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Abstract. We scrutinize the possibility of extending the result of [19] to the case of g-deformed
oscillator for ¢ real; for this we exploit the whole range of the deformation parameter as much
as possible. We split the case into two depending on whether a solution of the commutation
relation is bounded or not. Our leitmotif is subnormality.

The deformation parameter ¢ is reshaped and this is what makes our approach effective.
The newly arrived parameter, the operator C', has two remarkable properties: it separates in the
commutation relation the annihilation and creation operators from the deformation as well as
it g-commutes with those two. This is why introducing the operator C' may have far-reaching
consequences.

g-deformations of the quantum harmonic oscillator (the abbreviation the g-oscillator
stands here for it) has been arresting attention of many® resulting among other things
in quantum groups. Besides realizing the ever lasting temptation to generalize matters,
it brings forth new attractive findings. This paper exhibits the spatial side of the story.

The g-oscillator algebra, which is the milieu of our considerations, is generated by
three objects a4, a_ and 1 (the latter being a unit in the algebra) satisfying the commu-
tation relations

a_ay —qaya_ =1; (1)

it goes back to the seventies with [1] as a specimen. The other versions which appear in
the literature are equivalent, and this is described completely in [8] where a list of further
references can be found.
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Looking for *-representations of (1) usually means assuming that a_ = a’ , with the
asterisk denoting the Hilbert space adjoint. Thus what we start with is a given Hilbert
space and the commutation relation

S*S —qSS* =1 (Og,0p)

in it. Of course, ¢ must perforce be real then; this is what we assume in this paper.
An easy-going consequence is

SAMPLE THEOREM. If S is a weighted shift with respect to the basis {€,}52 o and
S*Sf—qSS*f=f, [felinfen}lo,
then Sep, =v/1+q+---+q¢"ent1, n = 0.

‘If S is a weighted shift’—this is usually tacitly assumed when dealing with the
relation (Ogop), like in [5]. It is sometimes made a bit more explicit by stating that a
vacuum vector (or a ground state, depending on denomination in Mathematical Physics
an author belongs to) of S exists. The point here (as it was in [19] for ¢ = 1) is to discuss
the case. It turns out that, like in [19], subnormality plays an important role in the matter
(and this, the case ¢ = 1 at least, is parallel to Rellich-Dixmier [12, 7] characterization of
solutions to the CCR). Luckily, the above coincides with our belief that subnormality is
the missing counterpart of complex variable in the quantization scheme.

Preliminary essentials

A short guide to subnormality. Recall that a densely defined operator A is said to be
hyponormal if D(A) C D(A*) and ||A*f|| < ||Af]l, f € D(A). A hyponormal operator N
is said to be formally normal if |N f|| = ||N*f]|, f € D(N). Specifying more, a formally
normal operator N is called normal if D(N) = D(N*). Finally, a densely defined operator
S is called (formally) subnormal if there is a Hilbert space K containing H isometrically
and a (formally) normal operator N in K such that S C N.

The following diagram relates these notions.

normal = formally normal

A\
I3 (3 hyponormal
A

subnormal = formally subnormal

Though the definitions of formal normality and normality look much alike, with a small
difference concerning the domains involved, the operators they define may behave in a
totally incomparable manner. However, needless to say, these two notions do not differ
at all in the case of bounded operators.

If A and B are densely defined operators in H and K resp. such that H C K and
A C B then

D(A) Cc D(B)N'H, DB*)NH C PD(B*) C D(A") (2)

where P stands for the orthogonal projection of X onto H; moreover,

A*Px = PB*x, z € D(B"). (3)
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If B closable, then so is A and both A* as well as B* are densely defined. The extension
B of A is said to be tight if D(A) = D(B) N'H and *-tight if D(B*) N'H = D(A*). If
D(B) C D(B*) (and this happens for formally normal operators as we already know),
the two chains in (2) glue together as?

