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Abstract. We consider equivariant solutions of Schrödinger equations on C\{0} with harmonic

oscillator potentials. We determine the spaces of equivariant quantum states in three cases: for

an isotropic and anisotropic harmonic oscillator potential centered at 0, and for a potential not

centered at 0.

1. Introduction. We deal here with a particular case of the topological quantum me-

chanics (TQM). The classical configuration space in TQM is non-simply connected [1],

[2] and quantum states (or in other words wave functions) are suitable functions defined

on the universal covering of the configuration space, or multivalued functions defined on

the configuration space [3]–[5].

We consider the system whose configuration space is the punctured plane C\{0}. We

study Hamiltonians with harmonic oscillator potentials. At first we consider the isotropic

oscillator potential centered at the zero point. Using a suitable property of evolution

operators we show that the space of equivariant quantum states in this case is the same

as in the free particle case, so it is an infinite dimensional Hilbert space. Further we work

with an anisotropic harmonic oscillator potential. In a similar way we show that the space

of quantum states is the zero space. Finally we consider a harmonic oscillator potential

centered at a point z0 6= 0. Using a power resolution method we get that there is no

equivariant solution of the stationary Schrödinger equation. This means that the space

of equivariant quantum states of this Hamiltonian is also the zero space.
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The paper is organised as follows. In section 2 we study some properties of evolution

operators of a free particle and harmonic oscillator on a straight line. In section 3 we give

some information about TQM. In section 4 we show that the space of quantum states

in TQM is not the space of all equivariant square integrable functions and we give a

consistent definition of the quantum states. In sections 5-7 we determine the space of

quantum states for harmonic oscillator potentials in the TQM.

2. Some properties of evolution operators and propagators. Now let us deal

with some problems in quantum mechanics on a straight line. We identify the straight

line with the real axis R and take the standard metric d(x0, x1) = |x0−x1| for x0, x1 ∈ R.

Then the Laplace operator is the second derivative ∆ = d2

dx2 . The kinetic energy operator

is

(1) T = − 1

2m

d2

dx2
,

we put here and in the sequel ~ = 1. To study the properties of evolution operators we

use propagator as the integral kernel of evolution operator. In the following lemma we

give some properties of integral kernels and evolution operators.

Lemma 1. Let the kernel of an operator A be K(x, x0). Then

(2) Ka,b(x, x0) := K(bx, ax0)

is the kernel of the operator

(3) Aa,b = a−1d(b) ◦ A ◦ d(a−1) ,

where d denotes the dilatation operator

(4) d(a)f(x) = f(ax).

We omit the elementary proof.

Lemma 2. The evolution operator of the free particle of mass m satisfies the following

formula

(5) U(t) = d

(
1√
t

)
◦ U(1) ◦ d(

√
t).

Proof. The propagator of a free particle [6]

(6) K0(x, x0, t) =

√
m

2πit
exp

{
im

2t
|x − xo|2

}

satisfies

(7) K0(x, x0, t) =
1√
t
K0

(
x√
t
,
x0√

t
, 1

)
.

Using lemma 1 we get (5).

Lemma 3. The evolution operator Uω of a particle of mass m in the harmonic oscillator

potential satisfies the following formula
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Uω(t) =

√
1

cosωt
exp

{
− imω

2
tan(ωt)x2

}
(8)

× d

(√
ω

sin ωt cos ωt

)
◦ U0(1) ◦ d

(√
tan ωt

ω

)
,

where ω is the frequency of the oscillator.

Proof. The Hamiltonian of the oscillator is

(9) Hω = T +
1

2
mω2|x|2 ,

where 1
2mω2|x|2 is the potential. The propagator of the system is given by the formula

[6]

Kω(x, x0, t) =

√
mω

2πi sin ωt
(10)

× exp

{
imω

2 sin ωt
[(x2 + xo

2) cosωt − 2xx0]

}
.

