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Abstract. We study deformations of the classical convolution. For every invertible transforma-
tion T : u — Tu, we are able to define a new associative convolution of measures by

prr v =T "(Tu*Tv).
We deal with the V,-deformation of the classical convolution. We prove the analogue of the
classical Lévy—Khintchine formula. We also show the central limit measure, which turns out
to be the standard Gaussian measure. Moreover, we calculate the Poisson measure in the V-

deformed classical convolution and give the orthogonal polynomials associated to the limiting
measure.

1. Introduction. For every invertible transformation of probability measures on the
real line T : p — T'u, we are able to define a new associative convolution of measures by
the requirement

prpv=T""(TuxTv).

In this paper we consider the V,-deformation, which was defined and considered in the
paper [KW] in the case of deformations of the free and conditionally free convolutions.
In Section 2 we remind the notion of the classical convolution and the Fourier trans-
form. We also recall the moment-cumulant formula for the classical convolution and the
classical Lévy—Khintchine theorem for the infinitely divisible distributions.
In Section 3 we recall a definition of the V,-deformation and show its basic properties.

2000 Mathematics Subject Classification: Primary 46L53, 46L.54; Secondary 60E10.

Key words and phrases: convolution, deformations, moment-cumulant formulae, limit theo-
rems, Lévy—Khintchine formula.

Partially supported by KBN grant no 1P03A 01330, by the European Commission Marie
Curie Host Fellowship for the Transfer of Knowledge "Harmonic Analysis, Nonlinear Analysis
and Probability”, MTKD-CT-2004-013389, and by a Start Programme Fellowship of the FNP.

The paper is in final form and no version of it will be published elsewhere.

[185] © Instytut Matematyczny PAN, 2007



186 A. D. KRYSTEK

In Section 4 we define the V,-deformed classical convolution and show that this convo-
lution is not a generalized convolution defined by Urbanik. We also prove an analogue of
the classical Lévy—Khintchine formula for the V,-deformed classical convolution. Namely,
we show that a probability measure p on R is %,-infinitely divisible if and only if there
exist a real number «, a positive number o? and a measure v with v({0}) = 0 and
Ik % dv(z) < oo, such that the Fourier transform of the deformation of the measure
is of the following form

2 2 00 ;
FVau)(t) = exp (ita - tTU + /_Oo (eim —-1- %) du(m)).

In Section 5 we find the central limit measure, which turns out to be the standard
Gaussian measure. In Section 6 we calculate the Poisson measure in the V,-deformed
classical convolution and give the orthogonal polynomials associated to the limiting mea-
sure.

2. Classical convolution. Let us denote by F[u](z) the Fourier transform of a proba-
bility measure u,

Pl = [ e duta), ter.

It is well known that for the classical convolution of measures
wxv(E) = /00 w(E —x)dv(z), E a Borel set,
we have
Flx () = FLul(0)- F1(0),
which means that for the logarithm we have
In Flp « v](t) = In Flu](t) + In Flv|(t),

that is, the logarithm of the Fourier transform is a linearizing transform for the classical
convolution. This is well defined for some neighbourhood of 0.
Assume that a probability measure p has all moments. Then
— Fi(n)
— K S\
I Fpl() = 3~ i)

n=0

for ¢ in some neighbourhood of 0. We will call the coefficients F}; (n) the classical cumu-
lants or semiinvariants.

We have the following relation between the Fourier transform and moments, see [GK]

and [N]:

k
) = [ @) = Y B =Y [[EGBD e

TeP(n) TeP(n) Jj=1
n={Bi,...,Bx}
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where P(n) is the set of all partitions of the set {1,...,n}. Solving the above equation
for F)7(n) we obtain

k
Frn)=mu(n)— > Fim=mun)— > J[F:(Bi), (2.2)
meP(n) we€P(n) =1
7#£(1,...,n) 7#£(1,...,n)

where (1, ...,n) denotes the partition with one block containing all the points.

REMARK 1. Let us note that

0 =m,0)= [ du(a)
is the mean of the measure p and
Fi@ =at = [ (o= mu(1)? dufa)

is equal to the variance of pu.

Let us recall that a probability measure p is infinitely divisible with respect to the
classical convolution * if for every N € N there exists a probability measure uy such that
= py.