D(A) € D(B)N'H C D(B*) N'H C PD(B*) C D(A*). (4)

As we have already said a densely defined operator having a normal extension is just sub-
normal. However, normal extensions may not be uniquely determined in the unbounded
case as their minimality becomes a rather fragile matter, see [17]; even though the inclu-
sions (4) hold for any of them. Moreover, even if all of them turn into equalities none of the
normal extensions may be minimal of cyclic type (this is what ensures uniqueness); this
will become effective when we pass to the case of ¢ > 1. So far we have got an obvious fact.

PROPOSITION 1. A subnormal operator S has a normal extension which is both tight and
x-tight if and only if

D(5) = D(57). (5)
If this happens then any normal extension is both tight and *-tight.

Because equality (5) is undoubtedly decisive for a solution of the commutation re-
lation of (any of) the oscillators to be a weighted shift, subnormality is properly settled
into this context.

g-notions. For z an integer and g real, [z], S (1—¢*)(1—q)tifq# 1 and [x]; L

is a non-negative integer, [z], = 1+¢+---+¢° ! and this is usually referred to as a basic

or g-number. A little step further, the g-factorial is like the conventional, [0],!= 1 and
def . . . def ! .

Nl =[0]g---[n _.1]Q[n]q and so is the q—bln?mlal m]q = % Thus, if -1 < ¢

and z € N the basic number [x], is non-negative.

For arbitrary complex numbers a and ¢ one can always define (a; q); as follows:
(a;0)0=1, (=1 —-0a)1-aq)(1—ag®)---(1—agd*b), k=1,2,3,...
Then for n > 0 one has [n],! = (¢; ¢)n(1—¢) ™. Moreover, there are (at least) two possible

definitions of g-exponential functions

wtm 1
eq(2) =) —2F zew,

o0
Eq(z)défz q‘ Fozew, q#0,
where

Wqg = .
C otherwise.

{{z; 12| <1} if|q <1,

These two functions are related via

eq(2) = Eg-1(—2), z€wyg, q#0.

2 Description of domains of weighted shifts and their adjoints can be found in [15].
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The g-oscillator

Spatial interpretation of (O,,). The relation (O4p) has nothing but a symbolic
meaning unless someone says something more about it; this is because some of the solu-
tions may be unbounded. For this reason we distinguish two, extreme in a sense, ways of
looking at the relation (Og op):

The first meaning of (Og,0p) is

S closable, D is dense in ‘H and
D C D(S*S)ND(SS*), S*Sf —qSS*f=f, f €D.
The other is
(Sf,59) —q(S™f,579) = (f,9), f,9 € D(S)ND(S") (Og,w)
and, because this is equivalent to
ISFI* = allS*FI? = IfI*,  feD(S)ND(S*)
it implies for S to be closable, (4 ) in turn is equivalent to
(Sf.S9) —a(S"f.S"g) = (f,9), [ €D(S)ND(S).
The occurring interdependence, which follows, let us play a variation on the theme
of (Qg.0p)-
1° (O4,p) with D being a core of S = (O4w) and D(S) C D(S*).
Indeed, for f € D(S) there is a sequence (f,), C D such that f, — f and Sf, — Sf.
Because S* is closed we get from (O, p) that S*f, — S*f and consequently f € D(S*)
as well as (Og w).
2° (0,,p) with D being a core of S* = (O4w) and D(S5*) C D(9).
This uses the same argument as that for 1°.
3° (Ogw) = (Ogp) with D = D(S*S) N D(SS*).
This is because D(5*S) N D(SS*) C D(S) N D(S*).
4° (O4.w) and D(S) ND(S*) a core of S and S* = D(S*S) = D(55*).
Take f € D(S*S). This means f € D(S) and Sf € D(S*). Because of this, picking
(fu)n € D(S)ND(S*), we get from (Ogw) in the limit

(5°Sf,9) —q(S"f,5%g) = {f,9) (6)
for g € D(S) N D(S*) and, because g € D(S) N D(S*) is a core of S*, we get (6) to
hold for g € D(S*). Finally, S*f € D(S). The reverse inequality needs the same kind of
argument.

