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Abstract. The aim of the paper is to present some initial results about a possible generalization
of moment sequences to a so-called g-calculus. A characterization of such a g-analogue in terms
of appropriate positivity conditions is also investigated. Using the result due to Maserick and
Szafraniec, we adapt a classical description of Hausdorff moment sequences in terms of positive
definiteness and complete monotonicity to the g-situation. This makes a link between ¢-positive
definiteness and g-complete monotonicity.

The classical results due to Stieltjes, Hamburger and Hausdorff allow one to charac-
terize moment sequences via positive definiteness and complete monotonicity (depending
on the support of measure). The situation changes in the ¢-world. Although one of the
possible modifications of the positivity condition has already been introduced by Ota
and Szafraniec (cf. [11]), there is no clear idea how to define g-analogues of complete
monotonicity, or of moment sequences. This gives the following picture:

classic: MP ~ PD & CM

Lol !
g-world: ? ?7 ¢PD ?

Moreover, in the classical case a nice description of completely monotonic sequences
is known: a sequence {a,}, is completely monotonic if and only if both {a,}, and
{an—an+1}n are positive definite. We therefore ask whether some similar characterization
exists in the g-deformed situation.

The inspiration to deal with ¢g-analogues of complete monotonicity and moment se-
quences comes from [10]. The authors gave the proof of the aforesaid classical description
of completely monotonic sequence without referring to their integral representation. The
same method gives the opportunity to characterize g-completely monotonic sequences

2000 Mathematics Subject Classification: Primary 44A60; Secondary 05A30, 43A35, 47B32.
Key words and phrases: moment problems, positive definiteness, complete monotonicity,
g-calculus, reproducing kernel.

[201] © Instytut Matematyczny PAN, 2007



202 A. KULA

in terms of g-positive definiteness without specifying the integral representation of ¢-
moments. This is the way we try to proceed. Further studies of the g-analogues give the
idea how to define the ¢-moment sequence.

The paper is a written version of the talk at the 9th Workshop “Non-Commuta-
tive Harmonic Analysis with Applications to Non-Commutative Probability” in Bedlewo
’2006. That is the reason why we concentrate on results rather than on proofs (which are
just sketched). For more details, we refer the reader to [7] which is an extended version
of the talk.

The paper is organized as follows. Section 1 contains introductory information about
g-calculus. In Section 2 we collect the basic definitions and results that will be used
later. Definitions of g-positive definite and g-completely monotonic sequences are given
and discussed in Sections 3 and 4. In particular, the main result (Theorem 4.3) gives a
characterization of g-completely monotonic sequences in terms of g-positive definiteness.
In Section 5 we investigate relations between the classical properties and their g-analogues
and define (possibly one of) the g-analogue of a moment sequence.

In the following we set ¢ € (0,1). All sequences appearing below have indices ranging
from 0 to +00. N={0,1,2,...}.

1. What is ¢g-calculus? The g-calculus is a kind of “calculus without taking limits”. It
considers g-objects which are generalizations of some mathematical objects, parameter-
ized by a quantity q. Moreover, the g-objects become the classical ones for ¢ — 1.

The development of g-analysis dates back to the 18th century, to Euler, Jacobi and
Gauss (for more information about the history of the g-calculus see [3] and the references
given there). The basis of the g-analysis was the g-binomial identity invented probably
by Gauss: if z and y are elements of an associative algebra satisfying zy = qyz (¢-
commutativity), then

with

o= LoF e R and O =1 ! = [y - Ut (02 1),

Gauss also invented the hypergeometric series which were generalized and investigated

by E. Heine in the mid-19th century. The first to develop g-calculus in a systematic way
was F. H. Jackson at the beginning of the 20th century. He introduced the ¢-derivatives
and g¢-integrals, the latter are currently known as Jackson’s integrals. Since then a lot
of nice identities were proved and the theory of g-special functions, ¢-hypergeometric
functions and g¢-orthogonal polynomials was enriched thanks to S. I. Ramuanujan, J.
Cigler, G. E. Andrews, R. Askey, G. Gasper, T. Koornwinder and many others (cf. [6]).

The notion of g-analogues ranges from the very simple to the very deep. We start with
basic examples: g-integers [n], and g¢-factorials [n]! as defined above. Next we develop
a one-dimensional g-analysis where g-objects (g-derivative, g-logarithm, etc.) are related
to functions in one variable x. In this case ¢ should be seen as a deformation parameter
and x can be considered as a number. The problem to solve when searching for g-objects
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is where to put the ¢ in the formula in question to obtain the desired limit relation,
or rather: how to modify the classical notion in order to obtain an interesting g-object.
There are generally several possibilities to do it and there may exist several g-analogous
for one classical object (g-exponential functions, for instance).