So the propagator Kω can be expressed by means of K0

Kω(x, x0, t) =

√
ω

sin ωt
exp

{
− imω

2
tan(ωt)x2

}
(11)

× K0

(√
ω

sin ωt cos ωt
x,

√
ω cotωtx0, 1

)
.

From lemma 1 we get (10).

3. Topological quantum mechanics. Let us consider a physical system with a non-

simply connected space M of classical configurations. Let

(12) χ : π1(M) → U(1)

a unitary one dimensional representation of the fundamental group of M , and let

(13) L[γ] : M̃ → M̃ , L[γ](m̃) = L([γ], m̃)

be the standard left free action of the fundamental group on the universal covering M̃

[7]. A function f : M̃ → C is called χ-equivariant if for any [γ] ∈ π1(M), m̃ ∈ M̃ the

following equality

(14) f(L([γ], m̃)) = χ([γ])f(m̃)

is satisfied.

Further we assume that the configuration space is a Riemannian space, and the cov-

ering is a Riemannian covering. This means that M̃ is also Riemannian space and the

covering projection

(15) p : M̃ → M

is a local isometry. So if g (g̃ resp.) is the metric on M (M̃ resp.) then

(16) g̃ = p∗g.

We assume also that dµ is the Riemannian volume form on M .
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Let f and g be two χ-equivariant functions. We see that the product fg is a π1(M)-

invariant function (g denotes here the complex conjugation of g). So we can identify fg

with a function defined on the base space M . Further by means of the identification we

define the scalar product of χ-equivariant functions by the formula

(17) 〈f, g〉 =

∫

M

fgdµ,

where dµ is the measure on M . The space of quantum states in TQM is usually defined

as the Hilbert space of square-integrable χ-equivariant functions

(18) H = L2
χ(M,C, dµ)

with the scalar product (17). We show by an example in section 4 that this definition

should be complemented by a physical condition connected with the evolution of a topo-

logical quantum system.

The kinetic energy operator of a one particle is

(19) T = − 1

2m
∆̃,

where ∆̃ is the Laplace operator on M̃ . The equality (16) gives

(20) ∆̃ = p∗∆.

Now let us consider a system whose configuration space is C \ {0}. The fundamental

group of the space is isomorphic to the additive group of integers

(21) π1(M) = Z.

We define the unitary representation χν by the condition

(22) χν(1) = e2πiν ,

where ν ∈ [0, 1) is the so called encircling parameter. The functions

(23) f1(z) = zνg1(z, z∗), f2(z) = z∗
1−ν

g2(z, z∗)

are examples of χν-equivariant functions, where g1, g2 are power series of the holomorphic

and antiholomorphic variables with integer exponents, z = x + iy, z∗ = x− iy, x, y ∈ R,

x2 + y2 > 0.

4. The Schrödinger equation and the problem of the space of quantum states

in TQM. Let us consider the Schrödinger equation on the punctured plane C \ {0}

(24) HΨ = i
∂Ψ

∂t
,

where the Hamiltonian H is the sum of the kinetic energy operator

(25) T = −α
∂2

∂z∂z∗
, α =

2

m

and a potential energy V . For V = 0 we have a free particle system. Now we are going

to give a definition of the space of quantum states in the TQM. For this purpose let us

first consider the following example.
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Example. Let

(26) Ψ(z, z∗, t)

be an equivariant solution of the Schrödinger equation with equivariant initial condition

Φ(z, z∗) for the free particle system:

(27) Ψ(z, z∗, 0) = Φ(z, z∗), TΨ = i
∂Ψ

∂t
.

So we can write

(28) Ψ(z, z∗, t) = U0(t)Φ(z, z∗),

where U0(t) is the evolution operator of H0 = T .

Now let us modify the initial condition:

(29) Ψa(z, z∗, 0) = exp[i(a∗z + az∗)]Φ(z, z∗).

Although the initial condition is also an equivariant one, the solution is not equivariant

for t 6= 0:

(30) Ψa(z, z∗, t) = exp[i(−α|a|2t + a∗z + az∗)]Ψ

(
z − a

α
t, z∗ − a∗

α
t, t

)
.