The above results in
5° (O4.w) and D(S) = D(5*) = S satisfies (O, p) on D = D(S*S) = D(55*).

REMARK 2. Notice that when ¢ # —1 and S satisfying (O, p) with D = D(S5*S) =
D(SS*) for D to be a core of S* is necessary and sufficient R(S*S) to be dense in H.

The following is a kind of general observation and puts hyponormality (or bounded-
ness) in the context of (94 p).
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PROPOSITION 3. (a) For 0 < ¢ < 1 and for S satisfying (O4p), S|p is hyponormal if
and only if S is bounded and ||S|| < (1—q)~/2. (b) For ¢ < 0 and for S satisfying (O p),
S*|p is hyponormal if and only if S is bounded and ||S| < (1 —q)~ /2.

Proof. Write (O4,p) as
(L= @lISFI* = allS*fIZ = ISFI*) + I£17, feD,
and look at this. m

The selfcommutator. Assuming D C D(SS5*) N D(S*S) we introduce the following
operator: ot et

C=1+(¢-1858*, DC)=D. (7)
This operator turns out to be an important invention in the matter. In particular there
are two immediate consequences of this definition. The first says if S satisfies (0, p) with
D invariant for both S and S* then D is invariant for C' as well and

CSf=qSCf, q¢CS*f=S5Cf, [feD. (8)
The other is that (O4,p) takes now the form
S*Sf-8S*f=Cf, feD, (9)

which means that C' is just the selfcommutator of S on D.
We would like to know the instances when C' is a positive operator.

PROPOSITION 4. (a) For ¢ > 1, C > 0 always. (b) For ¢ <1, C > 0 if and only if S is
bounded and ||S|| < (1 — q)~'/2. (c) For S satisfying (Ogp), C = 0 if and only if S is

hyponormal.

Proof. While (a) is apparently trivial, (b) comes immediately from

(CF. ) =fIP+ (g = DIS*fI?, feD.
For (c) write (using (O4,p)) with f € D

(CF ) =FI7 + (@ = DIS*FIP = 112+ all S*FI? = 15" F1? = ISFI* = 1S F]*.
EXAMPLE 5. On the other hand, with any unitary U the operator
SE(1-q U (10)

satisfies (O, p) if ¢ < 1. The operator S is apparently bounded and normal. Consequently
(the Spectral Theorem) it may have a bunch of nontrivial reducing subspaces (even not
necessarily one dimensional) or may be irreducible and this observation ought to be
dedicated to all those who start too fast generating algebras from formal commutation
relations.

PROPOSITION 6. For ¢ < 1 the only formally normal operators satisfying (O4p) are
those of the form (10). For q > 1 there is no formally normal solution of (O, p).

Proof. Straightforward. m

EXAMPLE 7. An ad hoc illustration can be given as follows. Take a separable Hilbert
space with a basis (e, )22 and look for a bilateral (or rather two-sided) weighted shift

n=—oo

T defined as Te, = mpept1, » € Z. Then, because T*e,, = T,—1€n,—1, n € Z, for any
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a € Cand N € Z we get |7, = ag"™N + (1 — ¢"™)(1 - ¢)7! = ag"™ + [n + N],
for all n if ¢ # 1 and |7,|*> = a + n if ¢ = 1; this is for all n € Z. The only possibility
for the right hand sides to be non-negative (and in fact positive)® is a > (1 — ¢)~! for
0<g<1land a=(1-¢) ! for ¢ < O0; the latter corresponds to Example 10. Thus
the only bilateral weighted shifts satisfying (O4p), with D = lin{e,; n € Z}, are those
Te, = Then+1, N € Z which have the weights

V=g,
™=V ag TN+t N, a>(1-¢7 NeZ, 0
1

none,

VANIV/AN

qg<0
sg<l1
<4q

However, T wviolates hyponormality (pick up f = ey as a sample) if 0 < ¢ < 1. Also C
defined by (7) is neither positive nor negative ((Ceg,ep) = a > 0 while (Ce_1,e_1) < 0).

