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Abstract. The structure of the set of positive unital maps between M2 (C) and M, (C) (n > 3) is
investigated. We proceed with the study of the “quantized” Choi matrix thus extending the meth-
ods of our previous paper [MM2]. In particular, we examine the quantized version of Stgrmer’s
extremality condition. Maps fulfilling this condition are characterized. To illustrate our approach,
a careful analysis of Tang’s maps is given.

1. Introduction. We will be concerned with linear positive maps ¢ : M,,(C) — M, (C).
We begin with setting up the notation and the relevant terminology (cf. [MM3]). We say
that ¢ is positive if $(A) is a positive element in M, (C) for every positive matrix from
M,,(C). If k € N, then ¢ is said to be k-positive (respectively k-copositive) whenever
[¢(Aij)]F ;= (respectively [¢(A;i)]F;—,) is positive in My(M,(C)) for every positive el-
ement [Aj;]¥,_, of My(M,,(C)). If ¢ is k-positive (respectively k-copositive) for every
k € N then we say that ¢ is completely positive (respectively completely copositive). Fi-
nally, we say that the map ¢ is decomposable if it has the form ¢ = ¢1 + ¢ where ¢ is
completely positive while ¢o is completely copositive.

By P(m,n) we denote the set of all positive maps acting between M,,(C) and M, (C)
and by P;(m,n) the subset of P(m,n) composed of all positive unital maps (i.e. such
that ¢(I) = I). Recall that P(m, n) has the structure of a convex cone while P;(m,n) is
its convex subset.

In the sequel we will use the notion of a face of a convex cone.

DEFINITION 1. Let C be a convex cone. We say that a convex subcone F' C C'is a face
of C' if for every ¢y, co € C the condition ¢ + ¢ € F implies ¢1,c0 € F.
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A face F is said to be a mazimal face if F' is a proper subcone of C' and for every face

G such that ' C G we have G = F or G = C.

The following theorem of Kye gives a nice characterization of maximal faces in the
cone P(m,n).

THEOREM 2 ([Kye]). A convez subset F' C P(m,n) is a mazimal face of P(m,n) if and
only if there are vectors £ € C™ and n € C" such that F' = F¢ ,, where

Fey={¢€P(m,n): ¢(Pe)n=0} (1)
and Pg denotes the one-dimensional orthogonal projection in M,,(C) onto the subspace
generated by the vector £.

The aim of this paper is to go one step further in clarification of the structure of posi-
tive maps between My(C) and M, (C). It is worth pointing out that many open problems
in quantum computing demand the better knowledge of this structure. Consequently,
our results shed new light on the structure of positive maps as well as on the nature of
entanglement (cf. [MM1], and for relation to quantum correlations see [Mayj]).

We recall (see [S], [W]) that all elements of P(2,2), P(2,3) and P(3,2) are decom-
posable. Contrary, P(n, m) with m,n > 3 contains nondecomposable maps. In [MM2] we
proved that if ¢ is extremal element of P;(2,2) then its decomposition is unique. More-
over, we provided a full description of this decomposition. In the case m > 2 or n > 2
the problem of finding the decomposition is still unsolved. In this paper we consider the
next step for partial solution of this problem, namely for the case m = 2 and n > 3. Our
approach will be based on the method of the so called Choi matrix.

To give a brief exposition of this method, we recall (see [Choil], [MM1] for details)
that if ¢ : M,,(C) — M,(C) is a linear map and {E;;}{";_; is a system of matrix units
in M,,(C), then the matrix

H¢7 = [QS(EU)]TJ:I € Mm(Mn((c))a (2)

is called the Choi matrix of ¢ with respect to the system {E;;}. Complete positivity of
¢ is equivalent to positivity of Hy while positivity of ¢ is equivalent to block-positivity
of Hy (see [Choil], [MM1]). A matrix [A]7%_; € My, (M, (C)) (where A;; € M, (C)) is
called block-positive if Z;’szl Aidj (€, Ai;€) > 0 for any € € C™ and Ay,..., A\, € C.

It was shown in Lemma 2.3 in [MM2] that the general form of the Choi matrix of a
positive map ¢ belonging to some maximal face of P(2,2) is the following:

Here a,b,u > 0, ¢,y, 2,t € C and the following inequalities are satisfied:
(D) le|* < ab,
(1) [t[* < bu,
(ITT) |y| + |2| < (au)'/2.
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It will turn out that in the case ¢ : Ma(C) — M,41(C), n > 2, the Choi matrix
has the form which is similar to (3) but some of the coefficients have to be matrices (see
[MM3]). The main result of our paper is an analysis of Tang’s maps in the Choi matrix
setting and proving some partial results about the structure of positive maps in the case

¢+ M2(C) — My11(C).

