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Abstra
t. The aim of the paper is to present some initial results about a possible generalizationof moment sequen
es to a so-
alled q-
al
ulus. A 
hara
terization of su
h a q-analogue in termsof appropriate positivity 
onditions is also investigated. Using the result due to Maseri
k andSzafranie
, we adapt a 
lassi
al des
ription of Hausdor� moment sequen
es in terms of positivede�niteness and 
omplete monotoni
ity to the q-situation. This makes a link between q-positivede�niteness and q-
omplete monotoni
ity.The 
lassi
al results due to Stieltjes, Hamburger and Hausdor� allow one to 
hara
-terize moment sequen
es via positive de�niteness and 
omplete monotoni
ity (dependingon the support of measure). The situation 
hanges in the q-world. Although one of thepossible modi�
ations of the positivity 
ondition has already been introdu
ed by Otaand Szafranie
 (
f. [11℄), there is no 
lear idea how to de�ne q-analogues of 
ompletemonotoni
ity, or of moment sequen
es. This gives the following pi
ture:
lassi
: MP ∼ PD & CM

↓ ↓ ↓ ↓

q-world: ? ? qPD ?Moreover, in the 
lassi
al 
ase a ni
e des
ription of 
ompletely monotoni
 sequen
esis known: a sequen
e {an}n is 
ompletely monotoni
 if and only if both {an}n and
{an−an+1}n are positive de�nite. We therefore ask whether some similar 
hara
terizationexists in the q-deformed situation.The inspiration to deal with q-analogues of 
omplete monotoni
ity and moment se-quen
es 
omes from [10℄. The authors gave the proof of the aforesaid 
lassi
al des
riptionof 
ompletely monotoni
 sequen
e without referring to their integral representation. Thesame method gives the opportunity to 
hara
terize q-
ompletely monotoni
 sequen
es2000 Mathemati
s Subje
t Classi�
ation: Primary 44A60; Se
ondary 05A30, 43A35, 47B32.Key words and phrases: moment problems, positive de�niteness, 
omplete monotoni
ity,
q-
al
ulus, reprodu
ing kernel. [201℄ 
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202 A. KULAin terms of q-positive de�niteness without spe
ifying the integral representation of q-moments. This is the way we try to pro
eed. Further studies of the q-analogues give theidea how to de�ne the q-moment sequen
e.The paper is a written version of the talk at the 9th Workshop �Non-Commuta-tive Harmoni
 Analysis with Appli
ations to Non-Commutative Probability� in B�dlewo'2006. That is the reason why we 
on
entrate on results rather than on proofs (whi
h arejust sket
hed). For more details, we refer the reader to [7℄ whi
h is an extended versionof the talk.The paper is organized as follows. Se
tion 1 
ontains introdu
tory information about
q-
al
ulus. In Se
tion 2 we 
olle
t the basi
 de�nitions and results that will be usedlater. De�nitions of q-positive de�nite and q-
ompletely monotoni
 sequen
es are givenand dis
ussed in Se
tions 3 and 4. In parti
ular, the main result (Theorem 4.3) gives a
hara
terization of q-
ompletely monotoni
 sequen
es in terms of q-positive de�niteness.In Se
tion 5 we investigate relations between the 
lassi
al properties and their q-analoguesand de�ne (possibly one of) the q-analogue of a moment sequen
e.In the following we set q ∈ (0, 1). All sequen
es appearing below have indi
es rangingfrom 0 to +∞. N = {0, 1, 2, . . .}.1. What is q-
al
ulus? The q-
al
ulus is a kind of �
al
ulus without taking limits�. It
onsiders q-obje
ts whi
h are generalizations of some mathemati
al obje
ts, parameter-ized by a quantity q. Moreover, the q-obje
ts be
ome the 
lassi
al ones for q → 1.The development of q-analysis dates ba
k to the 18th 
entury, to Euler, Ja
obi andGauss (for more information about the history of the q-
al
ulus see [3℄ and the referen
esgiven there). The basis of the q-analysis was the q-binomial identity invented probablyby Gauss: if x and y are elements of an asso
iative algebra satisfying xy = qyx (q-
ommutativity), then

(x + y)n =
n

∑

k=0

[

n

k

]

q

yn−kxk, where [

n

k

]

q

:=
[n]q!