Let us mention that 7" is ¢~ '-hyponormal in the sense of [13]. Anyway, T is apparently
unbounded if ¢ > 0. The case of ¢ < 0 is precisely that of Example 10.

EXAMPLE 8. Repeating the reasoning of Example 7 we get that the only unilateral
weighted shifts satisfying (O, p) are those T, defined as T'e,, = 7,41 for n € N, which
have the weights

T =4/[n+1,, —-1<gq.

This is so because the virtual, in this case, ‘T_1’ is 0 (T*e¢y = 0). If —1 < ¢ < 0 they
are bounded and not hyponormal, if 0 < ¢ < 1 they are again bounded and hyponormal,
and if 1 < ¢ they are unbounded and hyponormal; the latter two are even subnormal (cf.
Theorem 19 and 21 resp.).

REMARK 9. According to Lemma 2.3 of [10] for 0 < ¢ < 1 the only cases which may
happen are the orthogonal sums of the operators considered in Examples 7, 8 and given
by formula (10). For ¢ > 1, due to the same Lemma, the orthogonal sum of that from
Example 8 can be taken into account.

An auxiliary lemma of [14]. We state here a result, [14] Lemma 2.4, which justifies
the examples above. We adapt the notation of [14] to ours as well as improve a bit the
syntax of the conclusion therein.

LEMMA 10. Let 0 < p < 1 and € € {—1,+1}. Assume T is a closed densely defined
operator in ‘H. Then

T*Tf —p*TT*f =e(1—p*)f, [feDT*T)=D(IT*) (11)
if and only if T is unitarily equivalent to an orthogonal sum of operators of the following

type:
e in the case of e =1

(1) Ti: fo— (1—p2tN2f 00 in H = @)% H,, with each H, = Ho;

3 We avoid weights which are not non-negative, for instance complex, as they lead to a uni-
tarily equivalent version only.
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(1) Tiy: fo — (1 4+ @PHVADY2f 0 in H = EB:::LOO H,, with each H,, = Ho and
A being a selfadjoint operator in Hy with sp(A) C [p,1] and either p or 1 not
being an eigenvalue of A;

(IT1) Tip @ unitary operator;

e in the case of e = —1
(IV) Trv: fo — (p* = D)Y2f, 1 in H = :i% H,, with each Hp, ™ Ho and always
fa=o.

A couple of remarks seem to be absolutely imperative.

REMARK 11. The conclusion of Lemma 10 is a bit too condensed. Let us provide some
hints to reading it. First of all the f,,’s appearing in (I), (II) and (IV) should be under-
stood as follows: take f € Hp and define f,, as a (one sided or two sided, depending on
circumstances) sequence having all the coordinates zero except the one labelled n which
is equal to f. Then, with the definition

D(E) = lin{f,; f €& C Hoy, n€ZorneN depending on the case},

one has to guess that D(T1) = D(Try) = D(Ho) and D(T11) = D(D(A)). Passing to
closures in (I), (II) and (IV) we check that T as well as T1y are everywhere defined
bounded operators (use 0 < p < 1) while Ty is always unbounded (though satisfying
D(TiTn) = D(TuTjj) ).

REMARK 12. To relate (11) to (Ogp) set ¢ = 1, p = \/g and T' = /1 —p?S when
0<g<l,ande=-1,p'=,/gand T = p~'y/p? — 15* when ¢ > 1.

Positive definiteness from (O, p). The following formalism will be needed.

PROPOSITION 13. If S satisfies (O, p) with D invariant for both S and S*, then

SHSIf = Z[k]q!H H Si—kckg (=R ¢ feD i i=0,1,..., (12)
k=0 k q k

q
If, moreover, C > 0 then

P o0 P 2
7 j ¢ *(1—
S5t =S| So[}] e L doen
4,5=0 k=0 =0 q
All this under convention S' = (S*)! =0 for 1 < 0 and B]q =0 for j > 1.

