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Abstract. We demonstrate the way in which composition of two famous combinatorial bijec-

tions, of Robinson-Schensted and Kerov-Kirillov-Reshetikhin, applied to the Heisenberg model

of magnetic ring with spin 1/2, defines the geography of rigged strings (which label exact eigen-

functions of the Bethe Ansatz) on the classical configuration space (the set of all positions of

the system of r reversed spins). We point out that each l-string originates, in the language of

this bijection, from an island of l consecutive reversed spins. We also explain travel of l-strings

along orbits of the translation group of the ring.

1. Introduction. Bethe Ansatz (BA) [1-4] provides the exact solution of the eigenprob-

lem of the Heisenberg Hamiltonian for the ring of N magnetic nodes, each node with the

spin 1/2, with the nearest-neighbour isotropic interaction. Existence of this solution is

an effect of integrability of such a quantum model of a magnet. Within BA approach,

each eigenstate of the Heisenberg Hamiltonian is a vector in an appropriate subspace

H(r) ⊂ H, spanned by all such magnetic configurations on the ring which have r reversed

spins. Since the original paper [1] of Bethe it was evident that such an eigenstate can

be interpreted as a collection of l-strings, bound states of l reversed spins, each l-string

equipped with a “rigging”, i.e. a definite quasimomentum, expressed as an integer related

to an irreducible representation of the cyclic group CN , the translational symmetry group

of the magnetic ring. This interpretation was raised to the level of a classification scheme

by Kerov, Kirillov and Reshetikhin (KKR) [5], who gave a formal definition of some

combinatorial objects, rigged string configurations of various types, and proved that, in

particular, some specified sets of such rigged strings provide a unique labeling of all exact

BA eigenstates. Moreover, they have pointed out an explicit construction of a bijection
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between the set of pairs of standard Young and Weyl tableaux of the same shape, and

some corresponding sets of rigged strings. This KKR bijection paves the way for a purely

combinatorial settlement of BA, since it can be composed with the Robinson-Schensted

(RS) algorithm [6-9], providing thus an immediate bijection between the set of all mag-

netic configurations, the initial basis of the space H, and the rigged strings, the basis of

exact BA eigenstates [5, 10].

Each subspace H(r) ⊂ H with the fixed number r of spin deviations, 0 ≤ r ≤ N ,

can be seen as the space of all quantum states of the system of r objects, hereafter

referred to as Bethe pseudoparticles. These objects are indistinguishable, have hard core

(i.e. two or more of them cannot occupy the same site), and move on the magnetic ring

Ñ = {j = 1, 2, . . . , N} by jumps to nearest neighbour sites (j 7→ (j ± 1)modN) due to

transitions imposed by the Heisenberg Hamiltonian. Thus the set Ñ plays the role of

the classical configuration space of a single Bethe pseudoparticle, and the corresponding

classical configuration space for the system r̃ = {α = 1, 2, . . . , r} of pseudoparticles is

Q(r) = (Ñ×r \ D(N, r))/Σr, (1)

that is, the generic stratum of the action of the symmetric group Σr (the indistinguisha-

bility group for this case) on the r-th Cartesian power of Ñ , with D(N, r) ⊂ Ñ×r being

the subset of all coincidences, or “the fat diagonal” of Ñ×r (see, e.g., [11] and references

therein). We use here the term “the classical configuration space” as a characteristic of

the classical counterpart of a quantum system, the system of r Bethe pseudoparticles on

the ring Ñ , so that the linear closure

lcCQ(r) = H(r) (2)

of the set Q(r) over the field C of complex numbers is identified with the space H(r), and

the set Q(r) is the basis of all possible “positions” of the system along the Schrödinger

quantization scheme. In particular, H(1) = lcCÑ is the space of all quantum states of a

single magnon.

Clearly, the classical configuration space Q(r) can be identified with the set

Q(r) = {j = (j1, j2, . . . , jr)|1 ≤ j1 < j2 < · · · < jr ≤ N} (3)

of all magnetic configurations with r spin deviations on the ring Ñ . Moreover, the set

Q(r) can be embedded, for an arbitrary N ≥ 2r (we restrict in the sequel to the case

r ≤ N/2, having in mind the obvious particle-hole symmetry), into a real manifold M(r)

with some boundaries. The generic part of the manifold M(r) is locally r-dimensional,

and is related to cases when all r Bethe pseudoparticles are “remote”, i.e. separated by

some nodes occupied by the spin “+”, whereas F -dimensional boundaries, 1 ≤ F < r,

correspond to cases when a magnetic configuration j ∈ Q(r) consists of exactly F islands

of reversed spins [10, 12].