[n − k]q![k]q!with
[n]q =

qn − 1

q − 1
(n ∈ N) and [0]q! = 1, [n]q! = [n]q · [n − 1]q! (n ≥ 1).Gauss also invented the hypergeometri
 series whi
h were generalized and investigatedby E. Heine in the mid-19th 
entury. The �rst to develop q-
al
ulus in a systemati
 waywas F. H. Ja
kson at the beginning of the 20th 
entury. He introdu
ed the q-derivativesand q-integrals, the latter are 
urrently known as Ja
kson's integrals. Sin
e then a lotof ni
e identities were proved and the theory of q-spe
ial fun
tions, q-hypergeometri
fun
tions and q-orthogonal polynomials was enri
hed thanks to S. I. Ramuanujan, J.Cigler, G. E. Andrews, R. Askey, G. Gasper, T. Koornwinder and many others (
f. [6℄).The notion of q-analogues ranges from the very simple to the very deep. We start withbasi
 examples: q-integers [n]q and q-fa
torials [n]q! as de�ned above. Next we developa one-dimensional q-analysis where q-obje
ts (q-derivative, q-logarithm, et
.) are relatedto fun
tions in one variable x. In this 
ase q should be seen as a deformation parameterand x 
an be 
onsidered as a number. The problem to solve when sear
hing for q-obje
ts



A MOMENT SEQUENCE IN THE q-WORLD 203is where to put the q in the formula in question to obtain the desired limit relation,or rather: how to modify the 
lassi
al notion in order to obtain an interesting q-obje
t.There are generally several possibilities to do it and there may exist several q-analogousfor one 
lassi
al obje
t (q-exponential fun
tions, for instan
e).The situation is even more 
ompli
ated in 2-dimensional 
ase, where the real non
om-mutative nature of q-
al
ulus appears. We take two generators x and y whi
h q-
ommuteand 
onsider the 
omplex asso
iative unital algebra generated by x and y. It is obviousthat in this 
ase x and y 
an no longer be realized by numbers but rather by operators.Su
h non-
ommuting variables appear in quantum groups whi
h are the q-deformationsof appropriate 
lassi
al groups (for more on quantum groups see [4℄, [5℄ or [9℄). Anotherway to get the q-
ommutative variables is the braided approa
h due to Majid [8℄.2. Preliminaries. We start by re
alling results on 
lassi
al moment problems (
f. [12℄,[15℄) and the presentation of basi
 de�nitions and results from [10℄.A sequen
e {ϕ(n)}n is 
alled:
• positive de�nite (PD) if for every n ∈ N and any real s
alars α1, . . . , αn

n
∑

i,j=0

αiαjϕ(i + j) ≥ 0, (1)
• 
ompletely monotoni
 (CM) if for all k, n ∈ N

k
∑

m=0

(−1)m+k

(

k

m

)

ϕ(n + k − m) ≥ 0,

• a (Hamburger) moment sequen
e if there exists a Borel measure µ on R su
h thatwe have
ϕ(n) =

∫

R

tndµ(t), n ∈ N. (2)The measure µ is often 
alled the representing measure for the sequen
e {ϕ(n)}n. If themeasure is 
on
entrated on the interval [0, +∞) (respe
tively, on [0, 1]), then the sequen
eis 
alled a Stieltjes (resp. Hausdor� ) moment sequen
e.Note that the de�nition of positive de�niteness is usually formulated in a more general
ontext, i.e. for a fun
tion on a semigroup with involution. This is done in the followingway (
f. [1℄): Let (G, ◦,∗ ) be a semigroup with involution. A fun
tion ϕ : G → C is 
alledpositive de�nite if
n

