ¢+ -+ ¢" ! and [n],! = [1]4[2], ... [n];. The problem turns out to be
an indeterminate complex moment problem.

We shall make use of the language of the g-calculus. The ¢-binomial coefficients and
the ¢-shifted factorial are defined as follows:
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n—1

(a;q)n = [J(1 —ag’) with (a;q)o=1,
=0

We are looking for operators a,a™ = a* on some Hilbert space such that they satisfy the
relation:
aat —qata = Id. (%)

The Bargmann representation of the above relation is given by

- - R = )
(@"f)(z) = 2f(2),  (af)(2) = Daf(2) = {f,(é) ' zeo.

The representation space H?(y,) is the completion of the space of analytic functions on
the disc D, = {z € C; |2]* < ﬁ} with respect to the inner product:

(2%, 2™) = 6 (0], = /c 2"ZRdpd (2) (k)

It is known that for ¢ € (0, 1), du?(2) is unique, radial and
ok

1(z) = (q; T z T = J
dp(z) ((LQ)ookz::O @ A\ (2), T

where d),, is the normalized Lebesgue measure on the circle with radius ry.

However, we will prove, that for ¢ > 1, there are many measures satisfying (%x) and
some of them are not radial.

This paper is organized as follows. In section 2 we construct a family of radial measures
satisfying (xx). In a subsequent section we estimate asymptotics of orthogonal polynomi-
als with respect to a measure with moments m,, = [n],!, which enables us to describe all
radial solutions of our problem. In section 4 we calculate extremal measures. Finally the
last section is devoted to the existence and study of non-radial measures. We also give,
in general, necessary and sufficient conditions for the existence of non-radial measures
which orthogonalize monomials on the complex plane.

2. The existence of ;9(dz). For our further considerations we assume that the number
q is greater than 1 and fixed. We are looking for a probability measure (or family of
probability measures) which satisfies ().

Using the polar coordinates we can write this measure as a product of its radial and
angular part i.e.

du(z) = dugy (p)dv(r),

where fo% dugry(p) = 1 and [~ r"du(r) = [n],).
The above measure dyu(z) orthogonalizes monomials {z"},>¢. That is why among
solutions there are radial ones.

PROPOSITION 2.1. There is one to one correspondence between radial solutions of (%)
and solutions of the problem:

/OOO a2 dv(z) = [k],!, k=0,1,2,... (k)
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We will use methods of g-analysis. The following definitions and lemmas are analogs
of suitable facts connected with the case 0 < g < 1 (see [LM]).

PROPOSITION 2.2. The operator a = D, has the following properties:

1. Dy(z") = [n)ge" 1,
AT, R A YA
. 2(15) - hh(a2) |
There is also an analogue of the integral.

PROPOSITION 2.3. Assume that f(xz) = (DgF)(z) and F(oo) = limg o F'(z) exists.
Then

/f ()Y 3" Flagh)d (g — La = F(so) — F0)

k=—o00

if only the series is convergent for every a > 0.

For example all functions which decrease faster than —; as x tends to infinity and are
bounded in the neighbourhood of 0, are integrable.
We can also define the g-exponential function:

PROPOSITION 2.4. The expression
def
€
£(2) = exp, (2) Z— g>1,

defines an entire function with the property: ( W) (z) = f(2). Additionally this function
has the following infinite product representation:

o0
exp,(2) = [[(wg™* — 2" + 1)~
k=0
Sketch of the proof. Notice that the series above is absolutely convergent and apply D, to
each term. Since (D, f)(y) = f(y) for y = ¢~'z then f(¢ 'z) = %. If we iterate
this equality and use the continuity of f at 0 we get the infinite product representation.

PROPOSITION 2.5. We have the following integration by parts procedure:

n 0

T

o n exp,(z
[ ou(y )0 =4
0 exp, () < gnt < g “
g | ——=dy(@) — | ———dg(x).
0 expy(qx) 0 expy(qx)
Now we are ready to write explicitly the measure.

THEOREM 2.1. If

_50,n,

o0

& k

q
a = —1 _— . 1
dv(z) = a(q )kzg_oo equ(qurla) Ogkq, @ E (1, 4],

then for every a > 0, fooo 2"dv®(x) = [n]y!. Additionally for any t € Ry, there exists
a € [1,q) such that t € supp7*(x).
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Proof. Proposition 2.5 implies:

Ae%mﬂm—%L

By replacing the g-integral symbol by its definition we get:
- on (@—Dag® [
[n]y! = Z (aq )”W =, 2" dv(x).

ex
k=—o00 Pg

The second part of the assertion is obvious. =

3. Orthogonal polynomials and their asymptotics. Consider a probability measure

da(x) such that:
/ z"da(x) = [n],!.
0

The problem of finding all probability measures which satisfy the condition given above
is called the moment problem for the sequence {[n]q'}. We will look for a solution using
a sequence of orthogonal polynomials Ry, (), i.e. [* Ry (2)Ry(x)da(z) =0 if m # n.