Existence of the composed bijection RSKKR = KKR ◦ RS which maps Q(r) onto

the BA eigenstate basis of the space H(r), establishes a geography of rigged strings of

BA on the classical configuration space. We aim here to describe this geography in some

detail. In particular, we shall point out how l-strings originate from those boundaries of

the manifold M(r), whose dimension F = l.
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2. Bethe Ansatz in terms of the duality of Weyl. An adequate framework for BA

is provided by the famous duality of Weyl between the symmetric group ΣN and the

unitary group U(n) [13], acting in a natural way in the space (Cn)⊗N . The dual integers,

n and N , in the case of BA with spin 1/2, denote the dimension n = 2 of the single-node

space h = C2, and the number of magnetic nodes, respectively. Correspondingly, the dual

sets are alphabets of spins 2̃ = {+,−}, and of nodes Ñ . The set

2̃Ñ = {f : Ñ → 2̃} (4)

of all magnetic configurations spans unitarily the space

H = lcC2̃Ñ ∼=
∏

j∈Ñ

⊗hj (5)

of all quantum states of the magnet, with hj = lcC2̃ ∼= C2 being the space related to

the node j ∈ Ñ . H is the carrier space of two dual actions, A : ΣN × H → H and

B : U(2) ×H → H, defined by formulas

A(σ) =

(
f

f ◦ σ−1

)

, f ∈ 2̃Ñ , σ ∈ ΣN , (6)

and

B(u) =

(
f

B(u)f

)

, f ∈ 2̃Ñ , u ∈ U(2), (7)

where f ◦ σ−1 ∈ 2̃Ñ is the composition of mappings f and σ−1, and

B(u) f ≡ B(u) |i1i2 . . . iN 〉 =
∑

i′1,i′2,...,i′
N

ui′1i1ui′2i2 . . . ui′
N

iN
|i′1i

′
2...i

′
N 〉 (8)

is the multilinear extension of the defining action of the unitary group U(2) in the space h.

The key point of the duality of Weyl is that these two dual actions commute, i.e.

[A(σ), B(u)] = 0, σ ∈ ΣN , u ∈ U(2), (9)

which implies a quantum-mechanical interpretation that appropriate operators “can be

measured simultaneously”. This means that there exists a basis in the space H which is

irreducible under both actions. Let

A =
∑

λ∈DW (N)

m(A, ∆λ) ∆λ (10)

and

B =
∑

λ∈DW (N)

m(B, Dλ) Dλ (11)

denote the decomposition of actions A and B, treated as linear representations, into

appropriate irreps, ∆λ of ΣN and Dλ of U(2), with multiplicities m(A, ∆λ) and m(B, Dλ),

respectively, and DW (N) denoting the set of all partitions of N into at most two parts,

so that the partition λ ⊢ N has the form

λ = (N − r′, r′), 0 ≤ r′ ≤ N/2. (12)
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Then the space H decomposes into mutually orthogonal subspaces Hλ, referred to as

sectors,

H =
∑

λ∈DW (N)

⊕ Hλ, (13)

such that

A |Hλ= m(A, ∆λ) ∆λ (14)

and

B |Hλ= m(B, Dλ)Dλ, (15)

so that the multiplicity of λ in each action is equal to the dimension of the corresponding

irrep of the dual action. At the level of bases, each sector is spanned unitarily by the set

SY T (λ)×WT (λ), where SY T (λ) is the set of all standard Young tableaux of the shape

λ on the alphabet Ñ of nodes, and WT (λ) is the set of all Weyl (semistandard) tableaux

of the same shape on the alphabet 2̃ of spins, i.e.