2. P(2,n+ 1) maps and Tang’s maps. In this section we summarize without proofs
the relevant material on the Choi matrix method for P(2,n 4+ 1) (see [MM3|) and we
indicate how this technique may be used to the analysis of nondecomposable maps. Let
{e1,e2} and {f1, fo,..., far1} denote the standard orthonormal bases of the spaces C?
and C™"*' respectively, and let {E;;}7;_; and {Fkl}z:;1 be systems of matrix units in
M>(C) and M,,+1(C) associated with these bases. We assume that ¢ € Fg, for some
¢ € C? and n € C"*!. By taking the map A — V*¢(WAW*)V for suitable W € U(2)
and V € U(n+1) we can assume without loss of generality that £ = e5 and 7 = f;. Then
the Choi matrix of ¢ has the form

a ¢ ... ¢ |l T Y1 ... Yn
¢t b ... b |7 ot .. tig
H _ Cn, bnl bnn Z tnl tnn (4)
T oz zn | 0 0 0
71 i tr1 | 0 iy Ulp
| Un tin oo tan | 0 Upt .. Upn |

We introduce the following notations:

C:[cl cn]7 Yz[yl yn]7 Zz[zl Zn]7
b11 bln t11 tln U1 oo Uln

B=| : L T= | U=
bnl bnn tnl tnn Unpl --. Unpn

The matrix (4) can be rewritten in the following form:

a Cl|lz Y
c* B|zZz* T
H-= 5
T Z |0 0 5)
Y* T 0 U
The symbol 0 in the right-bottom block has three different meanings. It denotes 0,
0
[ 0 ... 0 } or | : | respectively. We have the following
0

ProPosITION 3 ([MM3]). Let ¢ : M2(C) — M,4+1(C) be a positive map with the Choi
matriz of the form (5). Then the following relations hold:
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a >0 and B, U are positive matrices,
if a =0 then C =0, and if a > 0 then C*C < aB,
z =0,

BRI R

th tre BT
e matriz

™ |U

In the example below, we will be concerned with the two-parameter family of nonde-

composable maps (cf. [Tang]). Here the important point to note is the fact that P(2,4)

and P(3,3) are the lowest dimensional cases having nondecomposable maps. Therefore

] € My(M,(C)) is block-positive. m

the detailed analysis of such maps should yield necessary information for explanations of
the occurrence of nondecomposability.

EXAMPLE 4. Let ¢¢ : Ma(C) — M4(C) be the linear map defined by

(1—g)a+p?d —b e —pd
a b _ —c a+2d —2b 0
%o ({ c d ]) N ub —2¢  2a+2d -2 |’ (6)
—ud 0 —2c  a+d

where 0 < p < land 0 <e < %uQ. It is proved in [Tang] that ¢ is nondecomposable.
One can see that ¢ has the following Choi matrix:

[1—¢ O o 0Ol 0 -1 0 0
0 1 0 0| O 0O -2 0
0 0 2 0] p 0 0 -2
0 0 0 1|0 0 0 0
Hy = 7
-1 0 0 0 O 2 0 0
0 -2 0 0] 0 0 2 0
.| O 0 -2 0|—-p O 0 1 |
Observe that
l—e+p? 0 0 —pu
0 3 0 0
— 0 0 2
Let p = /1 — e+ p? and
1/2

_ 2
d= L=etu 2” =2 — 2+ p?

—p
Then ¢o(I)~'/2 is of the form

- g 0 O _%_
1
o= | VB (1) ’
0 0 - 0
2
X @
L 4 0 0 o 4
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where and «a, 3 > 0, v € R are such that

o +4% = p?,
B2 +q? =2, (8)
(a+B)y=—p.

Let us define ¢y : M2(C) — My(C) by
o1(A) = do(D)"2¢o(A)po() /2, A€ Ma(C).