∑

i,j=0

αiαjϕ(s∗i ◦ sj) ≥ 0, (3)where s0, . . . , sn ∈ G, α0, . . . , αn ∈ C. In this paper, however, we 
onsider only theadditive semigroup of positive integers (N, +) with identity involution. Then the mapping
N × N ∋ (i, j) → ϕ(i + j) ∈ R is symmetri
 and thus

n
∑

i,j=0

αiαjϕ(i + j) =

n
∑

i,j=0

aiajϕ(i + j) +

n
∑

i,j=0

bibjϕ(i + j),



204 A. KULAwhere ai, bi ∈ R, ai = Re αi, bi = Im αi (see [1℄, 1.6). Hen
e the positivity 
ondition (3)with 
omplex α's is equivalent to the 
ondition (3) with real s
alars as stated in (1).Theorem 2.1 (
f. [1℄). A sequen
e {ϕ(n)}n is 
ompletely monotoni
 if and only if its(
lassi
al) m-th di�eren
es, i.e.
∆0ϕ(n0) = ϕ(n0),

∆m+1ϕ(n0; n1, . . . , nm+1) = ∆mϕ(n0; n1, . . . , nm) − ∆mϕ(n0 + nm+1; n1, . . . , nm),are nonnegative for all m ∈ N and n0, . . . , nm ∈ N.Theorem 2.2 (Hamburger). A ne
essary and su�
ient 
ondition for {ϕ(n)}n to be aHamburger moment sequen
e is that it is positive de�nite.Theorem 2.3 (Stieltjes). A sequen
e {ϕ(n)}n admits an integral representation (2) withthe measure 
on
entrated on the interval [0, +∞) if and only if it is positive de�nite andthe sequen
e {ϕ(n + 1)}n is also positive de�nite.Theorem 2.4 (Hausdor�). A sequen
e {ϕ(n)}n admits an integral representation (2)with the measure 
on
entrated on the interval [0, 1] if and only if it is 
ompletely mono-toni
.Let R be a 
ommutative algebra with identity 1 and involution ∗. Call a subset τ ⊂ Radmissible if the following 
onditions are satis�ed:1. x∗ = x for all x ∈ τ ;2. 1 − x ∈ Alg+(τ ) for all x ∈ τ , where Alg+(τ ) is the set of all nonnegative 
ombi-nations of (�nite) produ
ts of members of τ ;3. R = Alg(τ ), i.e. every x ∈ R is a 
ombination of (�nite) produ
ts of members of τ .A linear fun
tional f on R is 
alled τ -positive if τ is admissible and f(x) ≥ 0 for all
x ∈ Alg+(τ ). Following standard 
onventions, f is 
alled positive if f(x∗x) ≥ 0 for all
x ∈ R. If f is positive then we set

|x|2f = sup
y∈R

f(x∗xy∗y)

f(y∗y)( 0
0 = 0) and we 
all f bounded whenever |x|f < ∞ for all x ∈ R.For all x ∈ R de�ne the shift operator Ex on the set of all linear fun
tionals on R by

Exf(y) = f(xy), y ∈ R.Theorem 2.5 (Maseri
k, Szafranie
 [10℄). (1) Let f be a bounded positive linear fun
-tional on R. If τ is admissible and Exf is positive for all x ∈ τ , then f is τ -positive.(2) If f is τ -positive for an admissible τ , then f is positive and bounded and Exf ispositive for all x ∈ τ .Corollary 2.6. If {ϕ(n)}n is 
ompletely monotoni
 then {ϕ(n + k)}n and {ϕ(n) −

ϕ(n + k)}n (for all k ∈ N) are positive de�nite.Proof. Apply Theorem 2.5 to R = {Sk; k ∈ N} and τ = {Sk, I − Sk; k ∈ N}, where Sk isde�ned by (Skµ)(n) := ϕ(n + k) for a sequen
e {ϕ(n)}n. See [10℄ for details.