Hλ = lcC(SY T (λ) × WT (λ)). (16)

We refer to this basis, written as

RS(N) = {|λty〉|λ ∈ DW (N), t ∈ WT (λ), y ∈ SY T (λ)}, (17)

as to the irreducible basis of the Weyl duality in the space H of quantum states of the

magnet. It is worth to observe that the basis RS(N) provides a complete classification

of basis states in H. Another important observation is that the sets 2̃Ñ and RS(N) are

respectively the source and target for the famous Robinson-Schensted bijection RS :

2̃Ñ → RS(N) [6-9]. The set RS(N) serves also as the source of the KKR bijection.

Elements |λty〉 of the irreducible basis of the Weyl duality are not, in general, eigen-

states of the Heisenberg Hamiltonian, since the group ΣN is not the symmetry group of

the magnet. However, each vector |λty〉 provides two important quantum numbers, the

total spin

S = N/2 − r′ (18)

of the magnet, determined by the partition λ = (N − r′, r′), and its z-projection

M = N/2 − r, (19)

derived from the weight wt(t) = (N − r, r) of the Weyl tableau t.

3. The dynamics of BA. Isotropy of the Heisenberg Hamiltonian implies the spherical

symmetry, so that the total spin S and its z-projection M are exact quantum numbers

of the model. Thus the number r of Bethe pseudoparticles is also a constant of motion,

and the dynamics of the magnet can be considered for each H(r) subspace separately.

The classical configuration space Q(r), i.e. the initial basis for quantum calculations, can

be seen as the orbit of the action A, generated from an arbitrary magnetic configuration

with the weight

µ = {N − r, r}, 0 ≤ r ≤ N/2, (20)

i.e.

Q(r) = {f ◦ σ−1|σ ∈ ΣN}, (21)
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with |f〉 = |+ · · ·+
︸ ︷︷ ︸

N−r

− · · ·−
︸ ︷︷ ︸

r

〉. Accordingly, the restriction of A to Q(r) is a transitive

representation of the group ΣN , denoted by

A |Q(r)= Rµ, µ = {N − r, r}. (22)

The model requirement of the nearest neighbour interaction yields

Ĥ |j〉 =
∑

j′∈Q
(r)
j

(|j′〉 − |j〉), j ∈ Q(r), (23)

where Ĥ ∈ EndH is the Heisenberg Hamiltonian, and Q
(r)
j is the set of all magnetic

configurations in Q(r) which differ from j ∈ Q(r) only in one component, say α0 ∈ r̃, and

only by the distance 1, i.e.

j′α =

{
(j′α0

± 1)modN for α = α0,

jα for α ∈ r̃ \ {α0}.
(24)

In this way, the dynamics of the Heisenberg Hamiltonian Ĥ is consistent with the ge-

ometry of the manifold M(r) into which Q(r) is embedded. In short, Ĥ acts locally in

Q(r).

Eigenstates of the Hamiltonian Ĥ in the space H(r) have all the same eigenvalue M =

N/2− r, but can differ by the total spin S, in accordance with the Kostka decomposition

Rµ =
∑

λ∈DW (N)

Kλ µ∆λ, (25)

which in our case simplifies to

R(N−r,r) =

r∑

r′=0

∆(N−r′,r′). (26)

The term r′ = r corresponds to the highest weight (S = M) eigenstates, whereas for

r′ < r one has S > M . In particular, r′ = 0 corresponds to Smax = N/2, the unique state

in each H(r), which is degenerated with the ferromagnetic vacuum configuration |+· · ·+〉.

More generally, lower weight eigenstates (S > M) in H(r) are all degenerated in energy

with some corresponding eigenstates belonging to subspaces with smaller number of Bethe

pseudoparticles. Thus in the extreme case

rmax =

{
N/2 for N even,

(N − 1)/2 for N odd
(27)

(i.e. the maximal not beyond the equator), the corresponding space H(rmax) contains

eigenstates from each energy level and each sector Hλ.