We would like to estimate the asymptotlcs of R (x ) as n — o0o. We will use the
Leibniz expression for calculating D, on the product of functions:

DI (fg(x) Z()m“ (@) (D0 f](g ). (3.1)

As a consequence we get
LEMMA 3.1.

D (e ) ewton =3 (1) o @

s=0
Proof. For h(z) = f(q"z) we have [D,h](x) = ¢”[Dy f](¢Px). This implies D, (exp,(¢"z)) =
q? exp,(¢Pr). Further

1 -1
Dy|—— | =¢————.
! (equ(qu)> T exp,(¢7+1a)
Finally we get

D(s) 1 _—sk+1424-+s (_1)5

 exp,(¢~F ) exp, (¢~ Ftstiz)’
Now we can apply Proposition 2.1, which completes the proof. m

LEMMA 3.2. Let [~ a"da(z) = [n],! and

k) a”
Qu(x) = D (Ggqlzaz_kykyr)) expy(az),  Qolx) = 1.
Then -
lémm%MMMﬂwmwm@
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Proof. Tt suffices to show the assertion in the case da(x) = dv®(x) for an arbitrary measure
dv®(x) defined in Theorem 2.1, i.e. such that

o B B %) . 1 o(s
| s = [ s s

Let s,k,m € N and s < k, m < k. Then the Leibniz rule (3.1) gives
D=1 a* _ aWi(2)
T Nexpy(¢t2) ) expy(goFa)’
where Wj,_1(x) has degree (k —1).
Therefore

= (s—1) z* 1
T:/o Dq(Dq (equ(q’““fc))x )dq(x)

_ D(S*l) xk m 0 o Wk—l(z)zm+1 0 _
— AR P ALl
e exp, (q~*+1x) exp, (q*~kx) |

oo

By taking derivative under the integral we get:

s} xk
T = qm/ D(S)<>xmd1 T
o 1 \exp,(¢~F+iz) o)
s} k
D=1 € m—1 1
m}q/o q (equ(q—k+1x) z (7)),

which implies the following recurrence formula:

[e%S) k
D(s) z mdl / D m—1 41 )
/0 ! (equ(Q"““w))x exp( exp (g 1z) ) @)

Let s = k. Then iteration of the above formula m-times gives:

/O " Qua)a™ d(z) = (~1)"fmlytg~ (L) / g (W)d()

For k > m we have then
oo
/ Qr(z)x™dv(x) = 0.
0
However, for k = m we get:

- x)zFdv(x) = (=1)F _(k;rl) Ooziklx
|| @utan) = oMt [ i)
() Y L D

«exp,(q~Fttr)

k+1 2 _1 g
= (—1) [Klglq~ () g+ Z eqxpT)*W
(1) Sy ek [T T

e . /0 equ(qx)dq( )
= (= 1)Fq" T [k], K], .
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Summing up:

/000 Qr(2)Qm(x)dv(z) =0 for k #m
a

nd
/ Qu()Qu(2)d7(a / Qule Ok dp(z) = ¢ [K]gK], m

Now we will estimate polynomials @, (z) as n tends to infinity. First, we calculate the
generating function for

Secondly we will look at the Taylor coefficients of the resulting function at zero. Finally,
we apply the Darboux method (see Lemma 3.4).

To calculate G(r, z) we will use the binomial theorem (see [GR] for the proof).

THEOREM 3.1. Let 0 < g < 1 and

_ Z (a;q) 5
= (39
Then h(z) is holomorphic in {z;|z] < 1} and

ha(z) = lim @50 _ (0250 (3.3)

p—o0 (2;q)p (%1 9) o0

In the next lemma we calculate the generating function for L, (z).

LEMMA 3.3. If L,(z) = %’;](”,) then

rq s+1

G(r,z) = Z 7" L Z — qf(;). (3.4)
n=0 5=
and defines a holomorphic function in {z;|z| < 1}.