Proof. Formula (12) is in [6, formula (35)]. Formula (13) is an immediate consequence of
(12). m

As a direct consequence of Fact A and (13) we get
COROLLARY 14. Suppose S satisfies (04,p) where D is invariant for S and S*, and D
is a core of S. If C' > 0, then

P

> (S8 f:) =0, fo,.... fp €D. (PD)

4,7=0

4 In this situation we have implications 4° and 5° on p. 296.
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A useful lemma

LEMMA 15. Let g > 0. Consider the following conditions:

(a) S satisfies (Ogw) and D(S) = D(S*);
(b) N(S*) # {0} and forn=0,1,...

fEN(S*) = S"feD(S), S VfeD(S*) & §*S"1f =(n—-1)S"2f; (14)
(c) there is f # 0 such that S"f € D(S), n=0,1,... and S™f 1 S™ for m # n.
Then (a)=-(b)=(c).

Proof. (a)=-(b). The polar decomposition for S* is S* = V|S*| where V is a partial
isometry with the initial space R(|S*|) and the final space R(SS*). Suppose N (S*) = {0}.
Then, because N (V) = R(|S*|)t = N(|S*]) = N(55*) = N(S*), V is unitary. Since
S = |S*|V*, from 5° we get V|S*|2V* = ¢|S*|> + I. Consequently, for the spectra we
have sp(|S*|) C ¢sp(]S*|) + 1 C [0, 4+00), which is absurd. Thus N (S*) # {0}.

We show (14) by induction. Of course, N'(S*) C D(S) = D(S*), which establishes
(14) for n = 0. Suppose N (S*) C D(S") and S*S""1f = (n — 1)S"~2f. Then, for

g9 € D(5) = D(57),

(S°5"11,8%) = (n— 1)(5""2f, 5"). (15)
Because already S("~2) f € D(S) = D(S**), we have
(S*S" 1 f,.5%g)| < Cllgll. (16)

Because S~ € D(S) = D(S*), we can use (O,) to get
(5" f,8g) = (SSC~Vf,8g) = (§*§"~V,5%) + (§"~17 g).
This, by (16), implies S™f € D(S*) = D(S) and, consequently, by (15), gives us S*S™f =
nS"~1f, which completes the induction argument. Now a straightforward application of
(14) gives S"(N(S*)) € D(S)ND(S*) forn =0,1,....
(b)=(c). Take any f € N(S*) and using (14) and (12) write

min{m,n}
m

(S™f,S"f)=(S"S"f, fy="> [k]q![k]qmq<5(”‘k)0k5*(m‘k)f,f>=0, m>n. w

k=0
A matrix formation. Suppose ¢ > 0 and S is a weighted shift with respect to (ex)?2,
with the weights (\/ [k + 1]4)52,- With

So= S, Su = q"2S, D= /], diag(q"?)iZe n=1.2,... (17)
the matrix
SoDy 0 0
0 S Dy 0 o
(18)
0 0 SQ Dg

defines an operator N in @, , Hy,, Hy, = H, with domain composed of all those @, f»
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for which f,, = 0 but for a finite number of n’s. This matrix for the familiar creation
operator was set out in [21].

First we need to determine D(IN™) and relate it to D(IN). If 0 < ¢ < 1 then each D,,
is bounded. In that case Remark 9 in [20] gives us

D(N*) = P D(s;). (19)
n=0

If ¢ > 1 then each S,, D, ! is bounded. According to Proposition 4.5 in [11] and Corollary 8
in [20] we can deduce (19) as well. In either case, what we get is the adjoint of N can
be taken as a matrix of adjoints (which is rather an exceptional case). Because the same
argument concerning the adjoint of a matrix operator applies now to N* we can assert
that the closure operation for the operator IN goes entrywise as well. Now, due to the
fact that the apparent norm equality for N and N* holds on D(IN), we get essential
normality of N. Consequently,

S is subnormal and N is its tight and #-tight normal extension. (20)

Subnormality in the ¢-oscillator

The case of S bounded. The next result says a little more about boundedness of
solutions of (O, ).

PROPOSITION 16. Suppose S is bounded and satisfies (Ogp). (a) If ¢ < 0 then ||S| >
(1—q)"Y2. (b)) If 0 < g <1 then ||S|| < (1 —q)"Y2 (¢) If ¢ > 1 then no such an S

exists.

