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Abstra
t. We s
rutinize the possibility of extending the result of [19℄ to the 
ase of q-deformedos
illator for q real; for this we exploit the whole range of the deformation parameter as mu
has possible. We split the 
ase into two depending on whether a solution of the 
ommutationrelation is bounded or not. Our leitmotif is subnormality.The deformation parameter q is reshaped and this is what makes our approa
h e�e
tive.The newly arrived parameter, the operator C, has two remarkable properties: it separates in the
ommutation relation the annihilation and 
reation operators from the deformation as well asit q-
ommutes with those two. This is why introdu
ing the operator C may have far-rea
hing
onsequen
es.

q-deformations of the quantum harmoni
 os
illator (the abbreviation the q-os
illatorstands here for it) has been arresting attention of many 1 resulting among other thingsin quantum groups. Besides realizing the ever lasting temptation to generalize matters,it brings forth new attra
tive �ndings. This paper exhibits the spatial side of the story.The q-os
illator algebra, whi
h is the milieu of our 
onsiderations, is generated bythree obje
ts a+, a− and 1 (the latter being a unit in the algebra) satisfying the 
ommu-tation relations
a−a+ − qa+a− = 1; (1)it goes ba
k to the seventies with [1℄ as a spe
imen. The other versions whi
h appear inthe literature are equivalent, and this is des
ribed 
ompletely in [8℄ where a list of furtherreferen
es 
an be found.2000 Mathemati
s Subje
t Classi�
ation: Primary 47B20, 81S05.Key words and phrases: unbounded subnormal operator, q-os
illator.Supported at its �nal stage by the MNiSzW grant N201 026 32/1350.The paper is in �nal form and no version of it will be published elsewhere.

1 q-deformations are vastly disseminated in Mathemati
al Physi
s and we would like to a
-knowledge here with pleasure [8℄ for bringing them 
loser to Mathemati
s.[293℄ 
© Instytut Matematy
zny PAN, 2007



294 F. H. SZAFRANIECLooking for ∗-representations of (1) usually means assuming that a− = a∗
+, with theasterisk denoting the Hilbert spa
e adjoint. Thus what we start with is a given Hilbertspa
e and the 
ommutation relation

S∗S − qSS∗ = I (Oq,op)in it. Of 
ourse, q must perfor
e be real then; this is what we assume in this paper.An easy-going 
onsequen
e isSample Theorem. If S is a weighted shift with respe
t to the basis {en}∞n=0 and
S∗Sf − qSS∗f = f, f ∈ lin{en}∞n=0,then Sen =

√
1 + q + · · · + qn en+1, n > 0.`If S is a weighted shift'�this is usually ta
itly assumed when dealing with therelation (Oq,op), like in [5℄. It is sometimes made a bit more expli
it by stating that ava
uum ve
tor (or a ground state, depending on denomination in Mathemati
al Physi
san author belongs to) of S exists. The point here (as it was in [19℄ for q = 1) is to dis
ussthe 
ase. It turns out that, like in [19℄, subnormality plays an important role in the matter(and this, the 
ase q = 1 at least, is parallel to Relli
h-Dixmier [12, 7℄ 
hara
terization ofsolutions to the CCR). Lu
kily, the above 
oin
ides with our belief that subnormality isthe missing 
ounterpart of 
omplex variable in the quantization s
heme.Preliminary essentialsA short guide to subnormality. Re
all that a densely de�ned operator A is said to behyponormal if D(A) ⊂ D(A∗) and ‖A∗f‖ 6 ‖Af‖, f ∈ D(A). A hyponormal operator Nis said to be formally normal if ‖Nf‖ = ‖N∗f‖, f ∈ D(N). Spe
ifying more, a formallynormal operator N is 
alled normal if D(N) = D(N∗). Finally, a densely de�ned operator

S is 
alled (formally) subnormal if there is a Hilbert spa
e K 
ontaining H isometri
allyand a (formally) normal operator N in K su
h that S ⊂ N .The following diagram relates these notions.normal =⇒ formally normal ⇒

⇓ ⇓ hyponormal
⇒subnormal =⇒ formally subnormalThough the de�nitions of formal normality and normality look mu
h alike, with a smalldi�eren
e 
on
erning the domains involved, the operators they de�ne may behave in atotally in
omparable manner. However, needless to say, these two notions do not di�erat all in the 
ase of bounded operators.If A and B are densely de�ned operators in H and K resp. su
h that H ⊂ K and