So we see that the space of equivariant functions is not invariant in relation to the

evolution operator of the free particle system.

This example shows that we should reformulate the definition of the space of quantum

states in TQM.

Definition. The Hilbert space of quantum states for a Hamiltonian H is

(31) H = {φ ∈ L2
ν(M,C)|∀t ∈ R : U(t)φ ∈ L2

ν(M,C)}.
The restriction

(32) Ū(t) = U(t)|H
is called the topological evolution operator of the quantum system.

5. Isotropic harmonic oscillator. In this section we consider the isotropic harmonic

oscillator in C \ {0} with the Hamiltonian

(33) Hω = −α
∂2

∂z∂z∗
+

1

2
mω2|z|2.

Theorem 1. The space of χν-equivariant quantum states for the Hamiltonian Hω is the

same as for the free particle Hamiltonian H0 = T .

Proof. From the formula (10) we have that

Uω(t) =

√
1

cos ωt
exp

{
− imω

2
tan(ωt)x2

}
(34)

× D

(√
ω

sin ωt cos ωt

)
◦ U0(1) ◦ D

(√
tanωt

ω

)
,
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where D(a) is the homothety operator centered at 0 with scale a, U0(t) (Uω(t) resp.) is

the evolution operator of TQM for the free particle (for the harmonic oscillator resp.).

So the theorem follows from the next lemma.

Lemma 4.

(35) f ∈ H0 ⇔ ∀a 6= 0 : D(a)f ∈ H0.

Proof. Let

(36) f(z) =
∑

l

∫ ∞

0

fl,EΦl,E(z)dE

be the spectral decomposition of the state f for H0 = T , where E is energy and l is the

repetition index. Then

(37) ‖U0(t)D(a)f‖2

=

∫

M

∫ ∞

0

∫ ∞

0

∑

ll′

exp
[
−ia2(E − E′)

]
fl,Efl′,E′Φl,E(az)Φl′,E′(az)dEdE′dµ(z)

=
1

a2

∫ ∞

0

∑

l

|fl,E |2dE =
1

a2
‖f‖.

6. Anisotropic harmonic oscillator. The next example will be an anisotropic quan-

tum oscillator on C \ {0}. The Hamiltonian of the system is

(38) Hω1,ω2
= −α

∂2

∂z∂z∗
+

1

2
mω1

2x2 +
1

2
mω2

2y2.

Theorem 2. The space of χν-equivariant quantum states for the Hamiltonian Hω1,ω2
is

the zero space.

Proof. From the formula (10) we get that the evolution operator for the system is

Uω1,ω2
(t) =

1√
cos ω1t cosω1t

(39)

× exp

[
−i

m

2
(ω1

2x2 tanω1t + ω2
2y2 tanω1t)

]

× dx

(√
2ω1

sin 2ω1t

)
dy

(√
2ω2

sin 2ω2t

)
U0(1)

× dx

(√
tanω1t

ω1

)
dy

(√
tanω2t

ω2

)
,

where dx (dy resp.) is the dilatation operator in the x (y resp.) direction. Let Φ(z, z∗) =

zνg(z, z∗) be a quantum state from H0. So Φ(z, z∗) belongs to the domain of the operator

U0(1).

The product of operators
(
dx

(√
tan ω1t

ω1

))−1(
dy

−1
(√

tan ω2t
ω2

))−1
deforms the variable

v = ax+ iby to vt = a
√

ω1

tan ω1t
x+ i

√
ω2

tan ω2t
y. For ab > 0 the expression vν = (ax+ iby)ν

is equivariant. Let zt =
√

ω1

tan ω1t
x +

√
ω2

tan ω2t
iy. We see that the expressions zt

ν and
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z∗t
1−ν are not holomorphic so Φ(zt, z

∗
t ) is not a quantum state from H0. Further

(40)

[
dx

(√
tanω1t

ω1

)
dy

(√
tanω2t

ω2

)]−1

Φ(z, z∗) = Φ(zt, z
∗
t )

belongs to the domain of Uω1,ω2
(t) because dx

(√
tan ω1t

ω1

)
dy

(√
tan ω2t

ω2

)
Φ(zt, zt

∗) belongs

to the domain of U(1). This shows that the domain of Uω1,ω2
(t) depends on time:

(41) D(Uω1,ω2
(t)) =

[
dx

(√
tanω1t

ω1

)
dy

(√
tanω2t

ω2

)]−1

D(U(1)).