Then
1-ep++* 4 _[A=e)b+aly]
52 1 62
0 - 0 0
$1(B1) = 3 )
0 0 3 0
[ —2)B+aly 0 0 (1-¢e)7* +a?
L 02 02 J
(1B +7)? (1B + )y +a) ]
MR T 0o 0 -—
52 5 52
0 - 0 0
$1(Bo2) = 3 1 )
0 0 3 0
W)y +a) (1y +a)?
L 62 62 J
_ 3 -
- 0 0
5V3 .
0 0 —-—— 0
Ep) = V3
¢1( 12) /~L5+27 0 0 _/14’7"_20[
20 ~ 26
0 — 0 0
L 5V3 ]
One can deduce from (8) that
(v + @) + (B +7)* = p*. (9)
Let
pwy + o 0 0 B+
V1—¢e+ p? V1—e+p?
0 1 0 0
W= 0 0 1 0
1B+ 0 iy +a

P 0 P
V1—e+p? V1—¢e+p?

It follows from (9) that W is a unitary matrix. Define ¢ : M2(C) — M4(C) by ¢(A) =
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W*$1(A)W. Then the Choi matrix of ¢ is of the form

o
<
[

and ¢ =

OO O

Observe that blocks which form the Choi matrix (10) as in (5) are of the form

a = 1,

ool
Il
o o wir

O N= O

1
C =0, Y_[ T
2
0 3
0 ., U=1]0
1—¢
52 0

00], 7=
0 0

1

S0 |, T=
2 ?

O LA

62

[0

_H
2p

__*
L \/§5p

(10)

1 —_
1 0 0 0 —— 0 0
) V3p )
0 - 0 0 0 —— 0
3 V3
0 0o 1 -2 o 2
2 2p 2p
0 0 0 =S| o A 5 9
§2 V3dp
0 o £ 0 0 0 0
1 2 2
. 0 0 _ 0 = 0 0
V3p . V3ép 3 )
0 —— 0 0 0 -0
V3 5 2 )
o
0 0 — 0 0 0o =
2p 02
1
0 0 0 0
01 ]) 0 = 0,801 € F, ¢ (cf. Theorem 2), where n = { 1 }
0

It is worth observing that the vectors C,Y, Z are orthogonal, the matrices B, U are

diagonal, while 7" is “complementary” to the diagonal matrices B and U. This observation

is useful in understanding the peculiarity of nondecomposable maps

In the sequel we will need the following technicalities. For X = [ 1
M ,(C) we define || X|| = (3., |z:/?)!/2. By | X| we denote the square (n x n)-matrix
(X*X)'/2. We identify elements of M, ;(C) with vectors from C" and for any X €
M ,(C) define a unit vector £x € C" by £x = || X|| 71X~

PROPOSITION 5. Let X, X1, Xo € M; ,(C). Then

mn]é

(1) |X| = || X||Pex, where P denotes the orthogonal projection onto the one-dimen-

stonal subspace in C" generated by a vector £ € C™;

(2) [Xa][Xa| = (€x,, €x, ) X T X
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Proof. (1) Let n € C™. Since n is considered also as an element of M, 1(C) the multipli-
cation of matrices X7 makes sense. As a result we obtain a 1 X 1l-matrix which can be
interpreted as a number. With this identification we have the equality

Xn=(X"n)

where X* on the right hand side is considered as a vector from C”, and (-, -) denotes the
usual scalar product in C™. Now we can calculate

(n, X*Xn) = (Xn, Xn) = | Xn|* = (X" 0)> = | X|2[(€x,m)*
(2) If X; =0 or X5 = 0 then the equality is obvious. In the case both X; and X, are
nonzero the equality follows from the following computations

X[ Xo| = [1X0 I X2 TP X = ([ XXX X XS X
= | X7 IX e T X (X0 X)X = (| X |7 Xl T HXT, X)X X,
= ({x,,€x,) X1 X2 m

To proceed with the study of Tang’s maps we recall some general properties of maps
in P(2,n+1) (cf. [MM3]). We start with

PROPOSITION 6 ([MM3]). A map ¢ with the Choi matriz of the form
a C ‘ 0 Y

c* B|zZ* T

H-= 11
0 Z|0 O (11)
Y« 110 U

18 positive if and only if the inequality
(Y*, I+ (Z*, ")+ Tr (ATT)‘ <|aa+Tr (ATB) + 2R {(C*, ")} Tx (A"U) (12)

)\11 )\1n
holds for every a € C, matrices I' = [ Y -er Yn } and A = ,

Al oo Ann
7 €C, N\ij €C fori,j=1,2,...,n, such that

1. a>0and A >0,
2. I'*'I' < ad.
The superscript T denotes the transposition of matrices.
THEOREM 7 ([MM3]). If the assumptions of Proposition 8 are fulfilled, then
Y|+ 2| < a'/?Ut/2, (13)
REMARK 8. One can easily check that the nondecomposable maps described in Example 4

fulfill the above inequality. It is easy to check that in this case the inequality is strict.
This observation will be crucial for the next section.