A ⊂ B then
D(A) ⊂ D(B) ∩H, D(B∗) ∩H ⊂ PD(B∗) ⊂ D(A∗) (2)where P stands for the orthogonal proje
tion of K onto H; moreover,

A∗Px = PB∗x, x ∈ D(B∗). (3)



OPERATORS OF THE q-OSCILLATOR 295If B 
losable, then so is A and both A∗ as well as B∗ are densely de�ned. The extension
B of A is said to be tight if D(Ā) = D(B̄) ∩ H and ∗-tight if D(B∗) ∩ H = D(A∗). If
D(B) ⊂ D(B∗) (and this happens for formally normal operators as we already know),the two 
hains in (2) glue together as 2

D(A) ⊂ D(B) ∩H ⊂ D(B∗) ∩H ⊂ PD(B∗) ⊂ D(A∗). (4)As we have already said a densely de�ned operator having a normal extension is just sub-normal. However, normal extensions may not be uniquely determined in the unbounded
ase as their minimality be
omes a rather fragile matter, see [17℄; even though the in
lu-sions (4) hold for any of them. Moreover, even if all of them turn into equalities none of thenormal extensions may be minimal of 
y
li
 type (this is what ensures uniqueness); thiswill be
ome e�e
tive when we pass to the 
ase of q > 1. So far we have got an obvious fa
t.Proposition 1. A subnormal operator S has a normal extension whi
h is both tight and
∗-tight if and only if

D(S̄) = D(S∗). (5)If this happens then any normal extension is both tight and ∗-tight.Be
ause equality (5) is undoubtedly de
isive for a solution of the 
ommutation re-lation of (any of) the os
illators to be a weighted shift, subnormality is properly settledinto this 
ontext.
q-notions. For x an integer and q real, [x]q

def

= (1−qx)(1−q)−1 if q 6= 1 and [x]1
def

= x. If xis a non-negative integer, [x]q = 1+q+ · · ·+qx−1 and this is usually referred to as a basi
or q-number. A little step further, the q-fa
torial is like the 
onventional, [0]q!
def

= 1 and
[n]q!

def

= [0]q · · · [n − 1]q[n]q and so is the q-binomial [

m
n

]

q

def

=
[m]q!

[m−n]q![n]q! . Thus, if −1 6 qand x ∈ N the basi
 number [x]q is non-negative.For arbitrary 
omplex numbers a and q one 
an always de�ne (a; q)k as follows:
(a; q)0

def

= 1, (a; q)k
def

= (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqk−1), k = 1, 2, 3, . . .Then for n > 0 one has [n]q! = (q; q)n(1−q)−n. Moreover, there are (at least) two possiblede�nitions of q-exponential fun
tions
eq(z)

def

=

∞
∑

k=0

1

(q; q)k
zk, z ∈ ωq,

Eq(z)
def

=
∞
∑

k=0

q(
k

2)

(q; q)k
zk, z ∈ ωq−1 , q 6= 0,where

ωq
def

=

{

{z; |z| < 1} if |q| < 1,
C otherwise.These two fun
tions are related via

eq(z) = Eq−1(−z), z ∈ ωq, q 6= 0.

2 Des
ription of domains of weighted shifts and their adjoints 
an be found in [15℄.



296 F. H. SZAFRANIECThe q-os
illatorSpatial interpretation of (Oq,op). The relation (Oq,op) has nothing but a symboli
meaning unless someone says something more about it; this is be
ause some of the solu-tions may be unbounded. For this reason we distinguish two, extreme in a sense, ways oflooking at the relation (Oq,op):The �rst meaning of (Oq,op) is
S 
losable, D is dense in H and

D ⊂ D(S∗S̄) ∩ D(S̄S∗), S∗Sf − qSS∗f = f , f ∈ D.
(Oq,D)The other is

〈Sf, Sg〉 − q〈S∗f, S∗g〉 = 〈f, g〉, f, g ∈ D(S) ∩ D(S∗) (Oq,w)and, be
ause this is equivalent to
‖Sf‖2 − q‖S∗f‖2 = ‖f‖2, f ∈ D(S) ∩ D(S∗)it implies for S to be 
losable, (Oq,w) in turn is equivalent to