The well-known Lévy—Khintchine theorem, see for instance [D], characterizes infinitely
divisible measures:

THEOREM 1. A probability measure p on R is infinitely divisible if and only if there

ezist a real number o, a positive number o® and a measure v with v({0}) = 0 and
2

f 1_7_? dv(z) < 0o, such that the Fourier transform of the measure y is of the following

form
Flul(t) = exp (m S A < . Ht_x> du(x))

oo

Some deformations of the classical convolutions were considered by Urbanik [U1]-[U5]
and called the generalized convolutions. We will recall his definition

DEFINITION 1. A commutative and associative operation ¢ defined on Prob (R, ), the
probability measures on the Borel subsets of [0, 00), is called a generalized convolution if
it satisfies the following conditions:

(i) The measure dg is a unit element, that is, for all u € Prob (R}.)
0o O p = p.
(ii) For all p,v,p € Prob(Ry) and 0 <p <1
(pu+ (L =pv)op=p(uop)+(1—-p)vop)

(convex linearity).

(iii) For all u,v € Prob (Ry) and a > 0
(Dap) © (Dav) =Da(pov)
(homogeneity).
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(iv) If p,, — p weakly, then for all v € Prob (R4) and a > 0
Un OV — oV

(continuity).
(v) There exists a sequence ¢y, ¢a .. . of positive numbers such that the sequence

D, 87"
weakly converges to a measure different from dy (the law of large numbers for

measure concentrated at a single point), where

0t =04, 6 =500,

3. V,-deformation. Let us recall the definition and basic properties of the V,-deforma-
tion, which can be found in [KW].

DEFINITION 2. For a measure p with finite second moment and a € R let us define its
deformation V,pu by letting

Lo,
Gvan(2) — Gulz)

where G,(z) is the Cauchy transform of the measure p, for z € C*, defined as follows:

Gol) = /+°° dp(x)

o 2 X

(3.1)

From the Nevanlinna theorem on the reciprocals of Cauchy transforms of measur-
es, [A], we get that V,u is again a probability measure.

REMARK 2. The V,-transformation of a compactly supported measure can be illustrated
with the use of the continued fraction representation of the Cauchy transform. If

1
G(Z): )
W X
zZ — Oy — \
1
Z— Q1 —
A
Z — Qg — 2
Z*Oé3*"
then
1
GVa,U‘(Z): )\
zZ— o+ adg — 0 :
1
zZ— Q] —
A
zZ— Qg — 2
Z—a3—

This means that the V,-transformation adds the amount a\q to the coefficient ay.

We also have the following
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PROPOSITION 1. The V,-transformation leaves the A1 coefficient (and thus the variance)

unchanged:
2 _ 2
OV =0

This follows from the definition of V.

ExaMPLE 1. We compute the V, -transformation of a probability measure which is sup-
ported in two points. Let

p=pie +qdy, =<y, p,g=0, p+q=1
then V,u is again a two point measure

Vapr = Péa + Qdp,

where
A fc+y—a129cJ(fc—y)2
V(@ +y —apg(z —y)?)? — 4(zy — apg(z — y)(gz + py))
2 b
B :c+y—a120(J(w—y)2
N V(@ +y —apg(e —y)?)? — 4(zy — apg(z — y)?(qx + py))
2 b
and
p_l_ (¢ —p)(= —y) + apg(z — y)?
2 2/(x+y—apg(x — y)%)? — 4(zy — apq(z — y)>(qz + py))
o=11 (¢ —p)(x —y) + apg(z — y)? .
2 2y/(z+y—apg(r —y)?)? — 4(zy — apq(z — y)?(qx + py))

PROPOSITION 2. We have
1 1

Gvoau(2)  Goyvan(2)

which means that nontrivial dilations of measures different from d,, b € R do not commute

with V for a # 0:

+a(X? = N)op,

D)\ Vau 7é VaD)\:U“

A proof of the proposition above can be found in [KW].

4. V,~-deformation of the classical convolution. For every invertible transformation
T : v+ Tu, we are able to define a new associative convolution of measures by

prrv =T TuxTv).
Because the V,-deformation is invertible, let us define
DEFINITION 3. The V,-deformed classical convolution %, is defined by
kg v =V_o(Vou*Vav), (4.1)

where p and v have finite second moments.
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We can also define the deformed Fourier transform and deformed classical cumulants.
Let

Ful(t) = FlVapl(t).

Then we have

(o] F*
In F%u Z 1 )" (4.2)
where for any positive integer n
F:“(n) c= Yy, (n).
Thus by the above formulae
Flpa vVI(t) = Ful(t) - FOI(2),
In Fp #q v](t) = In Fu](t) + In Fv)(t).

Let us start by recalling that from [KW] and Example 1 it follows that the V-
deformation has the following properties:

Va(sx:(sz;
Va(pdy + (1 =p)oy) = Péx + (1 = P)dy, p#Pa#X,y#Y.