As we mentioned, for P(2,n), n > 3, there are nondecomposable maps. The proposi-
tion below provides the characterization of completely positive and completely copositive
components of P(2,n).
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PROPOSITION 9 ([MM3]). Let ¢ : M3(C) — M,,+1(C) be a linear map with the Choi ma-
triz of the form (11). Then the map ¢ is completely positive (resp. completely copositive)
if and only if the following conditions hold:

(1) Z=0 (resp. Y =0),

a C Y a C Z
(2) the matriz | C* B T | (resp. | C* B T* |)is a positive element of the
Y* T U z* T U

algebra May,1(C).
In particular, the condition (2) implies:

(3) if B is an invertible matriz, then T*B~T < U (resp. TB~'T* <U),
(4) C*C < aB,
(5) Y*Y < aU (resp. Z*Z < aU).

This proposition yields information about possible splitting of a decomposable map
into completely positive and completely copositive components. To go one step further
let us make the following observation. Let ¢ : M,,,(C) — M,,(C) be a decomposable map
and ¢ = ¢1 + ¢o for some completely positive ¢; and completely copositive ¢5. Then
from the Kadison inequality we easily obtain

P(Eiy)*o(Eij) < oD (¢1(Eii) + ¢2(Ej;)) (14)
fori,7=1,2,...,m.

Assume now that ¢ : My(C) — M,,11(C) has the Choi matrix of the form (5). It
follows from Proposition 9 that the Choi matrices of ¢; and ¢ are respectively

aa Cp |0 Y az Cy| 0 0
cr B |0 Ty C: By | Z* Ty
H — 1 H = 2 15
1 0 o0]o0 o |@ 2 0 Z|0 0 (15)
Y* Tr|0 U 0 Tyl 0 U,

Clearly, H; + Hs = H, where H is the Choi matrix corresponding to ¢. The inequal-
ity (14) leads to additional relations between components of the Choi matrices

1Z]? ZT a O
<
[ T*Z* |[YP+TT | ~ lo@i Cy Bi+U;

and

P e b [ <loi| &2,

TY* |Z|2+TT* - OS By +U; |
It is worth pointing out that the above inequalities give a partial answer to Choi’s ques-
tion (cf. [Choi2]). Furthermore, turning to Tang’s maps one can observe that the matrix

corresponding to ¢(E;;)*¢(E;;) is relatively large, which precludes the possibility of de-
composition of these maps.

3. On the structure of elements of P(2,n + 1). Giving a full description of the
situation in P(2,2) in [MM2] we proved that if ¢ : Ms(C) — M3(C) is from a large
class of extremal positive unital maps, then the constituent maps ¢; and ¢, are uniquely
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determined (cf. Theorem 2.7 in [MM2]). We recall that the Choi matrix of such an
extremal map ¢ : M2(C) — M3(C) is of the form (cf. (3))

1 0 0 y
0 1-—u|z t
H, = 16
10 =z Jo o]’ (16)
y i 0 u
where, in particular, the following equality is satisfied (cf. (III) from Section 1):
lyl + |2| = u'/2. (17)

In this section, motivated by the results given in the previous section (we ‘quantized’
the relations (I)-(III) given at the end of Section 1), we consider maps ¢ : M3(C) —
My 4+1(C). If such a map is positive unital and ¢ € F,, s, then its Choi matrix has the
form

1 o‘oy
0 Bl|z* T

1
0 Z|o0o 0|’ (18)
Y* T*| 0 U

where B and U are positive matrices such that B + U = 1 and the conditions listed in
Propositions 3 and 6 are satisfied.
Our object is to examine consequences of the property

Y| +|2|=U"? (19)
which for n > 1 is a natural analog of (17).
First, we recall the following technical
P S
S* Q

The following are equivalent:

LEMMA 10. Let A = { } € My(M,(C)), where P,Q,S € M,(C), and P,Q > 0.