〈S̄f, S̄g〉 − q〈S∗f, S∗g〉 = 〈f, g〉, f ∈ D(S̄) ∩ D(S∗).The o

urring interdependen
e, whi
h follows, let us play a variation on the themeof (Oq,op).
1o (Oq,D) with D being a 
ore of S ⇒ (Oq,w) and D(S̄) ⊂ D(S∗).Indeed, for f ∈ D(S̄) there is a sequen
e (fn)n ⊂ D su
h that fn → f and Sfn → S̄f .Be
ause S∗ is 
losed we get from (Oq,D) that S∗fn → S∗f and 
onsequently f ∈ D(S∗)as well as (Oq,w).
2o (Oq,D) with D being a 
ore of S∗ ⇒ (Oq,w) and D(S∗) ⊂ D(S̄).This uses the same argument as that for 1o.
3o (Oq,w) ⇒ (Oq,D) with D = D(S∗S̄) ∩ D(S̄S∗).This is be
ause D(S∗S̄) ∩ D(S̄S∗) ⊂ D(S̄) ∩ D(S∗).
4o (Oq,w) and D(S̄) ∩ D(S∗) a 
ore of S and S∗ ⇒ D(S∗S̄) = D(S̄S∗).Take f ∈ D(S∗S̄). This means f ∈ D(S̄) and S̄f ∈ D(S∗). Be
ause of this, pi
king

(fn)n ∈ D(S̄) ∩ D(S∗), we get from (Oq,w) in the limit
〈S∗S̄f, g〉 − q〈S∗f, S∗g〉 = 〈f, g〉 (6)for g ∈ D(S̄) ∩ D(S∗) and, be
ause g ∈ D(S̄) ∩ D(S∗) is a 
ore of S∗, we get (6) tohold for g ∈ D(S∗). Finally, S∗f ∈ D(S̄). The reverse inequality needs the same kind ofargument.The above results in

5o (Oq,w) and D(S̄) = D(S∗) ⇒ S̄ satis�es (Oq,D) on D = D(S∗S̄) = D(S̄S∗).Remark 2. Noti
e that when q 6= −1 and S satisfying (Oq,D) with D = D(S∗S̄) =

D(S̄S∗) for D to be a 
ore of S∗ is ne
essary and su�
ient R(S∗S) to be dense in H.The following is a kind of general observation and puts hyponormality (or bounded-ness) in the 
ontext of (Oq,D).



OPERATORS OF THE q-OSCILLATOR 297Proposition 3. (a) For 0 6 q < 1 and for S satisfying (Oq,D), S|D is hyponormal ifand only if S is bounded and ‖S‖ 6 (1−q)−1/2. (b) For q < 0 and for S satisfying (Oq,D),
S∗|D is hyponormal if and only if S is bounded and ‖S‖ 6 (1 − q)−1/2.Proof. Write (Oq,D) as

(1 − q)‖Sf‖2 = q(‖S∗f‖2 − ‖Sf‖2) + ‖f‖2, f ∈ D,and look at this.The self
ommutator. Assuming D ⊂ D(SS∗) ∩ D(S∗S) we introdu
e the followingoperator:
C

def

= I + (q − 1)SS∗, D(C)
def

= D. (7)This operator turns out to be an important invention in the matter. In parti
ular thereare two immediate 
onsequen
es of this de�nition. The �rst says if S satis�es (Oq,D) with
D invariant for both S and S∗ then D is invariant for C as well and

CSf = qSCf, qCS∗f = S∗Cf, f ∈ D. (8)The other is that (Oq,D) takes now the form
S∗Sf − SS∗f = Cf, f ∈ D, (9)whi
h means that C is just the self
ommutator of S on D.We would like to know the instan
es when C is a positive operator.Proposition 4. (a) For q > 1, C > 0 always. (b) For q < 1, C > 0 if and only if S isbounded and ‖S‖ 6 (1 − q)−1/2. (
) For S satisfying (Oq,D), C > 0 if and only if S ishyponormal.Proof. While (a) is apparently trivial, (b) 
omes immediately from