4. The bijection between magnetic configurations and rigged strings. Perhaps

the best visualisation of rigged strings in combinatorial description of the announced

bijection can be provided in terms of paths. Let us consider the set of all points in the

(j, l)-plane, given by vectors with non-negative integral coefficients, with j ≥ l. A path

is defined recursively with respect to j = 1, 2, . . . , N, as a continuous line consisting of

consecutive segments such that (i) the segment of the node (j − 1) ∈ Ñ joins the point
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(j−1, l), given by the recursive assumption, to either (j, l+1) (step up), or (j, l−1) (step

down), (ii) the path starts at the point (0, 0), so that the first segment ends at (1, 1). We

denote a path p as a sequence of steps, p = (p1, p2, . . . , pN ), pj ∈ {up, down}, j ∈ Ñ , in

particular p1 = up. An example of a path is given in Fig. 1.

Fig. 1. An example of a path, for N = 6, p = (u, u, d, u, u, d)

A typical single l-string is presented by the path in Fig. 2. The path encloses a single

pyramid of height l and base 2l. Moreover, this path has two straight lines, consisting of

L steps up to the left of the pyramid, and N − L − 2l steps up to the right of it. These

two straight lines are referred to as the sea of l-holes. The location of the l-string in the

sea of holes is specified by the integer L, referred to as the rigging of the l-string, and

satisfying 0 ≤ L ≤ N − 2l.

Fig. 2. A single l-string has the shape of a pyramid of height l and base 2l, located in the sea
of l-holes (the left and right straight lines on the path p) according to the rigging L

It is an interesting and even somehow intriguing point that a complete classification

of exact BA eigenstates of the Hamiltonian Ĥ of Eq. (23) has been reached by an in-

terpretation of the l-string presented in Fig. 2 as a bound state of l consecutive Bethe

pseudoparticles, with the rigging L characterising the quasimomentum of this state. More

specifically, one can interpret combinatorially the l-string as a composite system on the

magnetic ring, which consists of l Bethe pseudoparticles located on consecutive nodes,

and coupled to the next consecutive l nodes to the right, occupied by the spin “+”. In
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other words, the l-string is represented by the pyramid on the path p of Fig. 2, and thus is

characterised by the height l and the length 2l. An isolated l-string can exist in N −2l+1

different kinematical states, labeled by the rigging L, 0 ≤ L ≤ N − 2l. In other words,

the arena for such an l-string is the chain Ñ with distinguished initial and terminal node

(j = 1 and j = N , respectively), and the l-string is a hard-core object of size 2l, placed

somewhere into this chain according to the rigging L.

One can replace the chain Ñ , the regular orbit of the cyclic group CN ⊂ ΣN , i.e. the

translation symmetry group of the system, by the Brillouin zone

B =

{

k = 0,±1,±2, . . . ,

{
±(N/2 − 1), N/2 for N even

±(N − 1)/2 for N odd

}

(28)

which is the set of labels of all irreps Γk of CN (Γk(j) = exp(2πikj/N), j ∈ Ñ), and

thus the set of all admissible quasimomenta of the magnet. In this setting, the hard-core

effect of the l-string implies that this object cannot take on any value of quasimomen-

tum from the Brillouin zone B, and the forbidden values of quasimomentum are placed

symmetrically near the center k = 0 ∈ B, so that

B = Bf ∪ Ba, (29)

where the forbidden part is

Bf = {k = 0,±1,±2, . . . ,±(l − 1)}, (30)

whereas the admissible region Ba = B \ Bf is the range of the rigging L, such that

k = (l + L) modB (31)

is the quasimomentum of the single l-string.

A single isolated l-string is a very special case of an exact BA eigenstate, but it covers

already many essential features of a general case, at least in the combinatorial setting.

For example the path in Fig. 1 corresponds to two 1-strings, with the riggings L1 = 1

and L2 = 2. In general, each path p defines, by its shape, the content of strings, given as

a partition ν ⊢ r′ whose each row of length l corresponds to an l-string, so that
∑

l

lνl = r′, 0 ≤ r′ ≤ r, (32)

where νl is the total number of l-strings, r′ = N/2 − S is the number of Bethe pseu-

doparticles bound into strings (and thus r−r′ Bethe pseudoparticles are unbounded, and

placed at the rightmost part of the sea of holes). Each path p defines also, in addition

to the content ν of strings, the position of each string on the chain Ñ , specified by its

rigging. The string content ν, taken together with the set L of riggings, defines the rigged

string configuration νL, corresponding to the path p. The latter is used to label exact

BA eigenstates.