(i) A s block-positive;
(ii) pP + sS +3S* 4+ qQ > 0 for all numbers p,q,s such that p,q > 0 and |s|* < pq;
(iii) [(n, Sn)|* < (n, Pn){n,Qn) for every n € C".
Proof. (i)=-(ii). Let n € C™. It follows from the definition of block-positivity (cf. [MMZ2])
that the matrix
[ (n, Pn)  (n,Sn) }
(n, 5™ n)  (n,@n)

is positive. Hence the matrix

{ (n,pPn)  (n,sSn) ]
(n,35*n)  (n,qQn)

being a Hadamard product of two positive matrices is positive as well. Consequently,
(n, (pP + sS +355" +qQ)n) > 0.

Since 7 is arbitrary, (ii) is proved.
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(ii)=(i). To prove that A is block-positive one should show that for any n € C" and
w1, 2 € C one has
| (n, Pr) + 2R {uamzz(n, Sm)} + |p2|* (n, Q) > 0.
Observe that p = |u1|?, ¢ = |u2|?, s = pafrz fulfill p,q > 0 and |s|? = pq. So,

il *(n, Pn) + 2R {pamiz(n, Sn)} + |u2|*(n, @n) = (n, (pP + sS + 38" + qQ)n) > 0.

(n, Pn)  (n,Sn)

(n, S*m)  (n, @n)
to non-negativity of its determinant (n, Pn)(n, @n) — |(n, Sn)|*. =

(i)« (iii). Let n € C™. The positivity of the matrix is equivalent

Here we give another (cf. Proposition 6) characterisation of positive maps in the
language of their Choi matrices

PROPOSITION 11. Let ¢ : M3(C) — M,,+1(C) be a linear unital map with the Choi matriz
of the form
Y*

where B,U, T € M,(C), Y, Z € My,(C), and B,U > 0. Then the map ¢ is positive if
and only if

*

(20)

olo —
o olN o
T ol

0

B
Z
T

pB+sT +3T*+qU >0
and
(BY* +5Z*)(sY +352) < p>B + p(sT +3T*) + pqU (21)
for every p,q,s € C such that p,q > 0 and |s|?> < pq.
Proof. Tt follows from the definition of the Choi matrix and from (20) that

8 p s _ P sY +vZ
v oq | sZ*+oY* pB+sT +oT* +qU |’
So, the map ¢ is positive if and only if the matrix
P sY +5Z (22)
$Z* +35Y* pB+sT+5T*+qU |’

is a positive element of M,,,1(C) for numbers p, ¢, s such that p,q > 0 and |s|?> < pq (i.e.
such that the matrix [ Zg) iy ] is positive in M3(C)). The positivity of the matrix (22)
is equivalent to both inequacllities from the statement of the proposition. m

The following generalizes Lemma 8.10 from [S].

PROPOSITION 12. Let ¢ be a positive unital map with the Choi matriz (20). Assume that
B is invertible. Then the matriz

2B T

23

|: T* U—|Y|2—|Z|2 ( )

1s block-positive.
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Proof. Let n € C*, n # 0, and p,q,s € C be numbers such that p,q > 0 and |s|*> = pq.
Then from (21) we have

[s2(n, (Y2 + [Z*)n) + 2R {s*(n, Z*Yn) } < p*(n, Bu) +2p R {s(n, Tn)} + pa(n, Un).
Replace s in this inequality by is and obtain

s> (n, (1Y + | Z1*)n) — 2R {s*(n, Z*Yn) } < p*(n, Bn) + 2p R {is(n, Tn)} + pqa(n, Un).

Adding the above two inequalities one gets

[s[(n, (Y1 +1Z1*)n) < p*(n, Bn) + pR{(L +1)s(n, Tm)} + paln, Un).  (24)

Let pg = 1, and s be such that |s| = 1 and R{(1 +)s(n, Tn)} = —v/2|(n, Tn)|. Then the
inequality (24) takes the form

(n, (Y[ +12*)m) < p*(n, Bn) = V2p|(n, T)| + (n, Un). (25)
Following the argument of Stgrmer in the proof of Lemma 8.10 in [S] we observe that
the function f(z) = (9, Bn)2® — V2|(n,Tn)|x + (n,Un) has its minimum for z =
2-1/2(n, Bn)~*|(n, Tn)|. Hence, (25) leads to the inequality

(n, (Y[> +1212)n) < =27"(n, Bn) " |{n, Tn) |* + (n, Un)
and finally

[{n, Tn)|* < 2(n, Bn)(n, (U — [Y* = |Z|*)n).