〈Cf, f〉 = ‖f‖2 + (q − 1)‖S∗f‖2, f ∈ D.For (
) write (using (Oq,D)) with f ∈ D
〈Cf, f〉 = ‖f‖2 + (q − 1)‖S∗f‖2 = ‖f‖2 + q‖S∗f‖2 − ‖S∗f‖2 = ‖Sf‖2 − ‖S∗f‖2.Example 5. On the other hand, with any unitary U the operator

S
def

= (1 − q)−1/2U (10)satis�es (Oq,D) if q < 1. The operator S is apparently bounded and normal. Consequently(the Spe
tral Theorem) it may have a bun
h of nontrivial redu
ing subspa
es (even notne
essarily one dimensional) or may be irredu
ible and this observation ought to bededi
ated to all those who start too fast generating algebras from formal 
ommutationrelations.Proposition 6. For q < 1 the only formally normal operators satisfying (Oq,D) arethose of the form (10). For q > 1 there is no formally normal solution of (Oq,D).Proof. Straightforward.Example 7. An ad ho
 illustration 
an be given as follows. Take a separable Hilbertspa
e with a basis (en)∞n=−∞ and look for a bilateral (or rather two-sided) weighted shift
T de�ned as Ten = τnen+1, n ∈ Z. Then, be
ause T ∗en = τ̄n−1en−1, n ∈ Z, for any
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α ∈ C and N ∈ Z we get |τn|2 = αqn+N + (1 − qn+N )(1 − q)−1 = αqn+N + [n + N ]qfor all n if q 6= 1 and |τn|2 = α + n if q = 1; this is for all n ∈ Z. The only possibilityfor the right hand sides to be non-negative (and in fa
t positive) 3 is α > (1 − q)−1 for
0 6 q < 1 and α = (1 − q)−1 for q < 0; the latter 
orresponds to Example 10. Thusthe only bilateral weighted shifts satisfying (Oq,D), with D = lin{en; n ∈ Z}, are those
Ten = τnen+1, n ∈ Z whi
h have the weights

τn
def

=















√

(1 − q)−1, q 6 0
√

αqn+N + [n + N ]q, α > (1 − q)−1, N ∈ Z, 0 6 q < 1none, 1 6 qHowever, T violates hyponormality (pi
k up f = e0 as a sample) if 0 < q < 1. Also Cde�ned by (7) is neither positive nor negative (〈Ce0, e0〉 = a > 0 while 〈Ce−1, e−1〉 < 0).Let us mention that T is q−1-hyponormal in the sense of [13℄. Anyway, T is apparentlyunbounded if q > 0. The 
ase of q 6 0 is pre
isely that of Example 10.Example 8. Repeating the reasoning of Example 7 we get that the only unilateralweighted shifts satisfying (Oq,D) are those T , de�ned as Ten = τnen+1 for n ∈ N, whi
hhave the weights
τn =

√

[n + 1]q , −1 6 q.This is so be
ause the virtual, in this 
ase, `τ−1' is 0 (T ∗e0 = 0). If −1 6 q < 0 theyare bounded and not hyponormal, if 0 6 q < 1 they are again bounded and hyponormal,and if 1 6 q they are unbounded and hyponormal; the latter two are even subnormal (
f.Theorem 19 and 21 resp.).Remark 9. A

ording to Lemma 2.3 of [10℄ for 0 < q < 1 the only 
ases whi
h mayhappen are the orthogonal sums of the operators 
onsidered in Examples 7, 8 and givenby formula (10). For q > 1, due to the same Lemma, the orthogonal sum of that fromExample 8 
an be taken into a

ount.An auxiliary lemma of [14℄. We state here a result, [14℄ Lemma 2.4, whi
h justi�esthe examples above. We adapt the notation of [14℄ to ours as well as improve a bit thesyntax of the 
on
lusion therein.Lemma 10. Let 0 < p < 1 and ε ∈ {−1, +1}. Assume T is a 
losed densely de�nedoperator in H. Then
T ∗Tf − p2TT ∗f = ε(1 − p2)f, f ∈ D(T ∗T ) = D(TT ∗) (11)if and only if T is unitarily equivalent to an orthogonal sum of operators of the followingtype:

• in the 
ase of ε = 1(I) TI : fn → (1 − p2(n+1))1/2fn+1 in H =
⊕+∞

n=0 Hn with ea
h Hn
def

= H0;
3 We avoid weights whi
h are not non-negative, for instan
e 
omplex, as they lead to a uni-tarily equivalent version only.