Proof. For (a) look at |SfII* = [lf|* + qllS*f* > [IfI* + qllS|*[f]|* and for (b) at
ISFIZ = II£17 + al S £17 < [I£17 + al SIPIFI1?. For (c) write [[SFI* = [ fII* +qllS*f]]* >
q||S]I?]| f||?> which gives 1 > q. The case of ¢ = 1 is excluded by the well known result of
Winter. m

The case of q < 0. Here we get at once

COROLLARY 17. For q < 0 the only bounded operator S with norm ||S| = (1 — q)~/?
satisfying (Og4,p) is that given by (10).

Proof. By Proposition 16 (a) and Proposition 3 (b) S*|p is hyponormal. On the other
hand, by Proposition 4 (b) and (c) S|p is hyponormal too. Proposition 6 makes the
conclusion. =

Pauli matrices, which are neither hyponormal nor cohyponormal®, provide an ex-
ample of operators satisfying (O_1,op) with norm 1 > 2712 = (1 — ¢)~Y/2. Are there
bounded operators satisfying (O op) with norm not equal to (1 — q)~'/? for arbitrary
q < 0, different from —1 say?

5 An operator A is said to be cohyponormal if A* is hyponormal; for unbounded A this may
not be the same as A*|p(4) being hyponormal.
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The case of 0 < g < 1. We list two results which hold in this case.

PROPOSITION 18. Suppose S satisfies (O, p) with D dense in H. If 0 < q <1, then the
following facts are equivalent:

(i) S is bounded and ||S| < (1 —q)~'/?%;
(i1) S is bounded;

(iii) S is subnormal;

(iv) S is hyponormal.

Proof. Because of conclusion (a) of Proposition 4 the only remaining implication to argue
for is (ii)=-(iii). But, in virtue of (13), this follows from the Halmos-Bram characterization
[4] of subnormality of bounded operators. m

THEOREM 19. If 0 < g < 1, then the following facts are equivalent:

(i) there is an orthonormal basis (en)ory in H such that Se, = /[n+1];ent1,
n=0,1,...;

(ii) S is irreducible®, satisfies (O p) with some D dense in 'H, is bounded and ||S| =
(1—q)7 "2

(iii) S is irreducible, satisfies (O4,p) with some D dense in H, is bounded and ||S|| <
1—aq) "%

(iv) S s irreducible, satisfies (O, p) with some D dense in H and is bounded;
(v) S is irreducible, satisfies with some D dense in H (Oq4p) and is subnormal;
(vi) S is irreducible, satisfies (Ogp) with some D dense in H and is hyponormal.

Proof. Proposition 18 establishes the equivalence of (ii) up to (vi).
Because sup{/[n+1];; n = 0} = (1 — ¢)~! and because S is a weighted shift
IS]| = sup{/[n + 1]4; n = 0}, we get (i)=-(ii).

Assume (iv). Because D(S) = D(S*), condition (c) of Lemma 15 let us calculate the
weights of S starting with e € N/(N*). Because S is irreducible the sequence (e,,)3 is

complete. This establishes (i). m

REMARK 20. From Theorem 19 and Example 5 we get that there are two, of different
nature, solutions of (O, p). Are there any others?

The case of q > 1. No bounded solution exists, cf. Proposition 16(c).

Let us record what is known already in the bounded case in the following tableau.