A MOMENT SEQUENCE IN THE q-WORLD 2053. q-positive de�nite sequen
esDefinition 1. The sequen
e {ϕ(n)}n is 
alled q-positive de�nite (qPD) if for all n ∈ Nand all real s
alars α1, . . . , αn

n
∑

i,j=0

q−ijαiαjϕ(i + j) ≥ 0.The motivation for su
h a de�nition 
omes from the theory of q-deformed normaloperators (see [11℄). Note that a sequen
e {ϕ(n)}n is q-positive de�nite in the sense ofthe de�nition given above if and only if it is q−1-positive de�nite in the sense of thede�nition given by Ota and Szafranie
.A good way to analyze q-positivity of a sequen
e is to relate it to some fun
tionals.For this, 
onsider a linear spa
e F of all real sequen
es with the identity involution
{ϕ(n)}∗n = {ϕ(n)}n and de�ne the linear map Fm : F → F , 
alled a q-shift, by theformula

Fmϕ(k) := q−mkϕ(k + m), {ϕ(n)}n ∈ F .It is 
lear that the setR = Lin{Fm; m ∈ N} is a 
ommutative algebra with identity I =

F0 and involution F ∗
i = Fi. Moreover, FmFn = q−nmFm+n and sin
e Fm = qm(m−1)/2Fm

1 ,the set τ = {F1, I − Fm; m ∈ N} is admissible.Now, any sequen
e {ϕ(n)}n ∈ F 
an uniquely de�ne (and thus be identi�ed with) alinear fun
tional f on R. Indeed, the 
ondition
f(Fn) = ϕ(n)de�nes the values of f on the basis {Fm; m ∈ N} and f extends by linearity on thewhole R.A natural question arises here: what are the linear fun
tionals 
orresponding to the

qPD sequen
es? Observe that for p =
∑

αiFi ∈ R we have
f(p∗p) =

n
∑

i,j=0

αiαjf(F ∗
i Fj) =

n
∑

i,j=0

αiαjFiFjϕ(0) =
n

∑

i,j=0

αiαj q−ijϕ(i + j).Thus the positivity of the left hand side is equivalent to the positivity of the right handside. What we have proved is the following result.Proposition 3.1. The sequen
e {ϕ(n)}n is q-positive de�nite if and only if the 
orre-sponding linear fun
tional f on R is positive.4. q-
omplete monotoni
ity. For a sequen
e {ϕ(n)}n we de�ne (the q-generalizationof) its m-th di�eren
es by the formula
∆0ϕ(n0) = ∆

(q)
0 ϕ(n0) = ϕ(n0),

∆m+1ϕ(n0;n1, . . . , nm+1) = ∆
(q)
m+1ϕ(n0; n1, . . . , nm+1)

= ∆mϕ(n0; n1, . . . , nm) − q−n0nm+1∆mϕ(n0 + nm+1; n1, . . . , nm).Definition 2. The sequen
e {ϕ(n)}n is 
alled q-
ompletely monotoni
 (qCM) if
∆mϕ(n0; n1, . . . , nm) ≥ 0 for arbitrary m ∈ N and n0, . . . , nm ∈ N.



206 A. KULAFor q → 1 the de�nition above leads to the 
lassi
al one. The modi�
ation is justi�edby the following result that 
an be easily proved by indu
tion with respe
t to m.Proposition 4.1.
∆mϕ(n0; n1, . . . , nm) = Fn0

m
∏

k=1

(I − Fnk
)ϕ(0), for all m, n0, . . . , nm ∈ N.This formula, whi
h is the q-analogue of the formula in the 
lassi
al 
ase (see [10℄),provides a des
ription of the linear fun
tionals 
orresponding to the qCM sequen
es.Proposition 4.2. The sequen
e {ϕ(n)}n is q-
ompletely monotoni
 if and only if the
orresponding fun
tional f is τ -positive with respe
t to the set τ = {F1, I − Fm; m ∈ N}.Proof. Observe that all elements in Alg+(τ ) are of the form