OPERATORS OF THE q-OSCILLATOR 299(II) TII : fn → (1 + q2(n+1)A2)1/2fn+1 in H =
⊕+∞

n=−∞ Hn with ea
h Hn
def

= H0 and
A being a selfadjoint operator in H0 with sp(A) ⊂ [p, 1] and either p or 1 notbeing an eigenvalue of A;(III) TIII a unitary operator;

• in the 
ase of ε = −1(IV) TIV : fn → (p2n − 1)1/2fn−1 in H =
⊕+∞

n=0 Hn with ea
h Hn
def

= H0 and always
f−1

def

= 0.A 
ouple of remarks seem to be absolutely imperative.Remark 11. The 
on
lusion of Lemma 10 is a bit too 
ondensed. Let us provide somehints to reading it. First of all the fn's appearing in (I), (II) and (IV) should be under-stood as follows: take f ∈ H0 and de�ne fn as a (one sided or two sided, depending on
ir
umstan
es) sequen
e having all the 
oordinates zero ex
ept the one labelled n whi
his equal to f . Then, with the de�nition
D(E)

def

= lin{fn; f ∈ E ⊂ H0, n ∈ Z or n ∈ N depending on the 
ase},one has to guess that D(TI) = D(TIV) = D(H0) and D(TII) = D(D(A)). Passing to
losures in (I), (II) and (IV) we 
he
k that T I as well as T IV are everywhere de�nedbounded operators (use 0 < p < 1) while T II is always unbounded (though satisfying
D(T ∗

IIT II) = D(T IIT
∗

II )
4).Remark 12. To relate (11) to (Oq,D) set ε = 1, p =

√
q and T =

√

1 − p2S when
0 < q < 1, and ε = −1, p−1 =

√
q and T = p−1

√

p2 − 1S∗ when q > 1.Positive de�niteness from (Oq,D). The following formalism will be needed.Proposition 13. If S satis�es (Oq,D) with D invariant for both S and S∗, then
S∗iSjf =

∞
∑

k=0

[k]q!

[

i

k

]

q

[

j

k

]

q

Sj−kCkS∗(i−k)f, f ∈ D, i, j = 0, 1, . . . , (12)If, moreover, C > 0 then
p

∑

i,j=0

〈Sifj , S
jfi〉 =

∞
∑

k=0

[k]q!

∥

∥

∥

∥

p
∑

i=0

[

i

k

]

q

Ck/2S∗(i−k)fi

∥

∥

∥

∥

2

, f0, . . . , fp ∈ D. (13)All this under 
onvention Sl = (S∗)l = 0 for l < 0 and [

i
j

]

q
= 0 for j > i.Proof. Formula (12) is in [6, formula (35)℄. Formula (13) is an immediate 
onsequen
e of(12).As a dire
t 
onsequen
e of Fa
t A and (13) we getCorollary 14. Suppose S satis�es (Oq,D) where D is invariant for S and S∗, and Dis a 
ore of S. If C > 0, then

p
∑

i,j=0

〈Sifj , S
jfi〉 > 0, f0, . . . , fp ∈ D. (PD)

4 In this situation we have impli
ations 4o and 5o on p. 296.



300 F. H. SZAFRANIECA useful lemmaLemma 15. Let q > 0. Consider the following 
onditions:(a) S satis�es (Oq,w) and D(S̄) = D(S∗);(b) N (S∗) 6= {0} and for n = 0, 1, . . .