Proof. We know that

o ) [n]q’ 1 —1)° (2) *Snxs
o 5=0 CEE IR A N

Let > 00 (7" Ly (z) = Y ooy As(r)z®. We want to calculate A (r). The following equality
holds:

LSRR | S [5] |qsn (q7(5+1);q71)n
= [s]q!

(@Y% q Y (8:5)
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For simplicity we will write [m], = [m]. Remember that ¢ > 1. Then

r) = (_1)3 (5;1) - [’I’L]' P — (_1)s 2 —. ’I" rhg—s" TL+8]
As(r) = T ;[n—s]! e [s][s]1 2 Z T

_ (=1)° (°3 —(s+D); 1q )n
GG ZT g .

[Now we use the blnomlal theorem]

—1)8 /s —(s+1),.. ,—1

= O () st O
GG (14 "o

1 s+1 1 —)\S s
= D A )
GG (g st (sl st
This proves (3.4). Further for |r| < 1 — € and arbitrary k we have |(r;¢~!)x| > C and
[s]q! > s! for arbitrary s. This implies that the series (3.4) is uniformly convergent on the
given above area. m

(3.6)

Now we are ready to describe the asymptotics of L, (x).
We will use a lemma about coefficients of the power series of functions holomorphic
in the neighbourhood of 0. (see [GR]).

LEMMA 3.4. Let f(r) = Y07, anr™ be a meromorphic function with a finite number of
poles, holomorphic around zero. Let rq,...,7r be critical points closest to zero. Let the
critical points ry,...,T; be the poles of the first degree. Then

Z “ D Res(f, )| = oljrd| 7). (3.7)
i=1
As a consequence we get:
THEOREM 3.2. Let L, (z) = Qn(z)/[n]q! . Then
, - (=2)° e
Loo(w) = lim Ly () = g ERPER ). (3.8)

Proof. From lemma 3.3 we know that
oo oo (—T.T)s _(5)
?“"Ln(x) = —_——q \2/ = f(T)
nZ:O ;) [slg!(r;q ) s 41

The function f(r) has a pole at r = 1. The remaining poles are at points r, = ¢* > 1.
Additionally

S

Res(f,1) = lim(r—1)f Z

r—1
G:O

),

Application of Lemma 3.4 ends the proof. m

REMARK 3.1. The polynomials L,, are connected with the g-Bessel function:

Jo(z,q7") =Z%~

oG
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Loo(z) = Jo (2(]\/(]:6:1,(]_1)‘

4. Two special radial measures. The problem of finding all measures which satisfy

Also

fooo zFdv = my, for a given sequence of numbers my, is called the Stieltjes moment problem.
In our case we have my = [k],!. In section 2 we prove that the problem has infinitely
many solutions. Instead of considering the Stieltjes moment problem we will consider the
problem of finding symmetric measures which satisfy: ffooo k= [k]4!. We will apply the
general theory to our case. With every moment problem we can associate two sequences
of polynomials P, (z), R, (z). They are solutions of the following recurrence relation:

Wnt1(r) = (T — anyp1)wn () — Buwn—1(x),
with initial conditions:
Ro(z) =1, Ri(x)=z-—0a1, Py(z)=0, P(zx)=1,

where o, € R for n > 0 and 3, > 0 for n > 0.

The polynomials R, (z) generated in this way are orthogonal with respect to the
measure which solves the problem. Moreover «,, 3, are uniquely determined by the
measure. Conversely, arbitrary pair of sequences (a,, € R) and (3, > 0) correspond to
some measure with moments uniquely determined by («,) and (8,). Additionally o, = 0
for every n if and only if mas11 = 0 for each s (see [A] for details).

In our case as we show in lemmas 3.1 and 3.2 that

n

k=0

Our moment problem fooo 2Fdy = [k],! is the Stieltjes moment problem.

PROPOSITION 4.1. There is one to one correspondence between the solutions of the prob-
lem fooo zFdv = my, and the symmetric solutions of the problem.:

< e O ifs=2k+1,
/ x®dp = { if s = 2k, (4.1)

oo my

The problem (4.1) for the sequence my, = [k],! does not have a unique solution. The
following classical theorem is true (see [A]).

THEOREM 4.1. If the moment problem ffooo zFdv = my, does not have a unique solution
then the set of measures ©(dx,o) which solve the problem is indexed by the functions
o(2), which are analytic in Ct and satisfy Imo(z) < 0 for Imz > 0. Additionally, there
exist entire functions A(z), B(z),C(z), D(z) such that

/°° O(dr,0)  A(z) —o(2)C(z)

z2—x B(z) —o(2)D(2)’

— 00
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A, B,C, D are almost uniform limits of A,,, B,,, Cy, D,,, where

Ant1 = [Pag1(2)Pu(0) = Pry1(0) Py (2 )]C )
— Pt (0) R (2)]
— Ry 1(0) Pa(2)]
— Rni1(0) Ry (2)]ey, !

zZ)|C

n ’
n

zZ)|c

)

)

S |

where
o0

en = (Br- ) = / IRy ()[20(dx).