x =

n
∑

i=1

αixi, where αi ≥ 0, xi = F
n0,i

1

mi
∏

k=1

(I − Fnk,i
)and use the fa
t that

∆mϕ(n0; n1, . . . , nm) = qn0(n0−1)/2f(Fn0
1

m
∏

k=1

(I − Fnk
)).Now we are ready to present the main theorem whi
h gives a 
hara
terization of

q-
ompletely monotoni
 sequen
es in terms of q-positive de�niteness.Theorem 4.3. The sequen
e {ϕ(n)}n is qCM if and only if the following 
onditions aresatis�ed
{ϕ(n)}n is q PD, (qCM1)
{q−nϕ(n + 1)}n is q PD, (qCM2)
∀m∈N {ϕ(n) − q−nmϕ(n + m)}n is q PD. (qCM3)For the proof, let us �x the sequen
e {ϕ(n)}n and take a 
orresponding fun
tional fon R given by

f(Fn) = Fnϕ(0) = ϕ(n).We want to apply Theorem 2.5 and it is 
onvenient to divide the proof into severalindependent lemmas ea
h of whi
h 
an be proved by a dire
t 
al
ulation.Lemma 4.4. {q−nϕ(n + 1)}n∈N is qPD if and only if EF1
f is positive.Proof. For y =

∑n
i=0 αiFi ∈ R we have
EF1

f(yy∗) =

n
∑

i,j=0

q−ijαiαj [q
−(i+j)ϕ(i + j + 1)].Lemma 4.5. {ϕ(n) − q−nmϕ(n + m)}n∈N is qPD if and only if EI−Fm

f is positive.Proof. For m ∈ N and y =
∑n

i=0 αiFi ∈ R we have
E(I−Fm)f(yy∗) =

n
∑

i,j=0

q−ijαiαj [ϕ(i + j) − q−m(i+j)ϕ(i + j + m)].



A MOMENT SEQUENCE IN THE q-WORLD 207Lemma 4.6. If f , EF1
f and EFm

f (for all m ∈ N) are positive (or equivalently, the
onditions (qCM1)-(qCM3) are satis�ed), then f is bounded.Proof. Taking appropriate s
alars in the positivity 
onditions, we get that ϕ(2m) ≥ 0,
ϕ(2m + 1) ≥ 0 and ϕ(m) ≤ ϕ(0) for all m ∈ N. Thus |f(Fm)| = |ϕ(m)| ≤ ϕ(0), i.e. f isbounded.Proof of the main theorem. Suppose the sequen
e {ϕ(n)}n is qCM. It follows from theProposition 4.2 that the fun
tional f on R given by

f(Fn) = Fnϕ(0) = ϕ(n)is τ -positive with respe
t to the admissible set τ = {F1, I − Fm; m ∈ N}. Then Theorem2.5 states that f is positive and bounded and Exf is positive for every x ∈ τ . A

ording toProposition 3.1 and Lemmas 4.4 and 4.5 this means that the 
onditions (qCM1), (qCM2)and (qCM3) are satis�ed.Suppose the 
onverse. The 
ondition (qCM1) implies that f is positive, while the nexttwo 
onditions imply positivity of Exf for every x ∈ τ . Moreover, a

ording to Lemma4.6, f is bounded. Theorem 2.5 implies that f is τ -positive, whi
h is equivalent to thefa
t that {ϕ(n)}n is qCM.5. q-moment sequen
es. In this se
tion we investigate the relation between the 
las-si
al and the q-properties and �nd that a des
ription of the 
lass of q-positive de�nitesequen
es in terms of some integral representation 
an be easily obtained due to theHamburger theorem. This allows us to state a de�nition of q-moment sequen
e. We startwith an easy observation.Proposition 5.1. A sequen
e {ϕn}n is qPD if and only if the sequen
e {µn}n, where
µn = q−

n(n−1)
2 ϕn, is PD.Proof.

