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Abstra
t. The stru
ture of the set of positive unital maps between M2(C) and Mn(C) (n ≥ 3) isinvestigated. We pro
eed with the study of the �quantized� Choi matrix thus extending the meth-ods of our previous paper [MM2℄. In parti
ular, we examine the quantized version of Størmer'sextremality 
ondition. Maps ful�lling this 
ondition are 
hara
terized. To illustrate our approa
h,a 
areful analysis of Tang's maps is given.1. Introdu
tion. We will be 
on
erned with linear positive maps φ : Mm(C) →Mn(C).We begin with setting up the notation and the relevant terminology (
f. [MM3℄). We saythat φ is positive if φ(A) is a positive element in Mn(C) for every positive matrix from
Mm(C). If k ∈ N, then φ is said to be k-positive (respe
tively k-
opositive) whenever
[φ(Aij)]

k
i,j=1 (respe
tively [φ(Aji)]

k
i,j=1) is positive in Mk(Mn(C)) for every positive el-ement [Aij ]

k
i,j=1 of Mk(Mm(C)). If φ is k-positive (respe
tively k-
opositive) for every

k ∈ N then we say that φ is 
ompletely positive (respe
tively 
ompletely 
opositive). Fi-nally, we say that the map φ is de
omposable if it has the form φ = φ1 + φ2 where φ1 is
ompletely positive while φ2 is 
ompletely 
opositive.By P(m,n) we denote the set of all positive maps a
ting betweenMm(C) and Mn(C)and by P1(m,n) the subset of P(m,n) 
omposed of all positive unital maps (i.e. su
hthat φ(I) = I). Re
all that P(m,n) has the stru
ture of a 
onvex 
one while P1(m,n) isits 
onvex subset.In the sequel we will use the notion of a fa
e of a 
onvex 
one.Definition 1. Let C be a 
onvex 
one. We say that a 
onvex sub
one F ⊂ C is a fa
eof C if for every c1, c2 ∈ C the 
ondition c1 + c2 ∈ F implies c1, c2 ∈ F .2000 Mathemati
s Subje
t Classi�
ation: Primary 47B65; Se
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250 W. A. MAJEWSKI AND M. MARCINIAKA fa
e F is said to be a maximal fa
e if F is a proper sub
one of C and for every fa
e
G su
h that F ⊆ G we have G = F or G = C.The following theorem of Kye gives a ni
e 
hara
terization of maximal fa
es in the
one P(m,n).Theorem 2 ([Kye℄). A 
onvex subset F ⊂ P(m,n) is a maximal fa
e of P(m,n) if andonly if there are ve
tors ξ ∈ C

m and η ∈ C
n su
h that F = Fξ,η where

Fξ,η = {φ ∈ P(m,n) : φ(Pξ)η = 0} (1)and Pξ denotes the one-dimensional orthogonal proje
tion in Mm(C) onto the subspa
egenerated by the ve
tor ξ.The aim of this paper is to go one step further in 
lari�
ation of the stru
ture of posi-tive maps betweenM2(C) andMn(C). It is worth pointing out that many open problemsin quantum 
omputing demand the better knowledge of this stru
ture. Consequently,our results shed new light on the stru
ture of positive maps as well as on the nature ofentanglement (
f. [MM1℄, and for relation to quantum 
orrelations see [Maj℄).We re
all (see [S℄, [W℄) that all elements of P(2, 2), P(2, 3) and P(3, 2) are de
om-posable. Contrary, P(n,m) with m,n ≥ 3 
ontains nonde
omposable maps. In [MM2℄ weproved that if φ is extremal element of P1(2, 2) then its de
omposition is unique. More-over, we provided a full des
ription of this de
omposition. In the 
ase m > 2 or n > 2the problem of �nding the de
omposition is still unsolved. In this paper we 
onsider thenext step for partial solution of this problem, namely for the 
ase m = 2 and n ≥ 3. Ourapproa
h will be based on the method of the so 
alled Choi matrix.To give a brief exposition of this method, we re
all (see [Choi1℄, [MM1℄ for details)that if φ : Mm(C) → Mn(C) is a linear map and {Eij}m
i,j=1 is a system of matrix unitsin Mm(C), then the matrix

Hφ = [φ(Eij)]
m
i,j=1 ∈Mm(Mn(C)), (2)is 
alled the Choi matrix of φ with respe
t to the system {Eij}. Complete positivity of

φ is equivalent to positivity of Hφ while positivity of φ is equivalent to blo
k-positivityof Hφ (see [Choi1℄, [MM1℄). A matrix [Aij ]
m
i,j=1 ∈ Mm(Mn(C)) (where Aij ∈ Mn(C)) is
alled blo
k-positive if ∑m

i,j=1
λiλj〈ξ, Aijξ〉 ≥ 0 for any ξ ∈ Cn and λ1, . . . , λm ∈ C.It was shown in Lemma 2.3 in [MM2℄ that the general form of the Choi matrix of apositive map φ belonging to some maximal fa
e of P(2, 2) is the following:

Hφ =









a c 0 y

c b z t

0 z 0 0

y t 0 u









. (3)
Here a, b, u ≥ 0, c, y, z, t ∈ C and the following inequalities are satis�ed:(I) |c|2 ≤ ab,(II) |t|2 ≤ bu,(III) |y| + |z| ≤ (au)1/2.