By Lemma 10 this implies block-positivity of the matrix (23). m

Our next results show that the property (19) in the case n > 2 has rather restrictive
consequences.

PROPOSITION 13. Let ¢ : M3(C) — My,41(C), n > 2, be a positive linear map with the
Choi matriz of the form (20). Assume |Y| 4 |Z| = UY2. Then'Y and Z are linearly
dependent.

Proof. Assume on the contrary that Y and Z are linearly independent. We will show
that ¢ can not be positive in this case. To this end let p, ¢, s be numbers such that p > 0,
g > 0 and |s|> < pq and define

D = p?’B + p(sT +35T*) + pqU — (3Y* 4 sZ*)(sY +352).

By Proposition 11 (cf. (21)) it is enough to find numbers p, ¢, s and a vector £, € C" such
that. (¢, Déo) < 0.
It follows from the assumption and Proposition 5 that
D = p*B +p(sT +35T%) + pa(|Y] + | Z])?
—sP(Y? +|Z2)?) = 3°Y*Z — s*°Z*Y
= p*B+ (pg — [sP)([Y P +12°) + pa(IY | 1Z] + 2| [Y])
+ p(sT +3T*) —3°Y*Z — s> Z*Y
= p*B+ (pa — [s])([Y " +|Z]*) + psT + psT*
+ (pg(éy, €2) = 5)Y*Z + (pg(éz, &) — 5°) Z°Y.
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Let £ € C". Then
(&, Dg) = p*(&, BE) + (pa — |s|)(&, (IV]* +12[")€) + 2p R{s(¢, TE)}
+ 2R{(pa(éy. €2) — 5°)(§, Y Z€)}
= p*(&, BE) + (pg — |s*)(& (Y +1Z2°)€) + 2pR{s(¢, T€)}
+ 2V |11 2] R{(pa(&y, E2) —5°) (&, Ev) (€2, €)}-
Let & = &y + &2 and s = (pg)'/2€' for some 6 € [0,27). Then

(€0, D&o) = p*(€0. B&o) + 2p°2¢" 2 R {e" (€0, T&0) }
+ 2pq|| Y 1 Z||R{({£2, &) — e 2) (1 + <€Y7§Z>)2}-

By the assumption &y and £ are linearly dependent. Moreover ||€y || = ||£z]|| = 1. This
implies that |(£z,&y)| < 1, so (1 + {€7,&y))? # 0. Now, choose 6 such that

R{e 21+ (£2,&))°} = 1+ (2, &)
Then
(€0, D&) = p* (&0, B&o) + 2p*/2q" 2 R {e' (&9, T&o) }
+2pg| Y I1Z]] [R{{&v:€2) (1 + (€2,6v))°} = [T+ (€2, &) 7] -
Observe that
R{UE&y,&2) (14 (€2,&))°} < 1+ (€2, &),

so it is possible to find p sufficiently small and ¢ sufficiently large so that (£y, D&y) is
negative. This ends the proof. =

PROPOSITION 14. Let ¢ : M3(C) — M,,+1(C) satisfy the assumptions of the previous
Proposition. If Z =0 and ||[Y] < 1 (resp. Y = 0 and ||Z|| < 1) then ¢ is completely
positive (resp. completely copositive).

Proof. Tt follows that U = |Y|2. Moreover, the assumption ||Y| < 1 implies that B =
1 — |Y|? is invertible. As we also have U — |Y|?> — | Z|?> = 0, by Proposition 12 the matrix

{ gf g ] is block-positive. Hence T" = 0. We conclude that the Choi matrix of ¢ has
the form

1 0 0 Y

0 1—|Y]?|0 o0

0 0 0 0

Y= 0 0 |Y?
In order to finish the proof one should show (cf. Proposition 9) that the matrix

1 0 Y

0 1-|Y2 o
Y+ 0 Y |?
is positive, but this can be done by straightforward computations.

The proof in the case Y = 0 follows in the same way. =

As a consequence of the above results we get the following description of maps satis-
fying the “quantized” properties (17).