In particular, we have

V(15+15)—<1 ¢ )5 +(1+ ¢ )5
27 T2 T 2 sy Vit T2 TR Ty i

Since

wle

we obtain that

1 1 1 1
(550 + 561) *q 62 = V_a (Va (550 + 551) * Va62>

1 a
:V_a e — 6 a a
<<2 8 1+§> VAt Sk S

On the other hand
1 1 1 1 1 1
5(50 *q 6z + 561 *q 52; = 560 * 52; + 551 * (Sz = 56,2 + §5l+z-

Because

1 a
V(26426142 ) =(=— 5 e
(2 + 2 1+ ) (2 4\/4 Ta—28z2+daz — 1622) 4—a48z—2 4+§,—Sz+4az—16z2

1 a
i (5 * 44+ a—8z+4az — 16z2>54a+Ser2 Atg-sepdar10:?
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it follows that
Péxy. + (1 - P)5Y+z # Va(p51+z + (1 - p)5y+z),

or equivalently

Vfa(P(SXJrz + (1 - P)6Y+z) 7é p61+z + (1 - p)(serm

which implies that this convolution is not a generalized convolution of Urbanik, because
it does not satisfy the linearity condition.
Let us start with recalling a general definition:

DEFINITION 4. We say that a probability measure p is infinitely divisible with respect
to a convolution & if for every N € N there exists a probability measure py such that

p= g

This can be rewritten equivalently in terms of respective linearizing R®-transforms:
a probability measure p is infinitely divisible with respect to a convolution & if for every
N € N there exists a measure yx such that RP(z) = N - RY (2).

In the case of the deformed classical convolution, V,-convolution, we will use the
deformed Fourier transforms.

For the V,-deformed classical convolution we can prove an analogue of the classical
Lévy—Khintchine formula.

THEOREM 2. A probability measure p on R with finite second moment is *,-infinitely
divisible if and only if there exist a real number o, a positive number o and a measure v
with v({0}) =0 and [ 1_7_% dv(x) < oo such that the deformed Fourier transform of the
measure p is of the following form:

" , t?0? . it
Fu](t) = exp (zta— - —i—/oo (e -1- 1 +x2) du(m)).

Proof. A measure p is *4-infinitely divisible if for every N € N there exists a measure
pn such that on some domain

Flul(t) = (F[un) @)Y,

By a double application of the definition of the V,-deformed Fourier transform to the left
and right hand side of the above equation we get

FIVail(t) = Fl(t) = (Flun]0) = (FIVan] )

hence, the measure p is *4-infinitely divisible if and only if

N
FlVarl(®) = (FIVarn)®))

which is equivalent to classical infinite divisibility of the measure V, u.

By the Lévy—Khintchine formula (see [D], [GK]|) we know that the measure V, u is
infinitely divisible if and only if there exist a real number «, a positive number o2 and
a measure v with v({0}) =0 and [ lf% dv(x) < oo, such that the Fourier transform of
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the measure V,u is of the following form:

FIVal(t) = exp (m_ i I ( g it )du(:v)).

. 1+ a2

Hence

0 = FWVaid) = exp (ita = - [~ (e -1 Y aviw)).

2 e 1422

5. Central limit theorem. We now prove a central limit theorem for the *, convolu-
tion. First we prove a technical lemma. By [KW] we have

LEMMA 1. Let p be a compactly supported probability measure on the real line. Then
mv,pyu(n) = A"my(n) + o(A"). (5.1)
Using the relation between moments and the Fourier transform, we will obtain:

LEMMA 2. Let pu be a compactly supported probability measure on the real line with mean
zero and variance equal to 1. Then

Fypa()=—aX,  Fop (2 =X, Fyp (k) =0 ) fork>3.

Proof. Let us note that the V,-transformation of a dilation of measure p with mean zero
and variance oi equal to 1 has

_ 2 2 12
mVan#(l) = —a\ ) OV, Dap — A%

Because of the moment-cumulant formulae for the classical convolution (2.1), for the
V,-deformation of dilation of measures we have

F;QDA,U‘(]‘) = 7(1,)\2, F{;Q]DA/J(Q) = U%/QDA,U‘ = >\2'
Moreover, for k = 3 by the moment-cumulant formula (2.1)
* * * * 3
FVQDW(3) = mVaDw(3) - 3FVQDW(2)FVQDW(1) - FVa]D),\p,(l) )
by Lemma 1, we have
Fyop, ,(3) = N, (3) + 0(A?) + 3art 4+ a®A° = o(A\?),

and by induction: if in 7 there exists B such that [B| > 3, then Fy; (1) = o(\?). If
not, there must be at least two blocks, |B;| + |Bs| > 2, hence