The rigged string configuration νL can be easily derived from the path p in cases

when the corresponding pyramids do not overlap, as e.g. in Fig. 1. In general, however,

determination of the rigged string configuration νL from a given path p is a complex task

which requires the rules of navigation, described by Warnaar [14] (cf. also Welsh [15, 16]).

The essential difficulty in resolution of a given path p into rigged strings νL consists in a
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proper selection of pyramids when they overlap. To this end, one applies two navigation

rules: (i) two strings of the same height l are mutually impenetrable, i.e. they behave like

hard-core objects, (ii) for l < l′, the (smaller) l-string can slide over both slopes of the

(larger) l′-string, until the peaks of representing pyramids coincide. Thus, e.g., the string

content ν = {31} for the chain of N = 8 nodes is realised only for five paths, shown

in Fig. 3. The first and the last path present the adjacent, but not overlapping strings,

whereas the remaining three correspond to the stages of sliding of the smaller 1-string

on both slopes of the larger 3-string. It is worth to observe that a location of a string on

the chain Ñ by the peak of the corresponding pyramid is unique with the exception of

the third path, where both peaks have the same l-level.

Fig. 3. Sliding of a 1-string over both slopes of a 3-string

Each path p in the (j, l)-plane looks thus like a contour of a mountain ridge, consisting

of N − r steps up and r down joined together, with local cuspidal maxima and minima.

Clearly, such a path uniquely decomposes into two types of segments of consecutive steps:

(i) straight diagonal lines, i.e. steps up only, (ii) multipyramids, with the same number

A of steps up and down, such that the height l(j) takes on a minimal value l0 at the

initial node j0 and terminal j0 +2A−1, and some larger values at all intermediate nodes.

Each segment of the type (i) represents a connected part of the sea of holes (for each

string), whereas each multipyramid corresponds to a number of overlapping strings, with

the total number of strings equal to that of peaks of the multipyramid.

The range of riggings is determined by the hard-core effects, described by the naviga-

tion rules, and depends on the length of a string. Clearly, for each string of the maximal

length (for a given content ν), this range is N − 2r′, the sum of lengths of the segments

of sea of holes on appropriate paths. Each string of a smaller length acquires additional

locations due to sliding on slopes of larger pyramids. These hard-core effects can be easily

deduced from the Young diagram for the partition ν ⊢ r′ of the content of strings. Let
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Ql be the number of boxes in the first l columns of the partition ν, i.e.

Ql =
∑

l′

ml′min(l, l′) (33)

(cf. Fig. 4).

Fig. 4. The hard-core effect in counting l-holes. Ql is the number of boxes in the shadowed part
which encloses the first l columns of the Young diagram ν ⊢ r′ of the string content (cf. Eq.
(33)).

Then the integer

Pl = N − 2Ql (34)

is the upper bound for the rigging of an l-string, and the range for the collection of ml

l-strings is specified by

0 ≤ Llv ≤ Llv′ ≤ Pl, 1 ≤ v < v′ ≤ ml. (35)

It implies that the total number of riggings for a given string content ν is

|z(ν)| =
∏

l

(
Pl + ml

ml

)

. (36)

In this way, each path of length N (i.e. consisting of N steps), which starts at (0, 0)

and terminates at (N, r), describes a rigged string νL, with ν ⊢ r′, 0 ≤ r′ ≤ r being the

content of strings, and

L = {Llv|l = 1, 2, . . . , v = 1, 2, . . . , ml} (37)

the set of all riggings of strings which enter the content ν. The set

RC(N, r) =
r⋃

r′=0

⋃

ν⊢r′

z(ν) (38)

of all rigged strings which emerge from such paths has the cardinality

|RC(N, r)| =

(
N

r

)

= |Q(r)| (39)

which coincides with the dimension of the space H(r) of quantum states of r Bethe

pseudoparticles. Moreover, each subset

RCS(N, r′) =
⋃

ν⊢r′

z(ν) (40)
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has the cardinality

|RCS(N, r′)| = dim∆{N−r′,r′} = |SY T{N − r′, r′}| (41)

which is equal to the dimension of the intersection

H(r) ∩H{N−r′,r′} (42)

of the space H(r) with the sector H{N−r′,r′}.