STRUCTURE OF POSITIVE MAPS 251It will turn out that in the 
ase φ : M2(C) → Mn+1(C), n ≥ 2, the Choi matrixhas the form whi
h is similar to (3) but some of the 
oe�
ients have to be matri
es (see[MM3℄). The main result of our paper is an analysis of Tang's maps in the Choi matrixsetting and proving some partial results about the stru
ture of positive maps in the 
ase
φ : M2(C) →Mn+1(C).2. P(2, n + 1) maps and Tang's maps. In this se
tion we summarize without proofsthe relevant material on the Choi matrix method for P(2, n + 1) (see [MM3℄) and weindi
ate how this te
hnique may be used to the analysis of nonde
omposable maps. Let
{e1, e2} and {f1, f2, . . . , fn+1} denote the standard orthonormal bases of the spa
es C2and Cn+1 respe
tively, and let {Eij}2

i,j=1 and {Fkl}n+1

k,l=1
be systems of matrix units in

M2(C) and Mn+1(C) asso
iated with these bases. We assume that φ ∈ Fξ,η for some
ξ ∈ C2 and η ∈ Cn+1. By taking the map A 7→ V ∗φ(WAW ∗)V for suitable W ∈ U(2)and V ∈ U(n+1) we 
an assume without loss of generality that ξ = e2 and η = f1. Thenthe Choi matrix of φ has the form

H =































a c1 . . . cn x y1 . . . yn

c1 b11 . . . b1n z1 t11 . . . t1n... ... ... ... ... ...
cn bn1 . . . bnn zn tn1 . . . tnn

x z1 . . . zn 0 0 . . . 0

y1 t11 . . . tn1 0 u11 . . . u1n... ... ... ... ... ...
yn t1n . . . tnn 0 un1 . . . unn































(4)
We introdu
e the following notations:

C =
[

c1 . . . cn
]

, Y =
[

y1 . . . yn

]

, Z =
[

z1 . . . zn

]

,

B =







b11 . . . b1n... ...
bn1 . . . bnn






, T =







t11 . . . t1n... ...
tn1 . . . tnn






, U =







u11 . . . u1n... ...
un1 . . . unn






.

The matrix (4) 
an be rewritten in the following form:
H =









a C x Y

C∗ B Z∗ T

x Z 0 0

Y ∗ T ∗ 0 U









. (5)
The symbol 0 in the right-bottom blo
k has three di�erent meanings. It denotes 0,
[

0 . . . 0
] or 





0...
0






respe
tively. We have the following

Proposition 3 ([MM3℄). Let φ : M2(C) → Mn+1(C) be a positive map with the Choimatrix of the form (5). Then the following relations hold:



252 W. A. MAJEWSKI AND M. MARCINIAK1. a ≥ 0 and B, U are positive matri
es,2. if a = 0 then C = 0, and if a > 0 then C∗C ≤ aB,3. x = 0,4. the matrix [

B T

T ∗ U

]

∈M2(Mn(C)) is blo
k-positive.In the example below, we will be 
on
erned with the two-parameter family of nonde-
omposable maps (
f. [Tang℄). Here the important point to note is the fa
t that P(2, 4)and P(3, 3) are the lowest dimensional 
ases having nonde
omposable maps. Thereforethe detailed analysis of su
h maps should yield ne
essary information for explanations ofthe o

urren
e of nonde
omposability.Example 4. Let φ0 : M2(C) →M4(C) be the linear map de�ned by
φ0

([

a b

c d

])

=









(1 − ε)a+ µ2d −b µc −µd
−c a+ 2d −2b 0

µb −2c 2a+ 2d −2b

−µd 0 −2c a+ d









, (6)
where 0 < µ < 1 and 0 < ε ≤ 1

6
µ2. It is proved in [Tang℄ that φ0 is nonde
omposable.One 
an see that φ0 has the following Choi matrix:

Hφ0
=



























1 − ε 0 0 0 0 −1 0 0

0 1 0 0 0 0 −2 0

0 0 2 0 µ 0 0 −2

0 0 0 1 0 0 0 0

0 0 µ 0 µ2 0 0 −µ
−1 0 0 0 0 2 0 0

0 −2 0 0 0 0 2 0

0 0 −2 0 −µ 0 0 1



























. (7)
Observe that

φ0(I) =









1 − ε+ µ2 0 0 −µ
0 3 0 0

0 0 4 0

−µ 0 0 2









.