The situation is even more complicated in 2-dimensional case, where the real noncom-
mutative nature of g-calculus appears. We take two generators x and y which ¢g-commute
and consider the complex associative unital algebra generated by = and y. It is obvious
that in this case x and y can no longer be realized by numbers but rather by operators.
Such non-commuting variables appear in quantum groups which are the g-deformations
of appropriate classical groups (for more on quantum groups see [4], [5] or [9]). Another
way to get the g-commutative variables is the braided approach due to Majid [8].

2. Preliminaries. We start by recalling results on classical moment problems (cf. [12],
[15]) and the presentation of basic definitions and results from [10].
A sequence {p(n)}, is called:

e positive definite (PD) if for every n € N and any real scalars oy, ..., a,

> aiaje(i+§) >0, (1)
i,j=0
e completely monotonic (CM) if for all k,n € N
k

>0 ()l m) >0,

w

m=0

e o (Hamburger) moment sequence if there exists a Borel measure p on R such that
we have

o(n) = /R du(t), neN. @)

The measure p is often called the representing measure for the sequence {p(n)},. If the
measure is concentrated on the interval [0, +00) (respectively, on [0, 1]), then the sequence
is called a Stieltjes (resp. Hausdorff) moment sequence.

Note that the definition of positive definiteness is usually formulated in a more general
context, i.e. for a function on a semigroup with involution. This is done in the following
way (cf. [1]): Let (G, 0,*) be a semigroup with involution. A function ¢ : G — C is called
positive definite if

n
> asajp(s; 0s5) >0, 3)
i,j=0
where sg,...,s, € G, ag,...,a, € C. In this paper, however, we consider only the

additive semigroup of positive integers (N, +) with identity involution. Then the mapping
Nx N> (i,j) = ¢(i + j) € R is symmetric and thus

> aipli+i) =Y aap(i+i)+ > bibjoli+ ),

4,5=0 i,7=0 i,7=0
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where a;,b; € R, a; = Re o, b; = IJmay; (see [1], 1.6). Hence the positivity condition (3)
with complex a’s is equivalent to the condition (3) with real scalars as stated in (1).

THEOREM 2.1 (cf. [1]). A sequence {¢(n)}, is completely monotonic if and only if its
(classical) m-th differences, i.e.

Agip(no) = ¢(no),
App10(no;na, oy mg1) = Am@(no; N, .o Mm) — Do + Nanp 13101, -+, ),

are nonnegative for all m € N and nyg, ..., n,, € N.

THEOREM 2.2 (Hamburger). A necessary and sufficient condition for {¢(n)}, to be a
Hamburger moment sequence is that it is positive definite.

THEOREM 2.3 (Stieltjes). A sequence {¢(n)}, admits an integral representation (2) with
the measure concentrated on the interval [0, +00) if and only if it is positive definite and
the sequence {p(n+ 1)}, is also positive definite.

THEOREM 2.4 (Hausdorff). A sequence {¢o(n)}, admits an integral representation (2)
with the measure concentrated on the interval [0,1] if and only if it is completely mono-
tonic.

Let R be a commutative algebra with identity 1 and involution *. Call a subset 7 C R
admissible if the following conditions are satisfied:

1. z* =x for all z € T;

2. 1 —x € Alg™(7) for all 2 € 7, where Alg™(7) is the set of all nonnegative combi-
nations of (finite) products of members of 7;

3. R = Alg(r), i.e. every x € R is a combination of (finite) products of members of 7.

A linear functional f on R is called T-positive if 7 is admissible and f(x) > 0 for all
x € Alg™ (7). Following standard conventions, f is called positive if f(z*z) > 0 for all
x € R. If f is positive then we set

ot = s 1D
f YyER f(y*y)

(2 = 0) and we call f bounded whenever |z|; < co for all z € R.
For all z € R define the shift operator E, on the set of all linear functionals on R by

E.f(y) = f(zy), y € R.

THEOREM 2.5 (Maserick, Szafraniec [10]). (1) Let f be a bounded positive linear func-
tional on R. If T is admissible and E, f is positive for all x € T, then f is T-positive.
(2) If f is T-positive for an admissible T, then f is positive and bounded and E.f is
positive for all x € T.