— 00

Additionally o(z) is uniquely determined by O(dx, o).
There are some special solutions.

THEOREM 4.2. Let ©(dx, 0) be the solution to our moment problem, which corresponds
to the function o(z) = const. = o, where p € R. Then the support of the measure ©(dz, o)
coincides with zeros of the function B(z) — oD(z),z € R. The zeros xj(gl) _, interlace
with the zeros wj(gg);io for 01 # 02. Also, for arbitrary t € R, there exists a unique g,
such that t € supp ©(dz, 0o). Additionally x;(0) is monotonic and continuous in o.

REMARK 4.1. The solutions ©(dz, p) described in the above theorem are called N-ex-
tremal. For such measures polynomials are dense in L?(0(dz,0)).

The symmetric moment problem has only two symmetric N-extremal solutions. They
correspond to the cases ¢ = 0 and ¢ = +00. They correspond to N-extremal solutions
of the corresponding Stieltjes moment problem (see Proposition 4.1). The case o(z) =0
corresponds to N-extremal solution with support which has the longest distance to zero
from all solutions. The case o(z) = 400 corresponds to N-extremal measure with support
which contains zero.

The supports of these measures are limit points of zeros of orthogonal polynomials of
even and odd degree.

LEMMA 4.1. For the symmetric moment problem we have:
B(z) = lim a,R2,(2), D(z)= lim b,Roni1(2),
n— o0 n—o0
for some sequences ay,, by, where B(z), D(z) are as in Theorem 4.1.

Proof. For the symmetric moment problem, P, and R,, satisfy the following recurrence
formula:

Wn—&-l(x) = zwn(l') - ann—l(z)v Bn > 0.
Therefore Py(0) = 01 R1(0) = 0 implies that P4(0) = 0 and Rgs41(0) = 0 for every
natural s. Applying this to theorem 4.1 we get the assertion. m

We can calculate explicitly orthogonal polynomials for our symmetric moment prob-
lem.

LEMMA 4.2. Let

/ xkd@lzmk and / ZL’Sd@Q:{O ZfS:Zk‘—FL
0 my if s = 2k.

—0o0
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Let RS) and Rﬁ?’ be sequences of orthogonal monomials with respect to ©1 and Oy re-
spectively. Then

RS’L) (z) = Rﬁf)(ﬁ) for x € R.

We know that Rop(z) = (—1)*q (k)Qk( ), We also know that xRojy1 = Rogpio +
i Rog. Since Roio + 'ykng( ) = 0 we have y = [k + 1]¢*. Further

) [k +1];! (s+1y stewr-zi—2) (k41 Lk .
e e s (14 ()
q q

k+1

:Z(_l)s+k+1[k+1]q!q(k§1)q7“(5+122k2)< k ) 225
q

— [s]q! s—1

Therefore

+1],! s

Analogously as in case of L, (z) we can estimate the asymptotics of Raj11(z) as k — oc.
First we will calculate the generating function.

[k+1 ; s41)(s— k
Ropi1 = ‘TZ S+k - }_q(k;ﬂ)q( - ( ) %5,
q

LEMMA 4.3. Let M,(x) = Rf%ll](m) ~(3). Then

- n _ - (T‘T2)S —(5
nz:;)r Mn(x)_xg[s—l—l]q!(—r;q—l q ().

)s+1

The application of the Darboux method [see lemma 3.4] finally gives:

THEOREM 4.3. Let

My (o) = P (0,

Then

) > 2)25(—1)8 e
lim M, (x) = My (z) = xz_zo 5 +(1]Z!((§1 ) 71)5(] (5).

Additionally the polynomials M, are connected with the g-Bessel function:

2 Vg—1
Moo(x)Jl(zq q_15q1> qq )

where peit
_¢2_ S
ra ()

Z —1![8];!

s=0

The proof is the same as in case of L, (z) and therefore we omit it.

We have the following corollary.
COROLLARY 4.1. Symmetric N-extremal measures of the symmetric problem:

R if s =2k + 1,
/ xd“_{[k]q! if s = 2k,

— 00
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have their supports concentrated at zeros of the functions:

2 2
xJy (2 x ,q1> and Jy (2 x ,q1>
q—1 q—1

respectively, where Jy, J1 are the q-Bessel functions of degree zero and one.