Let ρ =
√

1 − ε+ µ2 and
δ =

∣

∣

∣

∣

1 − ε+ µ2 −µ
−µ 2

∣

∣

∣

∣

1/2

=
√

2 − 2ε+ µ2.Then φ0(I)
−1/2 is of the form

φ0(I)
−1/2 =



















β

δ
0 0 −γ

δ

0
1√
3

0 0

0 0
1

2
0

−γ
δ

0 0
α

δ





















STRUCTURE OF POSITIVE MAPS 253where and α, β > 0, γ ∈ R are su
h that
α2 + γ2 = ρ2,

β2 + γ2 = 2,

(α+ β)γ = −µ.
(8)

Let us de�ne φ1 : M2(C) →M4(C) by
φ1(A) = φ0(I)

−1/2φ0(A)φ0(I)
−1/2, A ∈M2(C).Then

φ1(E11) =





















(1 − ε)β2 + γ2

δ2
0 0 − [(1 − ε)β + α]γ

δ2

0
1

3
0 0

0 0
1

2
0

− [(1 − ε)β + α]γ

δ2
0 0

(1 − ε)γ2 + α2

δ2





















,

φ1(E22) =





















(µβ + γ)2

δ2
0 0 − (µβ + γ)(µγ + α)

δ2

0
2

3
0 0

0 0
1

2
0

− (µβ + γ)(µγ + α)

δ2
0 0

(µγ + α)2

δ2





















,

φ1(E12) =





















0 − β

δ
√

3
0 0

0 0 − 1√
3

0

µβ + 2γ

2δ
0 0 −µγ + 2α

2δ
0

γ

δ
√

3
0 0





















.

One 
an dedu
e from (8) that
(µγ + α)2 + (µβ + γ)2 = ρ2. (9)Let

W =

















µγ + α
√

1 − ε+ µ2
0 0

µβ + γ
√

1 − ε+ µ2

0 1 0 0

0 0 1 0
µβ + γ

√

1 − ε+ µ2
0 0 − µγ + α

√

1 − ε+ µ2

















.

It follows from (9) that W is a unitary matrix. De�ne φ : M2(C) → M4(C) by φ(A) =
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W ∗φ1(A)W . Then the Choi matrix of φ is of the form

Hφ =



















































1 0 0 0 0 − 1√
3ρ

0 0

0
1

3
0 0 0 0 − 1√

3
0

0 0
1

2
0 − µ

2ρ
0 0

δ

2ρ

0 0 0
1 − ε

δ2
0 − µ√

3δρ
0 0

0 0 − µ

2ρ
0 0 0 0 0

− 1√
3ρ

0 0 − µ√
3δρ

0
2

3
0 0

0 − 1√
3

0 0 0 0
1

2
0

0 0
δ

2ρ
0 0 0 0

ρ2

δ2



















































. (10)

One 
an see that ψ([

0 0

0 1

])









1
0
0
0









= 0, so ψ ∈ Fη,ξ (
f. Theorem 2), where η =

[

0
1

]

and ξ =









1
0
0
0









.
Observe that blo
ks whi
h form the Choi matrix (10) as in (5) are of the form

a = 1, C = 0, Y =

[

− 1√
3δ

0 0

]

, Z =
[

0 − µ

2ρ
0

]

,

B =











1

3
0 0

0
1

2
0

0 0
1 − ε

δ2











, U =













2

3
0 0

0
1

2
0

0 0
ρ2

δ2













, T =













0 − 1√
3

0

0 0
δ

2ρ
− µ√

3δρ
0 0













.

It is worth observing that the ve
tors C, Y, Z are orthogonal, the matri
es B,U arediagonal, while T is �
omplementary� to the diagonal matri
es B and U . This observationis useful in understanding the pe
uliarity of nonde
omposable mapsIn the sequel we will need the following te
hni
alities. For X =
[

x1 . . . xn

]

∈
M1,n(C) we de�ne ‖X‖ = (

∑n
i=1

|xi|2)1/2. By |X| we denote the square (n × n)-matrix
(X∗X)1/2. We identify elements of Mn,1(C) with ve
tors from C

n and for any X ∈
M1,n(C) de�ne a unit ve
tor ξX ∈ Cn by ξX = ‖X‖−1X∗.Proposition 5. Let X,X1, X2 ∈M1,n(C). Then

(1) |X| = ‖X‖PξX
, where Pξ denotes the orthogonal proje
tion onto the one-dimen-sional subspa
e in C

n generated by a ve
tor ξ ∈ C
n;

(2) |X1||X2| = 〈ξX1
, ξX2

〉X∗
1X2.