COROLLARY 2.6. If {¢(n)}, is completely monotonic then {o(n + k)}, and {p(n) —
o(n+k)}, (for all k € N) are positive definite.

Proof. Apply Theorem 2.5 to R = {Si;k € N} and 7 = {Sk, I — Si; k € N}, where S}, is
defined by (Sku)(n) := ¢(n + k) for a sequence {¢(n)},. See [10] for details. m
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3. ¢-positive definite sequences

DEFINITION 1. The sequence {¢(n)}, is called g-positive definite (¢PD) if for all n € N
and all real scalars aq,...,q,

n
Z g Tajap(i+5) > 0.
i,j=0

The motivation for such a definition comes from the theory of g-deformed normal
operators (see [11]). Note that a sequence {¢(n)}, is ¢-positive definite in the sense of
the definition given above if and only if it is ¢~ !-positive definite in the sense of the
definition given by Ota and Szafraniec.

A good way to analyze g-positivity of a sequence is to relate it to some functionals.
For this, consider a linear space F of all real sequences with the identity involution
{e(n)}: = {p(n)}, and define the linear map F,, : F — F, called a g-shift, by the
formula

Frnp(k) =g ™ok +m), {p(n)}, € F.
It is clear that the set R = Lin{F,,; m € N} is a commutative algebra with identity I =
Fp and involution F}* = F;. Moreover, F,,, F,, = ¢~ "™ F}y,+r, and since F,, = qm(mfl)/QF{”,
the set 7 = {Fy,I — F,,;m € N} is admissible.
Now, any sequence {¢(n)}, € F can uniquely define (and thus be identified with) a
linear functional f on R. Indeed, the condition

f(Fy) = ¢(n)
defines the values of f on the basis {F,;;m € N} and f extends by linearity on the
whole R.
A natural question arises here: what are the linear functionals corresponding to the
¢PD sequences? Observe that for p = > a; F; € R we have

F0'p) = Y aai f(FFy) = Y iy FiF;p(0) = Y ase =i + ).
i,j=0 i,5=0 i,5=0

Thus the positivity of the left hand side is equivalent to the positivity of the right hand
side. What we have proved is the following result.

PROPOSITION 3.1. The sequence {o(n)}, is g-positive definite if and only if the corre-
sponding linear functional f on R is positive.
4. g-complete monotonicity. For a sequence {¢(n)}, we define (the g-generalization

of) its m-th differences by the formula
Aop(no) = Ay p(no) = o(no),

Apg1o(noing, ..., Nmy1) = Aiﬁlm(no; N1y Mmg1)
=Apo(no;na, .. yfm) — @ O AL @MY F N1, - ).

DEFINITION 2. The sequence {¢(n)}, is called g-completely monotonic (¢CM) if
App(no;ny, ..., ny) > 0 for arbitrary m € N and ng, ..., n, € N.
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For ¢ — 1 the definition above leads to the classical one. The modification is justified
by the following result that can be easily proved by induction with respect to m.

PROPOSITION 4.1.

m
App(noiny, ..., ny) = H (I — Fp,)e(0), for all m,ng,...,ny, € N.

This formula, which is the g-analogue of the formula in the classical case (see [10]),
provides a description of the linear functionals corresponding to the ¢CM sequences.

PROPOSITION 4.2. The sequence {¢(n)}, is q-completely monotonic if and only if the
corresponding functional [ is T-positive with respect to the set T = {Fy,I — F,,;m € N}.

Proof. Observe that all elements in Alg™ (7) are of the form

T = Zaizi, where o; > 0, x; = F|"*" H(I —Fu L)
i=1 k=1
and use the fact that
Amp(noing, ... nmy) = gromo—D/2f(pmro H(I —F,)). =
k=1

Now we are ready to present the main theorem which gives a characterization of
g-completely monotonic sequences in terms of g-positive definiteness.

THEOREM 4.3. The sequence {©(n)}, is gqCM if and only if the following conditions are
satisfied

{o(n)}n is ¢ PD, (qCM1)
{a"p(n+1)}, is ¢ PD, (qCM2)
Vimen {¢(n) — ¢ "™ p(n+m)}, is ¢ PD. (qCM3)

For the proof, let us fix the sequence {¢(n)},, and take a corresponding functional f
on R given by

We want to apply Theorem 2.5 and it is convenient to divide the proof into several
independent lemmas each of which can be proved by a direct calculation.