6 Tet us recall relevant definitions: a subspace D C D(A) is invariant for A if AD C D;

A|p stands for the restriction of A to D. On the other hand, a closed subspace L is invariant
for A if A(LND(A)) C D(A); then the restriction Alz = A|zap(a). A step further, a closed
subspace £ reduces an operator A if both £ and £ are invariant for A as well as PD(A) C D(A),
where P is the orthogonal projection of H onto £; all this is the same as to require PA C AP.
Then the restriction A[. is called the part of A in L. A is irreducible if it has no nontrivial
reducing subspace. Compared to the more familiar case of bounded operators some nuances

become requisite here. Therefore, if £ reduces A, then (Alz) = Alz and (Alz)" = A*[¢.
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<0 |0<g<1 1<q
SOME SOME
normal general Exa. 10 Exa. 10
SOME
unilat. shift Th. 19
NONE NONE
subnormal bilat. shift Exa. 7 Exa. 7
SOME SOME NONE
others Exa. 5 Exa. 5 Prop. 16(a)
SOME
unilat. shifts Th. 19
NONE NONE
hyponormal | bilat. shift Exa. 7 Exa. 7
SOME SOME
other Exa. 5 Exa. 5

The case of S unbounded

The case of ¢ < 0. There is no hope to find subnormal solutions of (O4.p) among
weighted shifts, neither one- nor two-sided.

The only one-sided weighted shifts satisfying (O, op) are for —1 < ¢ < 0 and they are
given as in (i) of Theorem 19. They are apparently not hyponormal (their weights are
not increasing).

The only two-sided weighted shifts which satisfy (O4.0p) are those of Example 7.
They are normal bilateral weighted shifts. So if there are subnormal operators satisfying
(O4.0p) they cannot be weighted shifts or bounded operators of norm less than or equal
to (1 —¢q)~%/2, cf. Corollary 17.

The case of 0 < ¢ < 1. Lemma 10 does not leave any hope for subnormal solutions
different than those in Theorem 19 but they must necessarily be bounded.

The case of ¢ > 1. This is the right case for unbounded solutions to exist.

THEOREM 21. For a densely defined closable operator S in a complex Hilbert space 'H
consider the following conditions:

(i) H is separable and has an orthonormal basis of the form {e,}52, contained in

D(S) and such that
Sen =1/ In+1gent1, n=0,1,...; (21)

(it) S is irreducible, satisfies (04 p) with some D invariant for S and S* and being
a core of S, and S is a subnormal operator having a tight and x-tight normal
extension;

(iii) S is irreducible, satisfies (O4p) with some D being a core of both S and S*;

q
(iv) S is irreducible, satisfies (Oq,w) and D(S) = D(S*);
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(v) S is irreducible, satisfies (Oqw) with D(S) N D(S*) dense in H, N(S*) # {0}
and S"(N(S*)) € D(S)ND(S*) forn=0,1,....

Then (i)=(ii)=(iil)=(iv)=(v)=(i).

Proof. The implication (i)=-(ii) follows from (20). Proposition 1 leads us from (ii) to (iii),
and then Lemma 15 drives us up to (v). Now, like in the proof of Theorem 19, calculating
the weights closes the chain of implications. m

Now we visualize this section’s findings in the following table.

q<0 0<g<l1 1<yq
NONE
normal general Prop. 6
unilat. shift
NONE
subnormal bilat. shift Exa. 7
NONE NONE
others Prop. 3(b) Prop. 3(a)
unilat. shifts
NONE
hyponormal | bilat. shift Prop. 3(b)
MAY
others Prop. 4(a)&(b)

The g-oscillator: models in RKHS

A general look. A reproducing kernel Hilbert space H and its kernel K which suits
our considerations is of the form

+oo
K(z,w)= Z ep2"w", zyweD, D=CorD={z |z|]<R<1}. (22)
n=0

Notice (y/c,Z™) 2% is an orthonormal basis of H.
The following fact is a byproduct of some general results on subnormality in [16]; we
give here an ad hoc argument. Let us make a shorthand notation

H C L*(C, j1) isometrically. (23)

PROPOSITION 22. There is a measure p such that (23) holds if and only if there is a
Stieltjes moment sequence (a,),} 2% such that

agn=c,5, n=01,... (24)
If this happens then a measure ju can be chosen to be rotationally invariant”, that is such

that p(e'to) = p(o) for all t’s and o’s.

7 Or radial as some authors say.
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Proof. Suppose (23) holds. Because (,/¢,2"),'25 is an orthonormal sequence in £2(C, ),
we have

cfllzjc\zﬁ"u(dz), n=20,1,...