STRUCTURE OF POSITIVE MAPS 255Proof. (1) Let η ∈ C
n. Sin
e η is 
onsidered also as an element of Mn,1(C) the multipli-
ation of matri
es Xη makes sense. As a result we obtain a 1 × 1-matrix whi
h 
an beinterpreted as a number. With this identi�
ation we have the equality

Xη = 〈X∗, η〉where X∗ on the right hand side is 
onsidered as a ve
tor from C
n, and 〈·, ·〉 denotes theusual s
alar produ
t in Cn. Now we 
an 
al
ulate

〈η,X∗Xη〉 = 〈Xη,Xη〉 = ‖Xη‖2 = |〈X∗, η〉|2 = ‖X‖2|〈ξX , η〉|2.(2) If X1 = 0 or X2 = 0 then the equality is obvious. In the 
ase both X1 and X2 arenonzero the equality follows from the following 
omputations
|X1||X2| = ‖X1‖−1‖X2‖−1|X1|2|X2|2 = ‖X1‖−1‖X2‖−1X∗

1X1X
∗
2X2

= ‖X1‖−1‖X2‖−1X∗
1 (X1X

∗
2 )X2 = ‖X1‖−1‖X2‖−1〈X∗

1 , X
∗
2 〉X∗

1X2

= 〈ξX1
, ξX2

〉X∗
1X2.To pro
eed with the study of Tang's maps we re
all some general properties of mapsin P(2, n+ 1) (
f. [MM3℄). We start withProposition 6 ([MM3℄). A map φ with the Choi matrix of the form
H =









a C 0 Y

C∗ B Z∗ T

0 Z 0 0

Y ∗ T ∗ 0 U









. (11)
is positive if and only if the inequality

∣

∣

∣
〈Y ∗,Γ τ 〉 + 〈Z∗,Γ τ 〉 + Tr (ΛτT )

∣

∣

∣

2

≤ [αa+ Tr (ΛτB) + 2ℜ{〈C∗,Γ τ 〉}] Tr (ΛτU) (12)
holds for every α ∈ C, matri
es Γ =

[

γ1 . . . γn

] and Λ =







λ11 . . . λ1n... ...
λn1 . . . λnn






,

γi ∈ C, λij ∈ C for i, j = 1, 2, . . . , n, su
h that1. α ≥ 0 and Λ ≥ 0,2. Γ
∗
Γ ≤ αΛ.The supers
ript τ denotes the transposition of matri
es.Theorem 7 ([MM3℄). If the assumptions of Proposition 3 are ful�lled, then

|Y | + |Z| ≤ a1/2U1/2. (13)Remark 8. One 
an easily 
he
k that the nonde
omposable maps des
ribed in Example 4ful�ll the above inequality. It is easy to 
he
k that in this 
ase the inequality is stri
t.This observation will be 
ru
ial for the next se
tion.As we mentioned, for P(2, n), n > 3, there are nonde
omposable maps. The proposi-tion below provides the 
hara
terization of 
ompletely positive and 
ompletely 
opositive
omponents of P(2, n).



256 W. A. MAJEWSKI AND M. MARCINIAKProposition 9 ([MM3℄). Let φ : M2(C) →Mn+1(C) be a linear map with the Choi ma-trix of the form (11). Then the map φ is 
ompletely positive (resp. 
ompletely 
opositive)if and only if the following 
onditions hold:(1) Z = 0 (resp. Y = 0),(2) the matrix 



a C Y

C∗ B T

Y ∗ T ∗ U



 (resp. 



a C Z

C∗ B T ∗

Z∗ T U



) is a positive element of thealgebra M2n+1(C).In parti
ular, the 
ondition (2) implies:(3) if B is an invertible matrix, then T ∗B−1T ≤ U (resp. TB−1T ∗ ≤ U),(4) C∗C ≤ aB,(5) Y ∗Y ≤ aU (resp. Z∗Z ≤ aU).This proposition yields information about possible splitting of a de
omposable mapinto 
ompletely positive and 
ompletely 
opositive 
omponents. To go one step furtherlet us make the following observation. Let φ : Mm(C) →Mn(C) be a de
omposable mapand φ = φ1 + φ2 for some 
ompletely positive φ1 and 
ompletely 
opositive φ2. Thenfrom the Kadison inequality we easily obtain
φ(Eij)

∗φ(Eij) ≤ ‖φ(I)‖ (φ1(Eii) + φ2(Ejj)) (14)for i, j = 1, 2, . . . ,m.Assume now that φ : M2(C) → Mn+1(C) has the Choi matrix of the form (5). Itfollows from Proposition 9 that the Choi matri
es of φ1 and φ2 are respe
tively
H1 =









a1 C1 0 Y

C∗
1 B1 0 T1

0 0 0 0

Y ∗ T ∗
1 0 U1









, H2 =









a2 C2 0 0

C∗
2 B2 Z∗ T2

0 Z 0 0

0 T ∗
2 0 U2









. (15)
Clearly, H1 +H2 = H, where H is the Choi matrix 
orresponding to φ. The inequal-ity (14) leads to additional relations between 
omponents of the Choi matri
es