LEMMA 4.4. {g"p(n+ 1) }nen is ¢PD if and only if Eg, f is positive.
Proof. For y ="  a;F; € R we have

Br fur) = 3 a Vasagla T Dli+ j + 1))
1,7=0

LEMMA 4.5. {o(n) — ¢ "™ p(n+ m)}nen 18 ¢PD if and only if Er_F, f is positive.
Proof. For m e Nand y =) ;a;F; € R we have

Eq-r)f(yy") Z g Yasaslp(i+ ) —qa "o+ j+m)). =
i,j=0



A MOMENT SEQUENCE IN THE ¢-WORLD 207

LEMMA 4.6. If f, Ep, f and Egp_ f (for all m € N) are positive (or equivalently, the
conditions (QCM1)-(qCM3) are satisfied), then f is bounded.

Proof. Taking appropriate scalars in the positivity conditions, we get that ¢(2m) > 0,
w(2m + 1) > 0 and ¢(m) < ¢(0) for all m € N. Thus |f(F.,)| = |e(m)] < ¢(0), d.e. fis
bounded. m

Proof of the main theorem. Suppose the sequence {p(n)}, is ¢gCM. It follows from the
Proposition 4.2 that the functional f on R given by

f(Fn) = Frp(0) = ¢(n)
is T-positive with respect to the admissible set 7 = {F},I — F,;; m € N}. Then Theorem
2.5 states that f is positive and bounded and F, f is positive for every x € 7. According to
Proposition 3.1 and Lemmas 4.4 and 4.5 this means that the conditions (qCM1), (qCM2)
and (qCM3) are satisfied.
Suppose the converse. The condition (qCM1) implies that f is positive, while the next
two conditions imply positivity of F,f for every x € 7. Moreover, according to Lemma

4.6, f is bounded. Theorem 2.5 implies that f is 7-positive, which is equivalent to the
fact that {p(n)}, is ¢CM. u

5. g-moment sequences. In this section we investigate the relation between the clas-
sical and the g-properties and find that a description of the class of ¢-positive definite
sequences in terms of some integral representation can be easily obtained due to the
Hamburger theorem. This allows us to state a definition of g-moment sequence. We start
with an easy observation.

PROPOSITION 5.1. A sequence {@n}n is ¢PD if and only if the sequence {p,}n, where

_n(n=1)

Un =G 2 (pp, s PD.

Proof.
N N
_ (mtn)(mtn—1)

§ ApAm bm+n = § AnGm(g 2 Pm+n

n,m=0 n,m=0
N N
_ n(n=1) _m(m—1) —mn .
= E (q 7 an)(q T am)q Pm+n = E bpbmg Pm+n,
n,m=0 n,m=0

_n(n-1)

where N € N and b, = ¢ z a,. Thus the positivity of the left hand side is equivalent
to the positivity of the right hand side. m

This Proposition together with the Hamburger theorem 2.2 gives us a description of
the class of g-positive definite sequences.

COROLLARY 5.2. Any g-positive definite sequence can be represented in the form

n(n—1)
sﬁn:/q T du(t), n € N,
R

. . _n(n=1)
where | is a representing measure for the sequence {q T Pntn-

The result above suggests the following definition of g-moment sequences.
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DEFINITION 3. Call {¢,}, a g-moment sequence if there exists a Borel measure p on
some set X C R such that

o = / T rdu(t), neN.
X

As in the classical case, we may talk about Hamburger, Stieltjes or Hausdorff ¢-
moment sequences depending on the support of the representing measure (respectively:
X = suppp = R,[0,+0),[0,1]). Corollary 5.2 states that g-positive definiteness is a
necessary and sufficient condition for a sequence to be a Hamburger g-moment sequence.

The natural question to ask in this case is whether a similar description is true for
g-moments with measure concentrated on other two intervals. Actually, the answer is
positive and for the case suppp = [0,+00) can obtained by a direct calculation. For
supp p = [0, 1] one of the implications may also be easily shown.

PROPOSITION 5.3. A sequence {¢p tnen is a Stieltjes g-moment sequence with the mea-
sure p on [0, 4+00) if and only if {¢ntnen} is ¢ PD and {q " @n+1)}nen is ¢ PD.

Proof. The assertion follows from the Stieltjes Theorem 2.3 and fact that g-positive defi-
niteness of the sequence {q~"¢n 11} is equivalent to positive definiteness of the sequence
{ftn+1}n- But this is obvious because of the following calculation.

