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Abstract. We describe the subspaces of S? (1 < p # 2 < oo) which are the range of a
completely contractive projection.

1. Introduction. The results of this paper are taken from [8]. The study of subspaces
of L? (1 < p # 2 < o0) which are the range of a contractive projection (1-complemented
subspaces in short) begun in the sixties. In [5], R. Douglas proved that a 1-complemented
subspace of L'() is isometric to a certain L'(Q), with Q' C Q. T. Ando showed (in [1])
that the previous result remains valid for 1 < p # 2 < co. We would like to treat this
complementation question for noncommutative LP-spaces but in the category of operator
spaces.

Recall the construction of a noncommutative LP-space associated with a semifinite
von Neumann algebra. Let 1 < p < oo and M a von Neumann algebra equipped with a
normal faithful semifinite trace 7. Consider the set

{we M| |all, = (jz")"/? < oo},

Il - || is a norm and we denote by LP(M,T) its completion; this is the noncommutative
LP-space associated with (M, 7). The first example of this construction is the Schatten
space SP(H) which is the noncommutative LP-space associated with B(H) and the usual
trace. We denote SP = SP(¢?).

Using interpolation, G. Pisier has equipped the Banach space LP(M, ) with an oper-
ator space structure (see [13]); in this category the morphisms are the completely bounded
ones (see e.g. [6], [12] for operator spaces theory). A noncommutative L!-space is just the
predual of a von Neumann algebra. In [9], P.W. Ng and N. Ozawa proved the noncommu-
tative analog of Douglas result, more precisely: a completely 1-complemented subspace
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of the predual of a von Neumann algebra is completely isometric to the predual of a
certain W*-TRO (we recall that a subspace X of B(H) is a W*-TRO if it is w*-closed
and zy*z € X, for any z,y,z € X). When 1 < p # 2 < o0, we know little about com-
pletely 1-complemented subspaces of a given noncommutative LP-space. Our purpose is
to describe the completely 1-complemented subspaces of SP(H). Here we will suppose H
separable but the main results are valid for H non-separable (see [8]).

Concretely, we can define the completely contractive maps of SP(H) as follows. For
x € M,(SP(H)), we define

HfUHsﬁ[SP(H)] = ||IHSP(@$L®2H)-
A linear map T : SP(H) — SP(K) is said to be completely contractive (resp. completely
isometric) if and only if for any n € N,

id, @ T : SP[SP(H)] — S7[S"(K)]

is contractive (resp. isometric). Moreover, T is 2-contractive if and only if idy ® T is
contractive.

Actually, we will need various degrees of complementation. A subspace X C SP(H)
is called 2-1-complemented (resp. completely 1-complemented) if and only if there is a
2-contractive (resp. completely contractive) projection of SP(H) on X.

Now the question is: can we describe the completely 1-complemented subspaces of the
Schatten space SP?

2. Arazy-Friedman’s theorem. Our work is based on [4], where J. Arazy and Y.
Friedman have described 1-complemented subspaces of SP(H), their description uses
classical Cartan factors.
Cartan factors are a special class of JC*-triples. Recall that a subspace X C B(H)
is a JC*-triple if
xx*r € X, forany x € X.

A map T : X — B(H) which preserves the triple-product above is called a triple-
representation.
Up to triple-isomorphism, there are four types of classical Cartan factors:

o U(l,m)=B(2,02).

o U(Il,)={xz € B({2) : t(x) = —x}, here t denotes the transpose map.

o U(IIL,) ={x € B(2) : t(x) =x}.

o U(IV,) = vect{l,w1,...,wn_1}, where the w; denote the fermions (see [7] for details

on the CAR-algebra and fermionic analysis).

As SP is not injective (in the category of operator spaces), we cannot identify its com-
pletely 1-complemented subspaces up to complete isometry. Thus we define an equivalence
relation which preserves the complementation property. Let X C SP(H) and Y C SP(K),
then we say that X and Y are equivalent if there exist partial isometries u € B(K, H),
v € B(H, K) such that

X =uYv and uwuyww* =y, VyeY.
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This equivalence relation is written =. It can easily be proved that if X C SP(H)
and Y C SP(K) are equivalent, then X is respectively 1-complemented, completely
1-complemented, 2-1-complemented in SP(H) if and only if Y is respectively 1-com-
plemented, completely 1-complemented, 2-1-complemented in SP(K).

A reduction of the problem is to decompose the complemented subspace into an
orthogonal sum of its “indecomposable” subspaces. Two subspaces X,Y C SP(H) are
called orthogonal if

ry=xy* =0, VerelX, yeY.

A subspace X C SP is called indecomposable if it cannot be written as the orthogonal
sum of two of its non-trivial subspaces. Moreover X is complemented if and only if its
indecomposable subspaces are complemented.

The main result of [4] could be summarized as follows.

THEOREM 2.1 (Arazy-Friedman). Let 1 < p # 2 < oo and X C SP(H) be an inde-
composable 1-complemented subspace. Then there are two Hilbert spaces K, L, a classical
Cartan factor U, an orthogonal finite family {a;};cs C SP(K) and a family of faithful
triple-representations T; : U — B(L) such that

X:{§;%®@@Lyem}csz®H¢ (2.1)

with U, = U N SP.

In that case, the subspace X is said to be of the type of U.

3. Main results. Clearly S}, (where n,m are countable cardinals) is completely 1-
complemented in SP. Using the description of isometries of S% , in [2], we can show a

little bit more:

PROPOSITION 3.1. Let 1 < p #2 < oo and ¢ : S, — SP(H) be a complete isometry.

n,m

Then the range of © is completely 1-complemented.

The purpose is to prove the converse of the previous proposition, i.e. every completely
1-complemented indecomposable subspace of S? “looks like” an SP .

From Arazy-Friedman’s theorem, the strategy is the following: as SP(H) is smooth
and reflexive, the contractive projection P on a complemented subspace X is unique. For
the spaces of type I, ., (n,m > 2), I, II11, and IV,,, we exhibit this projection. The
complete contractivity of P imposes conditions on the a;’s in (2.1). For the type I; ,,, the
strategy is somewhat different; we examine the contractive projection on a completely
1-complemented subspace of X. Nevertheless, we only use the 2-contractivity of P and
we obtain:

THEOREM 3.2. Let1 < p # 2 < oo and X an indecomposable subspace of SP(H). Suppose
that X is the range of a 2-contractive projection. Then there exist n,m, a Hilbert space
K and an operator a € SP(K) of norm 1 such that

X=oa®Sh,,.
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COROLLARY 3.3. Let 1 < p # 2 < oo and X a subspace of SP(H). The following are
equivalent:

(i) X is completely 1-complemented.

(ii)
(iii)

(iv)

X is the range of a 2-contractive projection.
There exist two sequences (ng), (my), a Hilbert space K and orthogonal operators
ar, € SP(K) of norm 1 such that

X odlar® S

Nk, Mk "

There exist two sequences (ng), (my) such that

X =) 5h completely isometrically.

N, My
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