As in case of classical Bessel function we know only approximate value of the zeros of
Jo(z,q71) and Jy(z,q7 ). Details can be found in [IM].

5. Characterization of non-radial measures. This section is devoted to the descrip-
tion of non-radial solutions of our initial complex moment problem. It turns out that the
problem of the existence of such measures is closely connected with the number of solu-
tions of the real problem [; z*dv = my,.

THEOREM 5.1. A non-radial measure which satisfies
/ 2"ZF u(dz) = Op i (000)
C
exists if and only if there exists a measure v on Ry which has the following properties:
(o)
/ 22y (dx) = my,
0
and there exists f(x) # 0 v-a.e. such that

/ f(x)x**v(dz) =0 for k € N and |f(z)| < 2 on Ry for some natural N.
0

Proof. Necessity. Suppose that du(z) = dpug)(¢)dv(r), where fo% (@) = 1 is a non-
radial measure with the property:

/ 2" du(z) = Ok, Moy
c
Then for some n > 0 f(z) := 2" fo% e dpy () # 0.

Sufficiency—construction. Let us define

|f(x)] 21k - 2k +

WA 2T < i
N for NS¢ N if f(x) >0,
!
i (p) =4 |f(=)] 2k + 7 2r(k+1) .
N for N §50<T if f(x) <0,
0 otherwise,

and du(2) = (di, () + d())dv () and wl(di) = g (1 — LN deo.
We will show that the measure defined above fulfills all the requirements of the theo-
rem.
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First, for s € N,
[eS) 2m
Lzlzl+(25+1)Ndﬂ(z) _ /O x2(l+sN)+N/O (25+1) ( )d@’/( )

— [9 — th] _ /oo x2l+23N+Ni N ei(2s+1)0M/ (ﬁ)dﬁy(gﬁ)
0 N 0 * N

:A x21+25N+N N/ i(25+1)60 /(9 )d91/( )

e’} ) 21 ) 0

_ s i(2s4+1)0 1 7 v i(2s+1)0 , 1 (7 v

= [T | [Tt (i) [ e Lo

_ /OO p2lH2sN+N [f( z)| + f(z) / i(2s+1)0 gp _ |f(@)] - f(=) /W ei(2$+1)9d9:| dv(z)
0 0 0

2maN 2maN

:/ ei(25+1)9d91/ .T2l+2SNf(J))dl/(l‘) —
T Jo

0
Next, for s € N,

00 2m
/(:lelJrQsNdu(Z)/O ‘T2(l+SN)/O (25+1)N<p ( )d(pl/( )

> gyasn 17N i(25)0 0
=gl = [T [T e (L anto)
— /OO $2l+25N /277 1259M/ (i)dedl/
0 0 * N

[20 = a]

e} 1 4 ) a
_ 214+2sN — s,/ d
/0 x 2/0 e ur, <2N> av(x)
o) o 1 2 4 a
— +2sn — zsa ! d zsa /! d
A v 2 |:/0 Mm<2N> ay( )+n/27r H’x( ’I’L) aV($):|

[ (a/2N) on [0,27] and on [2m, 47| does not depend on «]

1 oo 2T ar
= —/ g2r2sN {C’O/ e *dav(z) + C’l/ e”o‘dal/(:zz)} =0.
2 Jo 0 27
Finally, for m € N, m # kN,

/—l gy (z) = /Oo 2“’”/0%6””“’ = (@)dpv(x)

27 (s+1) &

— x2l+m2/ ey ' (¢)dpdv
2

0 TS~ N
[the constructlon]

1
2T x5

/ x2l+m Z / 6 m(p+k2E )M ( )d(pdl/
0
o0 % flts 2mm
/ xm*m/ ™! (p)dpdy Z RN =0,
0 s=0
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We can apply this theorem to an arbitrary moment problem which does not have a
unique solution.

COROLLARY 5.1. Let vy and vy be two different solutions of the problem:
oo
/ 22 dy(z) = my,.
0

is a solution to the problem. Let f(x) = X2 22, Then we

vi(z)+va(z)
2 v1+va

Then, also v(x) =
have | f(z)| < 222 and [;° f(x)z*"v(dx) = 0 for all natural n.

Now we can apply theorem 5.1 and get non-radial measures which define the scalar
product in the Bargmann representation for ¢ > 1.
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