We proceed to describe the bijection ρ = RSKKR : Q(r) → RC(N, r) of magnetic

configurations entering the classical configuration space Q(r) of the system of r Bethe

pseudoparticles to the set RC(N, r) of the corresponding rigged strings, i.e. the set of

labels of exact BA eigenfunctions. It is evident that such a bijection can be established

by local adjustment of a single-node spin f(j) of a magnetic configuration f ∈ 2̃Ñ to the

corresponding step p(j) of the path p which defines the rigged string νL = RSKKR(f).

To this end, we introduce the notion of a compensated subword of a magnetic configuration

f , treated as a word of the length N in the alphabet 2̃ of spins. Namely, a compensated

subword v of f is a sequence of consecutive letters of f (i.e. f = avb; one of subwords

a and b could be empty) such that (i) its weight w(v) = (w−(v), w+(v)), with w−(v)

and w+(v) being the multiplicity of occurrences of the letter “−” and “+” in the word

v, respectively, satisfies w−(v) = w+(v), (ii) w−(v′) > w+(v′) for an arbitrary initial

subword v′ of v (i.e. v = v′v′′). According to this definition, a compensated subword v

corresponds to a multipyramid if its letters “−” and “+” are related to the step up and

down, respectively. Next, one observes that a magnetic configuration f can be uniquely

represented as the product

f = u1v1u2v2 . . . uavaua+1 (43)

of compensated subwords v1, v2, . . . , va, mediated by other subwords u1, u2, . . . , ua, ua+1

(some of the latter could be empty), such that the subword

u(f) = u1u2 . . . uaua+1 (44)

has no letter “+” having a letter “−” to the left of it. Now, the RSKKR bijection is

established by defining the path p(f) = (p1(f), p2(f), . . . , pN (f)), corresponding to the

word f given by Eq. (43) as

pj(f) =







up if f(j) = “−”,

or if f(j) = “+” and f(j) ∈ u(f),

down if f(j) = “+” and f(j) ∈ υ(f),

(45)

with

v(f) = v1v2 . . . va. (46)

Thus each compensated subword vi, i = 1, 2, . . . , a, is the preimage of a multipyramid on

the path p(f) and each subword ui, i = 1, 2, . . . , a+1, corresponds to a piece of the sea of

holes. The nodes occupied by Bethe pseudoparticles, i.e. such that f(j) = “−”, yield all

the steps up in the path f(j), whereas those with vacuum, i.e. f(j) = “+”, yield either

the step “up” when they belong to the sea of holes u(f), or the step “down” when they

are bound to a string.
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In this way, each magnetic configuration f is mapped to a definite rigged string

configuration νL = ρ(f). In Figs. 1 and 3, f is displayed below the j-axis on the diagram

of a path p(f), and νL to the right of this diagram, with riggings Llv inside the row

corresponding to the string (l, v), and the number of l-holes Pl to the right of the l×ml-

rectangle representing the l-strings in the content ν.

The bijection ρ is the composition of the famous RS algorithm which in our case yields

the bijection

RS : Q(r) →
r⋃

r′=0

SY T (N − r′, r′) × WT (N − r′, r′), (47)

and the KKR bijection

KKR : SY T (N − r′, r′) × WT (N − r′, r′) → RCS(N, r′) × WT (N − r′, r′). (48)

The RS algorithm maps each magnetic configuration f ∈ Q(r) to the pair (y, t) of standard

Young and Weyl tableaux of one of the shapes {N − r′, r′}, 0 ≤ r′ ≤ r in accordance

with the Weyl duality. Then the KKR bijection maps this pair to (νL, t) = ρ(f). The

resulting rigged string configuration νL can be described by saying that the path p =

(p1, p2, . . . , pN ) corresponding to the Young tableau y is given by the formula

pj =

{
up

down

}

if j is in the

{
first

second

}

row of y. (49)

5. The geography of strings. The classical configuration space Q(r) of the system of r

Bethe pseudoparticles, i.e. the set of all positions j = (j1, j2, . . . , jr) ∈ Q(r) of this system,

is equipped with a natural geometry imposed by the action of the Heisenberg Hamiltonian

Ĥ (Eq. (23)) and the translation group CN . The first defines a local Cartesian coordinate

system which is r-dimensional in the generic case when Bethe pseudoparticles are all

remote, and F -dimensional when there are F islands of consecutive nodes occupied by

these pseudoparticles, 1 ≤ F ≤ r. Orbits of the second action define locally the main

diagonal of this Cartesian coordinate system, and globally they form loops which imply

a curvature in Q(r).