[

‖Z‖2 ZT

T ∗Z∗ |Y |2 + T ∗T

]

≤ ‖φ(I)‖
[

a1 C1

C∗
1 B1 + U2

]

and
[

‖Y ‖2 Y T ∗

TY ∗ |Z|2 + TT ∗

]

≤ ‖φ(I)‖
[

a2 C2

C∗
2 B2 + U1

]

.It is worth pointing out that the above inequalities give a partial answer to Choi's ques-tion (
f. [Choi2℄). Furthermore, turning to Tang's maps one 
an observe that the matrix
orresponding to φ(Eij)
∗φ(Eij) is relatively large, whi
h pre
ludes the possibility of de-
omposition of these maps.3. On the stru
ture of elements of P(2, n + 1). Giving a full des
ription of thesituation in P(2, 2) in [MM2℄ we proved that if φ : M2(C) → M2(C) is from a large
lass of extremal positive unital maps, then the 
onstituent maps φ1 and φ2 are uniquely
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f. Theorem 2.7 in [MM2℄). We re
all that the Choi matrix of su
h anextremal map φ : M2(C) →M2(C) is of the form (
f. (3))
Hφ =









1 0 0 y

0 1 − u z t

0 z 0 0

y t 0 u









, (16)
where, in parti
ular, the following equality is satis�ed (
f. (III) from Se
tion 1):

|y| + |z| = u1/2. (17)In this se
tion, motivated by the results given in the previous se
tion (we `quantized'the relations (I)-(III) given at the end of Se
tion 1), we 
onsider maps φ : M2(C) →
Mn+1(C). If su
h a map is positive unital and φ ∈ Fe2,f1

then its Choi matrix has theform








1 0 0 Y

0 B Z∗ T

0 Z 0 0

Y ∗ T ∗ 0 U









, (18)
where B and U are positive matri
es su
h that B + U = 1 and the 
onditions listed inPropositions 3 and 6 are satis�ed.Our obje
t is to examine 
onsequen
es of the property

|Y | + |Z| = U1/2 (19)whi
h for n ≥ 1 is a natural analog of (17).First, we re
all the following te
hni
alLemma 10. Let A =

[

P S

S∗ Q

]

∈ M2(Mn(C)), where P,Q, S ∈ Mn(C), and P,Q ≥ 0.The following are equivalent:(i) A is blo
k-positive;(ii) pP + sS + sS∗ + qQ ≥ 0 for all numbers p, q, s su
h that p, q ≥ 0 and |s|2 ≤ pq;(iii) |〈η, Sη〉|2 ≤ 〈η, Pη〉〈η,Qη〉 for every η ∈ Cn.Proof. (i)⇒(ii). Let η ∈ Cn. It follows from the de�nition of blo
k-positivity (
f. [MM2℄)that the matrix
[

〈η, Pη〉 〈η, Sη〉
〈η, S∗η〉 〈η,Qη〉

]

is positive. Hen
e the matrix
[

〈η, pPη〉 〈η, sSη〉
〈η, sS∗η〉 〈η, qQη〉

]

being a Hadamard produ
t of two positive matri
es is positive as well. Consequently,
〈η, (pP + sS + sS∗ + qQ)η〉 ≥ 0.Sin
e η is arbitrary, (ii) is proved.
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k-positive one should show that for any η ∈ C
n and

µ1, µ2 ∈ C one has
|µ1|2〈η, Pη〉 + 2ℜ{µ1µ2〈η, Sη〉} + |µ2|2〈η,Qη〉 ≥ 0.Observe that p = |µ1|2, q = |µ2|2, s = µ1µ2 ful�ll p, q ≥ 0 and |s|2 = pq. So,

|µ1|2〈η, Pη〉 + 2ℜ{µ1µ2〈η, Sη〉} + |µ2|2〈η,Qη〉 = 〈η, (pP + sS + sS∗ + qQ)η〉 ≥ 0.(i)⇔(iii). Let η ∈ Cn. The positivity of the matrix [

〈η, Pη〉 〈η, Sη〉
〈η, S∗η〉 〈η,Qη〉

] is equivalentto non-negativity of its determinant 〈η, Pη〉〈η,Qη〉 − |〈η, Sη〉|2.Here we give another (
f. Proposition 6) 
hara
terisation of positive maps in thelanguage of their Choi matri
esProposition 11. Let φ : M2(C) →Mn+1(C) be a linear unital map with the Choi matrixof the form