Let m,, be the measure on [0, 400) transported from p via the mapping C 3 z — |2| €
[0,400). Then

“+oo
an / rnmu<dr>:/ 2"u(dz), n=0.1,... (25)
0 C

satisfies (24) as well as the sequence (a,,); >} is a Stieltjes moment sequence.
If (an):i% is any Stieltjes moment sequence with a representing measure m and

satisfying (24) then the rotationally invariant measure
27 +oo
(o) = (2m) ! / / Xo(re'")ym(dr)dt, o a Borel subset of C, (26)
o Jo

makes the imbedding (23) happen. m

THEOREM 23. Under the circumstances of Proposition 22 there exists a non-rotationally
invariant measure p such that (23) holds if and only if there is a sequence (a,):25
satisfying (24) which is not Stieltjes determinate.

Proof. Suppose (23) with y not rotationally invariant and define (a, ), as in (25). Thus
there is and s € R such that pu(7) # p(e'® 1) for some subset 7 of C; make 7 maximal
closed with respect to this property. Let v be a measure on C transported from p via the
rotation z — e~ 1% 2 and let m,, be the measure on [0, +00) constructed from v in the way
m,, was from g, cf. (25). Because, by a straightforward calculation, m, and m, differ on
{|z|; 2 € 7}, we get indeterminacy of (a,),; > at once.

The other way around, if m; and mg are two different measures on [0, +00) repre-

+20 satisfying (24), then the measure j on C

senting the Stieltjes moment sequence (ay,); %)

defined by

a “+o0 ) 27 “+oco .
wu(o) d:ef(271')71(5/ dt/ Xo (re'H)my(dr) + (1 — 5)/ dt/ Yo (re't) (smo(dr),
0 0 a 0
o a Borel subset of C, 0 < s <1, 0 <a <27

is not rotationally invariant while still (23) is maintained. =

Résumé. Define two linear operators M and D, acting on functions

f()=flz) 3¢
© © z—qz q # 17
(Mf)(2) = 2f(2),  (Def)(2)= {27 . (27)
f'(2) ifg=1.
It turns out that for ay = M and a_ = D, the commutation relation (1) is always

satisfied. What Bargmann did in [3] was to find, for ¢ = 1, a Hilbert space of entire
functions such that M and D; are formally adjoint. This for arbitrary g > 0 leads to the
reproducing kernel Hilbert space H, of analytic functions with the kernel

K(zaw) déf eq((l - q)Zﬂ)), Z, W € ‘1 - Q|_1/2w¢b
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where
{z |2| <1} if0<qg<1,
W, =
“lc if ¢ > 1.
Under these circumstances we always have
(zm, Zn>Hq = dm,n[m]q!

and the operator S = M acts as a weighted shift with the weights (y/[n + 1],) as in
Sample Theorem on p. 294.

Our keynote, subnormality of M now means precisely that (23) with some p is re-
tained. Here we have three qualitatively different situations:

(a) for 0 < ¢ < 1 the multiplication operator M is bounded and subnormal, this
implies uniqueness of u;

(b) for ¢ = 1 the multiplication operator is unbounded and subnormal, it has a
normal extension of cyclic type in the sense of [17] and consequently p is uniquely
determined as well;

(c) for ¢ > 1 the multiplication operator is unbounded and subnormal, it has no
normal extension of cyclic type in the sense of [17] though it does have plenty of
those of spectral type in the sense of [17], which are not unitarily equivalent ®;
an explicit example, based on [2], can be found in [18] (one has to replace ¢ by
q~! there to get the commutation relation (1) satisfied), an explicit example of a
non-radially invariant measure p given in [9] also results from Theorem 23.

The author’s afterword. The fundamentals of this paper have been presented on
several occasions for the last couple of years, recently at the Bedlewo 9th Workshop Non-
commutative Harmonic Analysis with Applications to Probability. It was Marek Bozejko’s
contagious enthusiasm that catalysed converting at long last my loose notes into a cohe-
sive exposition.
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