Existence of the RSKKR bijection between the classical configuration space Q(r) and

the corresponding set RC(N, r) of rigged string configurations which classify exact BA

eigenstates, impose an additional structure on the set Q(r) which we refer to as the

geography of rigged strings.

To get an idea how rigged strings are distributed over the classical configuration space,

we present in some detail the process of traveling of a single l-string,

νL = L
︸︷︷︸

l

N − 2l, (50)

along the corresponding CN -orbit, i.e. the set

Θl = {|j〉 = A(CN)j−1| − . . .−
︸ ︷︷ ︸

l

+ . . .+
︸ ︷︷ ︸

N−l

〉|j ∈ Ñ}. (51)

More formally, we define the mapping KN = RC(N, r) → RC(N, r) by requiring the
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diagram

Q(r) A(CN )
−→ Q(r)

ρ↓ ↓ρ

RC(N, r)
KN−→ RC(N, r)

(52)

to be commutative, and study the image of the orbit Θl under this mapping. Clearly, KN

is the push-forward of the shift A(CN ) from the classical configuration space Q(r) to the

set RC(N, r) of rigged strings. We get

ρ(|j〉) =







j − 1
︸ ︷︷ ︸

l

N − 2l for 1 ≤ j ≤ N − 2l + 1 (regime a),

N − 2l′
︸ ︷︷ ︸

l′

N − 2l′ for N − 2l + 2 ≤ j ≤ N − l (regime b),

∅ for j = N − l + 1 (regime c),

0
︸︷︷︸

l′

N − 2l′ for N − l + 2 ≤ j ≤ N (regime d),

(53)

where

l′ = ±(N + 1 − l − j), (54)

with the upper and lower sign applied to the regime b and d, respectively. Clearly, the

orbit Θl constitutes the F = 1-dimensional boundary of the classical configuration space

Q(l), l ≤ N/2. The formula (53) and Fig. 5 imply a decomposition of this boundary

into four regimes, with the regime a corresponding to travel of the l-string from the left

rigging L = 0 to the right L = Pl = N − 2l. The rest of the orbit Θl is no longer any

preimage of the l-string, but rather some l′-strings of a shorter length l′ < l. The regime b

corresponds to edge strings located at the right boundary of the (open) ring Ñ , with the

maximal rigging L = Pl′ , whereas the regime d to those at the left boundary, with the

minimal rigging L = 0. The regime c, corresponding to a single magnetic configuration,

with all l Bethe pseudoparticles at the end of the open chain Ñ , corresponds to the state

in H(r), degenerated with the ferromagnetic vacuum state |+ + . . .+〉 in energy. Clearly,

magnetic configurations within the regime a correspond to the heighest weight exact BA

eigenstates, with S = N/2 − l, and all Bethe pseudoparticles bound within the l-string,

whereas the rest of the orbit Θl corresponds to lower weights, S = N/2 − l′ with l − l′

free Bethe pseudoparticles, located at the right side of the sea of holes.

Such analysis, applied above to the boundary F = 1 of the classical configuration

space, can be easily extended to any region of Q(r). It is clear from the considerations

above that the string configuration ν of the image νL = ρ(f) of the magnetic configuration

f under the RSKKR bijection is essentially determined by the structure

ξ = (ξ1, ξ2, . . . , ξF ),
F∑

a=1

ξa = r (55)
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Fig. 5. Travel of the 2-string on the (open) chain for N = 8, r = l = 2

of islands of spin deviations in Q(r), whereas the appropriate riggings depend upon specific

distribution of these islands on the sea of nodes occupied by the spin “+”. In all those

cases when each Bethe pseudoparticle has its own “+” counterpart to the right, we have,

with a little abuse of notation,

ν = ξ, (56)

after appropriate rearrangement of arguments of ξ such that ν should be a standard

partition. Then, in particular, ml is the number of islands of the length l. Such cases

correspond to the highest weight states with S = N/2 − r. In other cases, r − r′ Bethe

pseudoparticles remain unbound into strings, and are thus located at the right side of the

sea of holes. Then S = N/2 − r′.