1 0 0 Y

0 B Z∗ T

0 Z 0 0

Y ∗ T ∗ 0 U









(20)
where B,U, T ∈ Mn(C), Y, Z ∈ M1,n(C), and B,U ≥ 0. Then the map φ is positive ifand only if

pB + sT + sT ∗ + qU ≥ 0and
(sY ∗ + sZ∗)(sY + sZ) ≤ p2B + p(sT + sT ∗) + pqU (21)for every p, q, s ∈ C su
h that p, q ≥ 0 and |s|2 ≤ pq.Proof. It follows from the de�nition of the Choi matrix and from (20) that

φ

([

p s

v q

])

=

[

p sY + vZ

sZ∗ + vY ∗ pB + sT + vT ∗ + qU

]

.So, the map φ is positive if and only if the matrix
[

p sY + sZ

sZ∗ + sY ∗ pB + sT + sT ∗ + qU

]

. (22)is a positive element of Mn+1(C) for numbers p, q, s su
h that p, q ≥ 0 and |s|2 ≤ pq (i.e.su
h that the matrix [

p s

s q

] is positive in M2(C)). The positivity of the matrix (22)is equivalent to both inequalities from the statement of the proposition.The following generalizes Lemma 8.10 from [S℄.Proposition 12. Let φ be a positive unital map with the Choi matrix (20). Assume that
B is invertible. Then the matrix

[

2B T

T ∗ U − |Y |2 − |Z|2
] (23)is blo
k-positive.
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n, η 6= 0, and p, q, s ∈ C be numbers su
h that p, q ≥ 0 and |s|2 = pq.Then from (21) we have

|s|2〈η, (|Y |2 + |Z|2)η〉 + 2ℜ
{

s2〈η, Z∗Y η〉
}

≤ p2〈η,Bη〉 + 2pℜ{s〈η, Tη〉} + pq〈η, Uη〉.Repla
e s in this inequality by is and obtain
|s|2〈η, (|Y |2 + |Z|2)η〉 − 2ℜ

{

s2〈η, Z∗Y η〉
}

≤ p2〈η,Bη〉 + 2pℜ{is〈η, Tη〉} + pq〈η, Uη〉.Adding the above two inequalities one gets
|s|2〈η, (|Y |2 + |Z|2)η〉 ≤ p2〈η,Bη〉 + pℜ{(1 + i)s〈η, Tη〉} + pq〈η, Uη〉. (24)Let pq = 1, and s be su
h that |s| = 1 and ℜ{(1 + i)s〈η, Tη〉} = −

√
2 |〈η, Tη〉|. Then theinequality (24) takes the form

〈η, (|Y |2 + |Z|2)η〉 ≤ p2〈η,Bη〉 −
√

2 p |〈η, Tη〉| + 〈η, Uη〉. (25)Following the argument of Størmer in the proof of Lemma 8.10 in [S℄ we observe thatthe fun
tion f(x) = 〈η,Bη〉x2 −
√

2 |〈η, Tη〉|x + 〈η, Uη〉 has its minimum for x =

2−1/2〈η,Bη〉−1|〈η, Tη〉|. Hen
e, (25) leads to the inequality
〈η, (|Y |2 + |Z|2)η〉 ≤ −2−1〈η,Bη〉−1|〈η, Tη〉|2 + 〈η, Uη〉and �nally

|〈η, Tη〉|2 ≤ 2〈η,Bη〉〈η, (U − |Y |2 − |Z|2)η〉.By Lemma 10 this implies blo
k-positivity of the matrix (23).Our next results show that the property (19) in the 
ase n ≥ 2 has rather restri
tive
onsequen
es.Proposition 13. Let φ : M2(C) → Mn+1(C), n ≥ 2, be a positive linear map with theChoi matrix of the form (20). Assume |Y | + |Z| = U1/2. Then Y and Z are linearlydependent.Proof. Assume on the 
ontrary that Y and Z are linearly independent. We will showthat φ 
an not be positive in this 
ase. To this end let p, q, s be numbers su
h that p > 0,
q > 0 and |s|2 ≤ pq and de�ne

D = p2B + p(sT + sT ∗) + pqU − (sY ∗ + sZ∗)(sY + sZ).By Proposition 11 (
f. (21)) it is enough to �nd numbers p, q, s and a ve
tor ξ0 ∈ Cn su
hthat 〈ξ0, Dξ0〉 < 0.It follows from the assumption and Proposition 5 that
D = p2B + p(sT + sT ∗) + pq(|Y | + |Z|)2

− |s|2(|Y |2 + |Z|2) − s2Y ∗Z − s2Z∗Y

= p2B + (pq − |s|2)(|Y |2 + |Z|2) + pq(|Y | |Z| + |Z| |Y |)
+ p(sT + sT ∗) − s2Y ∗Z − s2Z∗Y