N
∑

n,m=0

anamµm+n =

N
∑

n,m=0

anamq−
(m+n)(m+n−1)

2 ϕm+n

=

N
∑

n,m=0

(q−
n(n−1)

2 an)(q−
m(m−1)

2 am)q−mnϕm+n =

N
∑

n,m=0

bnbmq−mnϕm+n,

where N ∈ N and bn = q−
n(n−1)

2 an. Thus the positivity of the left hand side is equivalentto the positivity of the right hand side.This Proposition together with the Hamburger theorem 2.2 gives us a des
ription ofthe 
lass of q-positive de�nite sequen
es.Corollary 5.2. Any q-positive de�nite sequen
e 
an be represented in the form
ϕn =

∫

R

q
n(n−1)

2 tn dµ(t), n ∈ N,where µ is a representing measure for the sequen
e {q−
n(n−1)

2 ϕn}n.The result above suggests the following de�nition of q-moment sequen
es.



208 A. KULADefinition 3. Call {ϕn}n a q-moment sequen
e if there exists a Borel measure µ onsome set X ⊂ R su
h that
ϕn =

∫

X

q
n(n−1)

2 tndµ(t), n ∈ N.As in the 
lassi
al 
ase, we may talk about Hamburger, Stieltjes or Hausdor� q-moment sequen
es depending on the support of the representing measure (respe
tively:
X = supp µ = R, [0, +∞), [0, 1]). Corollary 5.2 states that q-positive de�niteness is ane
essary and su�
ient 
ondition for a sequen
e to be a Hamburger q-moment sequen
e.The natural question to ask in this 
ase is whether a similar des
ription is true for
q-moments with measure 
on
entrated on other two intervals. A
tually, the answer ispositive and for the 
ase supp µ = [0, +∞) 
an obtained by a dire
t 
al
ulation. For
supp µ = [0, 1] one of the impli
ations may also be easily shown.Proposition 5.3. A sequen
e {ϕn}n∈N is a Stieltjes q-moment sequen
e with the mea-sure µ on [0, +∞) if and only if {ϕn}n∈N} is q PD and {q−nϕn+1)}n∈N is q PD.Proof. The assertion follows from the Stieltjes Theorem 2.3 and fa
t that q-positive de�-niteness of the sequen
e {q−nϕn+1}n is equivalent to positive de�niteness of the sequen
e
{µn+1}n. But this is obvious be
ause of the following 
al
ulation.

N
∑

n,m=0

anamµm+n+1 =
N

∑

n,m=0

anamq−
(m+n+1)(m+n)

2 ϕm+n+1

=
N

∑

n,m=0

bnbmq−mnq−(m+n)ϕm+n+1,

where bn = q−
n(n−1)

2 an.Proposition 5.4. If a sequen
e {µn}n is CM, then {q
n(n−1)

2 µn}n is qCM.Proof. Take a 
ompletely monotoni
 sequen
e {µn}n and de�ne ϕn = q
n(n−1)

2 µn. A

ord-ing to Theorem 4.3 we need to show that {ϕn}n satis�es (qCM1), (qCM2) and (qCM3)
onditions.From the 
lassi
al theory of moment sequen
es we know that {µn}n and {µn−µn+1}nare PD. Moreover, from the Corollary 2.6 we 
on
lude that for every k ∈ N the sequen
es
{µn+k}n and {µn−µn+k}n are PD as well. Now, apply Propositions 5.1 and 5.3 to ensurethat (qCM1) and (qCM2) hold.Next, observe that for an arbitrary k ∈ N

N
∑

n,m=0

bnbmq−mnq−(m+n)kϕm+n+k = q
k(k−1)

2

N
∑

n,m=0

anamµm+n+k ≥ 0, (4)
where N ∈ N and bn = q−

n(n−1)
2 an, providing the sequen
e {µn}n is 
ompletely mono-toni
.