STRUCTURE OF POSITIVE MAPS

THEOREM 15. Let ¢ : My(C) —
of the form (20) where |Y |+ |Z| = U2, Then

(1) there are vectors £ € C% and ng € C™*' such that
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n+1(C) be a positive unital map with the Choi matriz

¢ S ﬂ ngn;

n-Lno

(2) ¢ is unitarily equivalent to a map with the Choi matriz of the form

10 0 |00 vy
0 1 0 0o 0o Wwr
0 0 1—-wulz V t
0 0 z 0 0 0
0 0 10 0 0
7 W t 0 0 wu

(26)

(27)

where in each block there are numbers on positions (11), (13), (31) and (33), one-
row matrices from Mi ,,—1(C) on positions (12) and (32), one-column matrices
from M, _11(C) on positions (21) and (23), and square matrices from M,_1(C)
on positions (22). Here u = (|y|+|z|)?. Moreover, coefficients satisfy the inequality

[, YN+ 1(p, Z5)] < /2

for any unit vector p € C™ where Y1,Z; € M ,,(C) are defined as

i=[g W],

Zv=[z V].

(28)

Proof. 1t follows from Proposition 13 that there is a unit vector 19 € C" such that
Y* = gny and Z* = Zng for some y,z € C. Hence |Y| = |y|P,,, |Z| = |2|P,,, and
U = (ly| + |2])?P,,, where P,, is the orthogonal projector onto the one-dimensional

subspace generated by the vector 79. As

then ¢(P.,)n = 0 for any n orthogonal to 7y. So, from Theorem 2 we obtained (26).

ora) = ¢

0

0
U

| et

By choosing a suitable basis of C"*! we may assume that f,, .1 = 19. Then the Choi
matrix (20) takes the form

1 0 0 0 0 0 0 y
0 1 0 0 [0 ty tin1  tin
0 0 1 0 0 tn—l,l tn—l,n—l tn—l,n
0 0 0 1—u z tnl tn,n—l tnn
0 0 0 z 0 0 0 0
0 tnn tn_1,1 to1 |0 0 0 0
0 tl,n—l tn—l,n—l tn,n—l 0 0 0 0

L g m tn—l,n E 0 0 0 U




262 W. A. MAJEWSKI AND M. MARCINIAK

Block-positivity of this matrix implies that the matrix

1 0 tin ot
0 e 1 -1 tpn—ln-1
fii - faois 0 0

| tin—1 - tn—1m—1 0 0 ]

is also block-positive, so t;; = 0 for 4,j = 1,2,...,n — 1. Thus we obtained that the Choi
matrix has the form (27).

Now, for any p € C", where p = [ P1 - Pn }, define the following matrix from
Mn+1,2((c):
[ om0
Vo= [ 0 0 1 ]

One can easily check that VV* = 1, so the map ¢, : My,;1(C) — My(C) : A — VAV*
is unital and completely positive. As a consequence, the map ¥, 0 ¢ : M3(C) — My(C)
is positive and unital. Moreover, by a straightforward calculation one can check that the
Choi matrix of this map has the form

1 0 0 (oY)

0 1—u | {p, Z7) t

0 (pnzi)| O 0
G ‘ 0w

The inequality (28) follows from (III) in Section 1. m

4. Conclusions. In our previous paper [MM2] we proved that for any positive unital
map ¢ : Ms(C) — M (C) from some maximal face there exists a unique decomposition
of ¢ onto completely positive and completely copositive parts. To prove this result we
have used the techniques based on the so called Choi matrix (see (3)). It turned out
that these techniques can be extended for an analysis of maps ¢ : M2(C) — M, (C)
(n > 3). In particular, we have shown that the appropriate Choi matrix (see (5)) has
very analogous form but some of the coefficients have to be matrices. In other words,
there is some kind of “quantization” of the lowest dimensional case. In Propositions 3,
6 and 12 and Theorem 7 we have shown several necessary conditions for positivity of
the map ¢ in terms of its Choi matrix while in Proposition 9 we did it for complete
positivity. It is worth pointing out these conditions are generalizations of those given in
[S] and [MM2]. Further we emphasize that Theorem 7 demonstrates rather strikingly that
a generalization of the inequality (IIT) from Section 1 is valid. Furthermore, guided by the
2 x 2 case, the natural strengthening of the (in)equality (III) was examined. To this end
in Proposition 13 we show that this quantized condition is very restrictive. This gives the
possibility to prove Theorem 15 which fully characterizes maps from M5(C) into M, (C)
satisfying the condition (28).
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We end this paper by a remark that Theorem 15 gives a very useful tool for describing

properties of extremal maps in P(2,n+1) and it seems that following this line of research

can give a possibility to construct some new examples of nondecomposable maps. The

details will be given in forthcoming publications.
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