= p2B + (pq − |s|2)(|Y |2 + |Z|2) + psT + psT ∗

+ (pq〈ξY , ξZ〉 − s2)Y ∗Z + (pq〈ξZ , ξY 〉 − s2)Z∗Y.
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n. Then
〈ξ,Dξ〉 = p2〈ξ, Bξ〉 + (pq − |s|2)〈ξ, (|Y |2 + |Z|2)ξ〉 + 2pℜ{s〈ξ, T ξ〉}

+ 2ℜ{(pq〈ξY , ξZ〉 − s2)〈ξ, Y ∗Zξ〉}
= p2〈ξ, Bξ〉 + (pq − |s|2)〈ξ, (|Y |2 + |Z|2)ξ〉 + 2pℜ{s〈ξ, T ξ〉}

+ 2‖Y ‖‖Z‖ℜ{(pq〈ξY , ξZ〉 − s2)〈ξ, ξY 〉〈ξZ , ξ〉}.Let ξ0 = ξY + ξZ and s = (pq)1/2eiθ for some θ ∈ [0, 2π). Then
〈ξ0, Dξ0〉 = p2〈ξ0, Bξ0〉 + 2p3/2q1/2 ℜ

{

eiθ〈ξ0, T ξ0〉
}

+ 2pq‖Y ‖‖Z‖ℜ{(〈ξZ , ξY 〉 − e−2iθ) (1 + 〈ξY , ξZ〉)2}.By the assumption ξY and ξZ are linearly dependent. Moreover ‖ξY ‖ = ‖ξZ‖ = 1. Thisimplies that |〈ξZ , ξY 〉| < 1, so (1 + 〈ξZ , ξY 〉)2 6= 0. Now, 
hoose θ su
h that
ℜ

{

e−2iθ(1 + 〈ξZ , ξY 〉)2
}

= |1 + 〈ξZ , ξY 〉|2.Then
〈ξ0, Dξ0〉 = p2〈ξ0, Bξ0〉 + 2p3/2q1/2 ℜ

{

eiθ〈ξ0, T ξ0〉
}

+ 2pq‖Y ‖ ‖Z‖
[

ℜ
{

〈ξY , ξZ〉(1 + 〈ξZ , ξY 〉)2
}

− |1 + 〈ξZ , ξY 〉|2
]

.Observe that
ℜ

{

〈ξY , ξZ〉(1 + 〈ξZ , ξY 〉)2
}

< |1 + 〈ξZ , ξY 〉|2,so it is possible to �nd p su�
iently small and q su�
iently large so that 〈ξ0, Dξ0〉 isnegative. This ends the proof.Proposition 14. Let φ : M2(C) → Mn+1(C) satisfy the assumptions of the previousProposition. If Z = 0 and ‖Y ‖ < 1 (resp. Y = 0 and ‖Z‖ < 1) then φ is 
ompletelypositive (resp. 
ompletely 
opositive).Proof. It follows that U = |Y |2. Moreover, the assumption ‖Y ‖ < 1 implies that B =

1− |Y |2 is invertible. As we also have U − |Y |2 − |Z|2 = 0, by Proposition 12 the matrix
[

2B T

T ∗ 0

] is blo
k-positive. Hen
e T = 0. We 
on
lude that the Choi matrix of φ hasthe form








1 0 0 Y

0 1 − |Y |2 0 0

0 0 0 0

Y ∗ 0 0 |Y |2









.

In order to �nish the proof one should show (
f. Proposition 9) that the matrix




1 0 Y

0 1 − |Y |2 0

Y ∗ 0 |Y |2





is positive, but this 
an be done by straightforward 
omputations.The proof in the 
ase Y = 0 follows in the same way.As a 
onsequen
e of the above results we get the following des
ription of maps satis-fying the �quantized� properties (17).



STRUCTURE OF POSITIVE MAPS 261Theorem 15. Let φ : M2(C) →Mn+1(C) be a positive unital map with the Choi matrixof the form (20) where |Y | + |Z| = U1/2. Then(1) there are ve
tors ξ ∈ C
2 and η0 ∈ C

n+1 su
h that
φ ∈

⋂

η⊥η0

Fξ,η; (26)(2) φ is unitarily equivalent to a map with the Choi matrix of the form


















1 0 0 0 0 y

0 1 0 0 0 W ∗

0 0 1 − u z V t

0 0 z 0 0 0

0 0 V ∗ 0 0 0

y W t 0 0 u



















(27)
where in ea
h blo
k there are numbers on positions (11), (13), (31) and (33), one-row matri
es from M1,n−1(C) on positions (12) and (32), one-
olumn matri
esfrom Mn−1,1(C) on positions (21) and (23), and square matri
es from Mn−1(C)on positions (22). Here u = (|y|+ |z|)2. Moreover, 
oe�
ients satisfy the inequality

|〈ρ, Y ∗
1 〉| + |〈ρ, Z∗

1 〉| ≤ u1/2 (28)for any unit ve
tor ρ ∈ Cn where Y1, Z1 ∈M1,n(C) are de�ned as
Y1 =