I Fopau(Bi) = 0(X?). =
B;em

THEOREM 3 (Central limit theorem). Let p be a compactly supported probability measure
on the real line with mean zero and variance equal to 1. Then the sequence

Dl/\/ﬁp*a...*aﬂ)l/\/ﬁu
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is x-weakly convergent to the normal distribution N(g 1) with density

1
dN,1)(z) = e

e~ /2 4y,

Proof. Let us denote by F|u|(z) the Fourier transform of the measure y on R and by
F[Dap](z) the deformed Fourier transform of the dilation of the measure p, defined in
(4.2). This means that we have

FDap)(z) = F[Va(Dap)](2).
The sequence of N-fold V,-convolution of the measure p is of the form
LN :Dl/\/ﬁﬂ*a-~-*aﬂ)1/\/ﬁﬂ: V_a(Va]D)l/\/ﬁu*...*VaDl/\/ﬁu).
Denote for simplicity

VN:Va]Dl/\/ﬁ,U/*"'*Va}D)l/\/N/J'

N times

Then puy = V_,vny and we have

Flun](z) = (FIVaDy ) ymil () = (FUD, ) yml(2))Y
and by Lemma 2

. a
F; (1)=-N- N- %
" 1
FVN(2):NN :17
* 1 N—o0
FVN(k) = N0<N> - Oa
where the cumulants F)¢ (n) and the Fourier transform F[vy](t) are related by
o Fon(m) o,
In Flvy](t) = ; —(it)"

Therefore
In Flon)(z) =52 n FIN_on))(2) = —az + 22,

and N(_, 1) is the normal distribution with the first moment —a and variance 1. We know

that
1

GN(—a,l) (Z) =
Z+a—

z—
Because the measure N(_, 1) is determined by its moments we can apply the following
theorem from [ST:

THEOREM 4. Let m,(n) be the sequence of moments of a probability measure pi. A nec-
essary and sufficient condition that the moment problem m,,(n) be determined is that the



194 A. D. KRYSTEK

continued fraction form of the Cauchy transform of the measure p converges completely
for all complez z.

Hence the above continued fraction is convergent to the respective Cauchy transform.
Thus we have

1
GV—G,N(—G,I)(Z) = 1 = GN(o,n(Z)’
y—
2
P
3
y—
4
—
5 —
Therefore N
Flun](z) — f[N(o,l)](z)
and

N—oo
Dl/\/ﬁﬂ*a-~-*aD1/\/NM:V—a(VaDU\/ﬁM*~-~*VaD1/\/NM) — N,1)- =

REMARK 3. Because the V,-deformation does not commute with dilation of measures,
we cannot use the usual central limit theorem, see for instance [B]. The central measure,
however, is the normal distribution.

6. Poisson type limit theorem. In this section we will study a Poisson limit theorem
for the *,-convolution.

Recall that by Example 1, we know that the V,-transformation of the Bernoulli mea-
sure pny = (1 - %)50 + %51 is also a two-point measure

Vatt = Pnbay + QnbBy,

with
2 2
e 2 LAl DR Ve 3"+ (a0 - 3)3)
2 )
2 2
g2 LR 100 - )R+ (a0 - )3
2 )
bl (=23 +ai-3)3
R A\ A2 A2 A
2/(1-a(1-3)%) +4a(l- 3)"}
_By—(1-a(l-3))%
BN
1—-922 1— 2\
On = = + ( N)+ag ~)
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()Y )

We will use the Fourier transform. Let

with

N = N *q % N
It is clear that
Fu)(x) = FVap™](2) = (FVapn)(2)) = (F[un)(x))".
Because the deformed Fourier transform of the measure uy is of the form
Felun)(z) = Pye™ N + Que P,

its Taylor expansion is the following

n

—~

o (PNAN + QNDBy).

By the fact that
A\ A A A\ A\° A 1
AvBy=—a[1-2) S = a=+2(Z) —a[2) =—a2 — ) (61
~NBN a( N> I aN+ a(N> a<N> aN+O(N2> (6.1)
we get the following

LEMMA 3. For each positive integer n € N
L+ By =1+0 !
N N = A

Proof. For n =1 we have

A\ A A A\ 1
and for n > 2

n—1

1
14 o(ﬁ) = (A +Bn)" = A} + Biy + AyBy Y (Z) ANBy ™
k=1

:A"N+B}\7+O(%>. .