The total number of strings in a given exact BA eigenfunction is

q(νL) =
∑

l

ml. (57)

Let Q(r,F ) ⊂ Q(r) be the F -dimensional boundary of Q(r), 1 ≤ F ≤ r. It follows from the

action of the mapping KN on the RSKKR image of any CN -orbit in Q(r) that

q(ρ(f)) ∈ {F, F − 1} for f ∈ Q(r,F ). (58)

This number is simply equal to that of cuspidal maxima inside the corresponding path
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p(f), which, in turn, is equal to F when each island contributes to a string of length at

least 1, or F − 1 when this island forms a terminal subword of f and thus is not related

to a string. In this way, RSKKR bijection associates each string with its parent island of

spin deviations, which can be traced by appropriate cuspidal maximum on the path p(f).

This tracing, however, cannot be done when consecutive maxima have the same height

on the path, since then the correspondence between pyramids and strings is not unique

(cf., e.g., the third path in Fig. 3).

Clearly, the length of the string originating from an island ξa cannot exceed the size of

this island, but may be smaller (due to transgression of the island through the boundary

of the open chain Ñ along an appropriate CN -orbit), so that

0 ≤ l ≤ ξa. (59)

Also, a string cannot arise from two or more separated islands. In particular, the generic

part Q(r,r) (F = r) of the classical configuration space yields only 1-strings, that is,

ρ(Q(r,r)) ⊂
r⋃

r′=1

z(1r′

). (60)

We present here a small, but reasonably typical example of geography of strings for

N = 8 and the classical configuration space

Q(3) = Q(3,1) ∪ Q(3,2) ∪ Q(3,3), (61)

Table 1. Distribution of strings over the classical configuration space Q(3) for N = 8. Each row

describes numbers of rigged string configurations with a given content ν over the sets Q(3,F ).

The detailed distribution is shown in Fig. 6.
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Fig. 6. The geography of l-strings on the classical configuration space Q(3) for N = 8. C8-orbits

are arranged in columns. The initial magnetic configuration is displayed at the top of an orbit.
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with the cardinalities 56 = 8 + 32 + 16 (cf. Fig. 6 and Table 1). The 3-strings, i.e.

maximally bound states of the system of 3 Bethe pseudoparticles, are found only in

the one-dimensional boundary Q(3,1). This boundary encloses also two 2-strings, two

1-strings, and the vacuum configuration ∅, but the total number of strings in each νL is

here q(νL) = 1. It is a constatation of the fact that a single island yields at most one

string. The two-dimensional boundary Q(3,2) is the homeland for four string contents,

ν ∈ {{1}, {2}, {12}, {21}}, which is also consistent with the available structure (2 + 1) of

islands. The number of strings is 1 or 2, in accordance with Eq. (58). The generic, three-

dimensional part Q(3,3) yields only strings of length 1, ν ∈ {{12}, {13}}. The number of

strings is q(νL) = 3 when all three islands (Bethe pseudoparticles in this case) are inside

the open chain Ñ , and q(νL) = 2 for cases when one of these islands is at the end (i.e.,

for νL = ρ(f) such that f(N)=“−”).

6. Conclusions. We have presented here the composition of two famous combinatorial

bijections: RS and KKR, applied to the magnetic Heisenberg chain for the spin 1/2. This

RSKKR bijection maps the set 2̃Ñ of all magnetic configurations to the set RC(N) of all

exact BA eigenstates, labeled by rigged strings. This bijection has a natural restriction to

the set Q(r) of all magnetic configurations with r reversed spins, and the latter set is shown

to have an interpretation of the configuration space (in the meaning used in mechanics)

for a classical counterpart of the (quantum) Heisenberg model of a magnetic chain. This

shows that the RSKKR bijection plays the role of defining the geography of rigged strings

on Q(r). We have presented here this geography in some detail. In particular, we point

out that rigged strings have their origin in the structure of islands of spin deviations

(or of Bethe pseudoparticles) on the classical configuration space for a given magnetic

configuration.
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