[

y W
]

, Z1 =
[

z V
]

.Proof. It follows from Proposition 13 that there is a unit ve
tor η0 ∈ Cn su
h that
Y ∗ = yη0 and Z∗ = zη0 for some y, z ∈ C. Hen
e |Y | = |y|Pη0

, |Z| = |z|Pη0
, and

U = (|y| + |z|)2Pη0
, where Pη0

is the orthogonal proje
tor onto the one-dimensionalsubspa
e generated by the ve
tor η0. As
φ(Pe2

) =

[

0 0

0 U

]

∈Mn+1(C)then φ(Pe2
)η = 0 for any η orthogonal to η0. So, from Theorem 2 we obtained (26).By 
hoosing a suitable basis of Cn+1 we may assume that fn+1 = η0. Then the Choimatrix (20) takes the form







































1 0 · · · 0 0 0 0 · · · 0 y

0 1 · · · 0 0 0 t11 · · · t1,n−1 t1n... ... ... ... ... ... ... ...
0 0 · · · 1 0 0 tn−1,1 · · · tn−1,n−1 tn−1,n

0 0 · · · 0 1 − u z tn1 · · · tn,n−1 tnn

0 0 · · · 0 z 0 0 · · · 0 0

0 t11 · · · tn−1,1 tn1 0 0 · · · 0 0... ... ... ... ... ... ... ...
0 t1,n−1 · · · tn−1,n−1 tn,n−1 0 0 · · · 0 0

y t1n · · · tn−1,n tnn 0 0 · · · 0 u







































.
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k-positivity of this matrix implies that the matrix






















1 · · · 0 t11 · · · t1,n−1... ... ... ...
0 · · · 1 t1,n−1 · · · tn−1,n−1

t11 · · · tn−1,1 0 · · · 0... ... ... ...
t1,n−1 · · · tn−1,n−1 0 · · · 0























.

is also blo
k-positive, so tij = 0 for i, j = 1, 2, . . . , n− 1. Thus we obtained that the Choimatrix has the form (27).Now, for any ρ ∈ Cn, where ρ =
[

ρ1 . . . ρn

], de�ne the following matrix from
Mn+1,2(C):

Vρ =

[

ρ1 . . . ρn 0

0 . . . 0 1

]

.One 
an easily 
he
k that V V ∗ = 1, so the map ψρ : Mn+1(C) → M2(C) : A 7→ V AV ∗is unital and 
ompletely positive. As a 
onsequen
e, the map ψρ ◦ φ : M2(C) → M2(C)is positive and unital. Moreover, by a straightforward 
al
ulation one 
an 
he
k that theChoi matrix of this map has the form










1 0 0 〈ρ, Y ∗
1 〉

0 1 − u 〈ρ, Z∗
1 〉 t

0 〈ρ, Z∗
1 〉 0 0

〈ρ, Y ∗
1 〉 t 0 u











.

The inequality (28) follows from (III) in Se
tion 1.4. Con
lusions. In our previous paper [MM2℄ we proved that for any positive unitalmap φ : M2(C) → M2(C) from some maximal fa
e there exists a unique de
ompositionof φ onto 
ompletely positive and 
ompletely 
opositive parts. To prove this result wehave used the te
hniques based on the so 
alled Choi matrix (see (3)). It turned outthat these te
hniques 
an be extended for an analysis of maps φ : M2(C) → Mn(C)(n ≥ 3). In parti
ular, we have shown that the appropriate Choi matrix (see (5)) hasvery analogous form but some of the 
oe�
ients have to be matri
es. In other words,there is some kind of �quantization� of the lowest dimensional 
ase. In Propositions 3,6 and 12 and Theorem 7 we have shown several ne
essary 
onditions for positivity ofthe map φ in terms of its Choi matrix while in Proposition 9 we did it for 
ompletepositivity. It is worth pointing out these 
onditions are generalizations of those given in[S℄ and [MM2℄. Further we emphasize that Theorem 7 demonstrates rather strikingly thata generalization of the inequality (III) from Se
tion 1 is valid. Furthermore, guided by the
2 × 2 
ase, the natural strengthening of the (in)equality (III) was examined. To this endin Proposition 13 we show that this quantized 
ondition is very restri
tive. This gives thepossibility to prove Theorem 15 whi
h fully 
hara
terizes maps from M2(C) into Mn(C)satisfying the 
ondition (28).



STRUCTURE OF POSITIVE MAPS 263We end this paper by a remark that Theorem 15 gives a very useful tool for des
ribingproperties of extremal maps in P(2, n+1) and it seems that following this line of resear
h
an give a possibility to 
onstru
t some new examples of nonde
omposable maps. Thedetails will be given in forth
oming publi
ations.
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