f ∈N (S∗) ⇒ S̄nf ∈D(S̄), S̄(n−1)f ∈ D(S∗) & S∗S̄n−1f = (n−1)S̄n−2f ; (14)(
) there is f 6= 0 su
h that S̄nf ∈ D(S̄), n = 0, 1, . . . and S̄mf ⊥ S̄n for m 6= n.Then (a)⇒(b)⇒(
).Proof. (a)⇒(b). The polar de
omposition for S∗ is S∗ = V |S∗| where V is a partialisometry with the initial spa
eR(|S∗|) and the �nal spa
eR(SS∗). SupposeN (S∗) = {0}.Then, be
ause N (V ) = R(|S∗|)⊥ = N (|S∗|) = N (S̄S∗) = N (S∗), V is unitary. Sin
e
S̄ = |S∗|V ∗, from 5o we get V |S∗|2V ∗ = q|S∗|2 + I. Consequently, for the spe
tra wehave sp(|S∗|) ⊂ q sp(|S∗|) + 1 ⊂ [0, +∞), whi
h is absurd. Thus N (S∗) 6= {0}.We show (14) by indu
tion. Of 
ourse, N (S∗) ⊂ D(S̄) = D(S∗), whi
h establishes(14) for n = 0. Suppose N (S∗) ⊂ D(S̄n) and S∗S̄n−1f = (n − 1)S̄n−2f . Then, for
g ∈ D(S̄) = D(S∗),

〈S∗S̄n−1f, S∗g〉 = (n − 1)〈S̄n−2f, S̄∗g〉. (15)Be
ause already S̄(n−2)f ∈ D(S̄) = D(S∗∗), we have
|〈S∗S̄n−1f, S∗g〉| ≤ C‖g‖. (16)Be
ause S̄(n−1) ∈ D(S̄) = D(S∗), we 
an use (Oq,w) to get

〈S̄nf, S̄g〉 = 〈S̄S̄(n−1)f, S̄g〉 = 〈S∗S̄(n−1), S∗〉 + 〈S̄(n−1)f , g〉.This, by (16), implies S̄nf ∈ D(S∗) = D(S̄) and, 
onsequently, by (15), gives us S∗S̄nf =

nS̄n−1f , whi
h 
ompletes the indu
tion argument. Now a straightforward appli
ation of(14) gives S̄n(N (S∗)) ⊂ D(S̄) ∩ D(S∗) for n = 0, 1, . . . .(b)⇒(
). Take any f ∈ N (S∗) and using (14) and (12) write
〈Smf, Snf〉=〈Sn∗Smf, f〉=

min{m,n}
∑

k=0

[k]q !

[

m

k

]

q

[

n

k

]

q

〈S(n−k)CkS∗(m−k)f, f〉=0, m>n.A matrix formation. Suppose q > 0 and S is a weighted shift with respe
t to (ek)∞k=0with the weights (
√

[k + 1]q )∞k=0. With
S0

def

= S, Sn
def

= qn/2S, Dn
def

=
√

[n]q diag(qk/2)∞k=0, n = 1, 2, . . . (17)the matrix


















S0 D1 0 0

0 S1 D2 0
. . .

0 0 S2 D3
. . .. . . . . . . . . . . .



















(18)
de�nes an operator N in ⊕∞

n=0 Hn,Hn = H, with domain 
omposed of all those ⊕∞
n=0 fn
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h fn = 0 but for a �nite number of n's. This matrix for the familiar 
reationoperator was set out in [21℄.First we need to determine D(N∗) and relate it to D(N). If 0 < q < 1 then ea
h Dnis bounded. In that 
ase Remark 9 in [20℄ gives us
D(N∗) =

∞
⊕

n=0

D(S∗
n). (19)If q > 1 then ea
h SnD−1

n is bounded. A

ording to Proposition 4.5 in [11℄ and Corollary 8in [20℄ we 
an dedu
e (19) as well. In either 
ase, what we get is the adjoint of N 
anbe taken as a matrix of adjoints (whi
h is rather an ex
eptional 
ase). Be
ause the sameargument 
on
erning the adjoint of a matrix operator applies now to N
∗ we 
an assertthat the 
losure operation for the operator N goes entrywise as well. Now, due to thefa
t that the apparent norm equality for N and N

∗ holds on D(N), we get essentialnormality of N . Consequently,
S is subnormal and N̄ is its tight and ∗-tight normal extension. (20)

Subnormality in the q-os
illatorThe 
ase of S bounded. The next result says a little more about boundedness ofsolutions of (Oq,D).Proposition 16. Suppose S is bounded and satis�es (Oq,D). (a) If q < 0 then ‖S‖ >