N N
_ (m4n+1)(m+n)
§ AnGmHm+n+1 = g Anamd 2 Pm+n+1
n,m=0 n,m=0

N
= Z b" bm quan(ern) Pm4n+1,

n,m=0

_n(n—1)
where b, = q 2 Q. W

n(n—1)

PROPOSITION 5.4. If a sequence {jin}n 1s CM, then {q~ =  pn}n is gCM.

Proof. Take a completely monotonic sequence {py, }, and define ¢,, = qn(né_l) tn. Accord-

ing to Theorem 4.3 we need to show that {p, }, satisfies (qCM1), (qCM2) and (qCM3)
conditions.

From the classical theory of moment sequences we know that {p, }, and {p, — tin+1tn
are PD. Moreover, from the Corollary 2.6 we conclude that for every k € N the sequences
{ttn+k }n and { g, — tintk }n are PD as well. Now, apply Propositions 5.1 and 5.3 to ensure
that (qCM1) and (qCM2) hold.

Next, observe that for an arbitrary £ € N

N N
—mn _,—(m+n k(k—1)
Z bnbmq q ( + )k¢m+n+k =q 2 Z Ay, O U +n+k Z 0, (4)

n,m=0 n,m=0

n(n—1)

where N € N and b, = ¢~ = a,, providing the sequence {p, }, is completely mono-

tonic.
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Finally, observe that we have

N N N
Z bnbmqimn@ern - Zanamlflern Z Zanamﬂm+n+k

n,m=0 n,m n,m
k(k—1) N N
=q 7 Z bnbmq_mnq_k(m+n)@m+n+k > Z bnbmq_mnq_k(m+n)<ﬂm+n+k~
n,m n,m

k(k—1)

The last inequality follows from (4) and the fact that g~ 2 > 1 for ¢ € (0,1). It means
that {¢n — ¢ @ntm tn is ¢PD which finishes the proof. m

To prove the opposite implication, we need some more advanced arguments: the RKHS
technique used as in [11] and [13] (for more on this subject see [14]).

THEOREM 5.5. If a sequence {@y,}n is ¢CM, then there exists a measure i on [0,1] such
that

o = / T edu(t), neN.
0.1

Proof. Let {p(n)}, be a g-completely monotonic sequence, i.e. (by Theorem 4.3) the se-
quence satisfying conditions (qCM1), (qCM2) and (qCM3). Define the (positive definite)
kernel on N by the formula

K(n,m):=q¢ ™" pntm, n,meN,

Now, the factorization theorem of Aronszajn (cf. [14], for example) implies that there
exists a Hilbert space H and a mapping N > n +— ~,, € H such that

H:m{’}/n;TLEN}, K(n,m):<7na'ym>'
Next, we set

D:=Lin {y,;neN}, T:D> Z%ﬁn — Zanq7"7n+1 e D.

Observe that the operator T (the closure of T) is closed, symmetric and has a cyclic
vector, thus it admits a self-adjoint extension S in the same space H (cf. [2]) and by
spectral theorem for self-adjoint operators (cf. [2]) there exists a spectral measure E such

that
S:/tdE(t).
R

The representing measure for the sequence {y(n)},, is given by p(o) := (E(0)v0,70) for
all Borel sets o C R.

Finally, standard calculations yield the inequality 0 < (Su,u) < (u,u). But this is
equivalent to the fact that the measure yu is concentrated on the interval [0, 1] and thus
the assertion follows. m

COROLLARY 5.6. For a sequence {¢n}n the following conditions are equivalent:

1. {(pn}? is)qCM,
n(n—1

2. {g7 "z @ntn is CM,
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3. {¢on}n is a Hausdorff g-moment sequence. i.e. there exists a measure p on [0, 1]
such that

o = / ¢ du(t), neN.
0,1

Proof. Implications (2) = (1) = (3) follow from Proposition 5.4 and Theorem 5.5. Im-
plication (3) = (2) is a consequence of the Hausdorff Theorem 2.4. m

Final remarks. The results presented above show that the so defined g-moment se-
quences can be viewed as the weighted (classical) moment sequences as long as 0 < ¢ < 1.
A natural question is whether this is still the case for ¢ > 1. The answer is negative in
general, but some partial results remain true. More details can be found in [7].

The reader should also notice that we considered here only the one-dimensional se-
quences whereas many interesting features of the g-calculus appear while looking on the
algebra generated by two g-commuting variables. This may motivate the investigation of
the two-dimensional moment sequences which we intend to do elsewhere.
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