LEMMA 4. For each positive integer n € N we have

(1-a)3+0(%) ifn=1,

Py A%+ QuBY =
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Proof. Because By = By — An, for n = 1 we have

>

_ (1~ _ A2 _ —_ AN\ A
PNAN+QNBN:BN (1 a’(l N))NAN+(1 a(l N))N AN

B
BN BN v
A A By — An
(el 5) P
A 1
For n = 2 one easily computes
By —(1—a(1—-2))2 l1—a(l1-—3))2—-A
PyA% + QB = 2N (1—af N))NA?V+( a(l - %)% N g2
BN BN
A (1 (1 A))BJQV—A?V ANBn(By — An)
= — —a [ — _
N N BN BN

= %(l—a(l— %))(BN“‘AN)_ANBN

= ((1 - a)% - O(%))(BN +An) — AnBn.

Thus by the equation (6.1) and Lemma 3 we have

(05 +o(w)) (+o(5)) v +olw)

A 1
7 +o(52):

We may write for n > 3

PyAY + QnBY

By —(1—a(1-2))2 l1—a(l1-2))2-A
Py A% + QyBY = 28 (1—a( N))NA?V_F( al-%))w N

Bn
BN BN N
- i(l _ a(l _ i)) BRT — AnN _ ANBN(BK/_1 — AR/_1>
N N BN BN
A M\ BY — A% ANBn(By ' - A
=(1-al1-= —
N N)) By — Ay By — AN

A 1
- ((1 - a)N + O(WD(B;;1 + By AN+ ...+ A

— ANBN(BY 24+ By PAn + ...+ By A 4+ AR,
Because

BY + BYAn + ...+ By AR+ AR
=Bk + A% + ANBn(BY 2+ By PAN + ..+ AP

=By + A% + O(lb) (BN 24+ BE 3 AN + ...+ AL

1
:BK—FA’X,—I—O(W)
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and by (6.1) and Lemma 3 we have

A 1

N N2
A 1
5oz -

THEOREM 5. The Fourier transform of the V,-transformation of the limiting measure is

A 1
+a—(By P+ AV + o<—>

given by the formula
Fopal(@) = FIVa(pa)](@) = exp (A(€ = 1 —iwa)) = X "D,

Proof. Tt follows from the above lemmas that

o0

Z

N+ QnBY)

)

=1+ix(PvAN + QnBnN) + Z

—tvin(-ag+0( )) > (v o)

A A = (i) 1
n=2 :

(PNAN + QnBY)

Hence

lim FuN)(2) = lim (F*[un] ()"

N—o0
) ) A A (i) 1 N
L ) A A i)\
—z&f;o(l“x(l‘a)N*NnZ_Q ol )
—ngr})o <1+zx(1a)ﬁ+ﬁ( lzx)>
A\ N
I 1 o _ o
_z\}Lnlo<1+(e iza 1)N>
=exp (e — 1 — iza)

— e)x(e —1)6—/\22:(1,. -
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COROLLARY 1. The V,-transformation of the Poisson measure py for the V,-deformed
classical convolution is given by

X yk
Fpal(e) = FVapal(e) = e D0 7k
k=0 "

We would like to find the orthogonal polynomials for the probability measure p).
Recall the Charlier polynomials, which belong to the classical Poisson measure

k=0
The Charlier monic polynomials satisfy the recurrence relation

P_l(l‘,>\):07 PQ(I,)\):L
(x = A=n)Py(z,A) = Ppy1(z, ) + nAP,_1(x,\), for n > 0.

Because the measure V,(py) can be obtained as the right shift by —a\ of the classical
Poisson measure of parameter A, so the monic orthogonal polynomials {P,(z)} for the
measure V,(p,) are given by

ﬁn(aj) = P,(z + a\, \),
and have the following recurrence relation
Py(z) =1, Pi(z)=x—\,
Poi1(z) = (z + aX — n)Py(z) — nAPy_1(x), forn > 1.
That means that the Jacobi parameters for n > 1 are given by
anp =—ar+n—1, A, =n\

Hence we can obtain the Cauchy transform of the probability measure V,py in the
continued fraction (Stieltjes expansion) form

Gvap)\ (Z) =

z+a\ —

2
z4+aX—1—

3\
z+al—2—
4\

z+a\—3— —

Thus by definition the Poisson measure for V,-transformation of a classical convolution
is equal to

GPA (Z) =

3\

4\
z4+aX—3— —
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