A MOMENT SEQUENCE IN THE q-WORLD 209Finally, observe that we have
N

∑

n,m=0

bnbmq−mnϕm+n =
N

∑

n,m

anamµm+n ≥
N

∑

n,m

anamµm+n+k

= q−
k(k−1)

2

N
∑

n,m

bnbmq−mnq−k(m+n)ϕm+n+k ≥
N

∑

n,m

bnbmq−mnq−k(m+n)ϕm+n+k.

The last inequality follows from (4) and the fa
t that q−
k(k−1)

2 ≥ 1 for q ∈ (0, 1). It meansthat {ϕn − q−nmϕn+m}n is qPD whi
h �nishes the proof.To prove the opposite impli
ation, we need some more advan
ed arguments: the RKHSte
hnique used as in [11℄ and [13℄ (for more on this subje
t see [14℄).Theorem 5.5. If a sequen
e {ϕn}n is qCM, then there exists a measure µ on [0, 1] su
hthat
ϕn =

∫

[0,1]

q
n(n−1)

2 tndµ(t), n ∈ N.Proof. Let {ϕ(n)}n be a q-
ompletely monotoni
 sequen
e, i.e. (by Theorem 4.3) the se-quen
e satisfying 
onditions (qCM1), (qCM2) and (qCM3). De�ne the (positive de�nite)kernel on N by the formula
K(n, m) := q−mnϕn+m, n, m ∈ N,Now, the fa
torization theorem of Aronszajn (
f. [14℄, for example) implies that thereexists a Hilbert spa
e H and a mapping N ∋ n 7→ γn ∈ H su
h that

H = Lin {γn; n ∈ N}, K(n, m) = 〈γn, γm〉.Next, we set
D := Lin {γn; n ∈ N}, T : D ∋

∑

n

αnγn 7→
∑

n

αnq−nγn+1 ∈ D.Observe that the operator T̄ (the 
losure of T ) is 
losed, symmetri
 and has a 
y
li
ve
tor, thus it admits a self-adjoint extension S in the same spa
e H (
f. [2℄) and byspe
tral theorem for self-adjoint operators (
f. [2℄) there exists a spe
tral measure E su
hthat
S =

∫

R

tdE(t).The representing measure for the sequen
e {ϕ(n)}n is given by µ(σ) := 〈E(σ)γ0, γ0〉 forall Borel sets σ ⊂ R.Finally, standard 
al
ulations yield the inequality 0 ≤ 〈Su, u〉 ≤ 〈u, u〉. But this isequivalent to the fa
t that the measure µ is 
on
entrated on the interval [0, 1] and thusthe assertion follows.Corollary 5.6. For a sequen
e {ϕn}n the following 
onditions are equivalent:1. {ϕn}n is qCM,2. {q−
n(n−1)

2 ϕn}n is CM,



210 A. KULA3. {ϕn}n is a Hausdor� q-moment sequen
e. i.e. there exists a measure µ on [0, 1]su
h that
ϕn =

∫

[0,1]

q
n(n−1)

2 tndµ(t), n ∈ N.Proof. Impli
ations (2) ⇒ (1) ⇒ (3) follow from Proposition 5.4 and Theorem 5.5. Im-pli
ation (3) ⇒ (2) is a 
onsequen
e of the Hausdor� Theorem 2.4.Final remarks. The results presented above show that the so de�ned q-moment se-quen
es 
an be viewed as the weighted (
lassi
al) moment sequen
es as long as 0 < q < 1.A natural question is whether this is still the 
ase for q > 1. The answer is negative ingeneral, but some partial results remain true. More details 
an be found in [7℄.The reader should also noti
e that we 
onsidered here only the one-dimensional se-quen
es whereas many interesting features of the q-
al
ulus appear while looking on thealgebra generated by two q-
ommuting variables. This may motivate the investigation ofthe two-dimensional moment sequen
es whi
h we intend to do elsewhere.
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