Moreover for a generic choice of t1, t2 we have

(42) D(Uω1,ω2
(t1)) ∩ D(Uω1,ω2

(t2)) = {0}.

This shows that

Hω1,ω2
= {0}.

Remark. The domain of the evolution operator Uω1,ω2
(t) depends on time, and the

topological evolution operator Ūω1,ω2
(t) is the operator with the zero domain.

7. Noncentral harmonic oscillator. The next example will be a noncentral harmonic

oscillator. This means that the potential is centered at a nonzero point z0, V = 1
2mω2|z−

z0|2. In the sequel we put α = 1, 1
2mω2 = 1.

Theorem 3. The space of equivariant quantum states for the Hamiltonian

(43) Hz0
= − ∂2

∂z∂z∗
+ |z − z0|2

is the zero space.

Proof. We consider the stationary Schrödinger equation

(44) − ∂2

∂z∂z∗
Ψ + |z − z0|2Ψ = EΨ

and we show that there is no solution of the eigenproblem. Let us use the following

substitution

(45) Ψ = exp(−|z − z0|2)Φ.

So for Ψ satisfying (44) the function Φ satisfies the following equation:

(46) − ∂2

∂z∂z∗
Φ + (z − z0)

∂

∂z
Φ + (z∗ − z0

∗)
∂

∂z∗
Φ = λΦ,

where λ = E − 1. We look for a solution in the equivariant form:

(47) Φ =
∑

nm

Anmzn+νz∗
m

.

From the theory of quantum harmonic oscillator [8] we know that the solution Ψ of the

eigenproblem of the harmonic oscillator is a bounded function iff Φ in (47) is a finite sum

of powers of z and z∗. The equation (46) leads to the following birecursion equation for
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the coefficients Anm:

−(ν + n)mAnm = [λ − (n + m + ν) + 2]An−1,m−1(48)

+ z0(ν + n)An,m−1 + z0
∗mAn−1,m.

Let n0 be the greatest number such that An,m = 0 for every m and every n < n0. Then

(49) (ν + n0)mAn0,m = z0(ν + n0)An0,m−1,

so for z0 6= 0 and ν+n0 6= 0 the sum (47) has infinitely many summands. This shows that

there is no χν-equivariant bounded solution of the Schrödinger equation (44) for z0 6= 0

and ν ∈ (0, 1).

8. Concluding remarks. The space of quantum states in TQM depends on the choice

of the Hamiltonian. The problem of quantum states was also discussed in [9]–[11]. In

this paper we have shown that the space of equivariant quantum states for an isotropic

harmonic oscillator on C\{0} is the same as for the free particle system. In the paper [12]

explicit formulas were given for propagators of these Hamiltonians for anyons systems.

For ω tending to zero the propagator of the harmonic oscillator tends to the propagator

of the free particle. So for the evolution operators we have the boundary condition

(50) lim
ω→0

Uω(t) = U0(t)

in the TQM.

For Hamiltonians Hω1,ω2
and Hz0

the space of χν-equivariant quantum states for

ν 6= 0 is the zero space. Also the limits of the topological evolution operators

(51) lim
ω1,ω2→0

Ūω1,ω2
, lim

z0→0
Ūz0

are the zero operators with the zero domain.

In traditional quantum mechanics (ν = 0) the situation is different. The space of

quantum states is the Hilbert space of square-integrable functions, and

(52) lim
ω1,ω2→0

Uω1,ω2
(t) = U0(t).
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