(1 − q)−1/2. (b) If 0 6 q < 1 then ‖S‖ 6 (1 − q)−1/2. (
) If q > 1 then no su
h an Sexists.Proof. For (a) look at ‖Sf‖2 = ‖f‖2 + q‖S∗f‖2 > ‖f‖2 + q‖S‖2‖f‖2, and for (b) at
‖Sf‖2 = ‖f‖2 + q‖S∗f‖2 6 ‖f‖2 + q‖S‖2‖f‖2. For (
) write ‖Sf‖2 = ‖f‖2 + q‖S∗f‖2 >

q‖S‖2‖f‖2 whi
h gives 1 > q. The 
ase of q = 1 is ex
luded by the well known result ofWinter.The 
ase of q < 0. Here we get at on
eCorollary 17. For q < 0 the only bounded operator S with norm ‖S‖ = (1 − q)−1/2satisfying (Oq,D) is that given by (10).Proof. By Proposition 16 (a) and Proposition 3 (b) S∗|D is hyponormal. On the otherhand, by Proposition 4 (b) and (
) S|D is hyponormal too. Proposition 6 makes the
on
lusion.Pauli matri
es, whi
h are neither hyponormal nor 
ohyponormal 5, provide an ex-ample of operators satisfying (O−1,op) with norm 1 > 2−1/2 = (1 − q)−1/2. Are therebounded operators satisfying (Oq,op) with norm not equal to (1 − q)−1/2 for arbitrary
q < 0, di�erent from −1 say?

5 An operator A is said to be 
ohyponormal if A∗ is hyponormal; for unbounded A this maynot be the same as A∗|D(A) being hyponormal.
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ase of 0 6 q < 1. We list two results whi
h hold in this 
ase.Proposition 18. Suppose S satis�es (Oq,D) with D dense in H. If 0 6 q < 1, then thefollowing fa
ts are equivalent:(i) S is bounded and ‖S‖ 6 (1 − q)−1/2;(ii) S is bounded;(iii) S is subnormal;(iv) S is hyponormal.Proof. Be
ause of 
on
lusion (a) of Proposition 4 the only remaining impli
ation to arguefor is (ii)⇒(iii). But, in virtue of (13), this follows from the Halmos-Bram 
hara
terization[4℄ of subnormality of bounded operators.Theorem 19. If 0 6 q < 1, then the following fa
ts are equivalent:(i) there is an orthonormal basis (en)∞n=0 in H su
h that Sen =
√

[n + 1]q en+1,
n = 0, 1, . . . ;(ii) S is irredu
ible 6, satis�es (Oq,D) with some D dense in H, is bounded and ‖S‖ =

(1 − q)−1/2;(iii) S is irredu
ible, satis�es (Oq,D) with some D dense in H, is bounded and ‖S‖ 6

(1 − q)−1/2;(iv) S is irredu
ible, satis�es (Oq,D) with some D dense in H and is bounded;(v) S is irredu
ible, satis�es with some D dense in H (Oq,D) and is subnormal;(vi) S is irredu
ible, satis�es (Oq,D) with some D dense in H and is hyponormal.Proof. Proposition 18 establishes the equivalen
e of (ii) up to (vi).Be
ause sup{
√

[n + 1]q; n > 0} = (1 − q)−1 and be
ause S is a weighted shift
‖S‖ = sup{

√

[n + 1]q; n > 0}, we get (i)⇒(ii).Assume (iv). Be
ause D(S̄) = D(S∗), 
ondition (
) of Lemma 15 let us 
al
ulate theweights of S̄ starting with e0 ∈ N (N∗). Be
ause S is irredu
ible the sequen
e (en)∞n=0 is
omplete. This establishes (i).Remark 20. From Theorem 19 and Example 5 we get that there are two, of di�erentnature, solutions of (Oq,D). Are there any others?The 
ase of q > 1. No bounded solution exists, 
f. Proposition 16(
).Let us re
ord what is known already in the bounded 
ase in the following tableau.
6 Let us re
all relevant de�nitions: a subspa
e D ⊂ D(A) is invariant for A if AD ⊂ D;

A|D stands for the restri
tion of A to D. On the other hand, a 
losed subspa
e L is invariantfor A if A(L ∩ D(A)) ⊂ D(A); then the restri
tion A↾L
def

= A|L∩D(A). A step further, a 
losedsubspa
e L redu
es an operator A if both L and L⊥ are invariant for A as well as PD(A) ⊂ D(A),where P is the orthogonal proje
tion of H̃ onto L; all this is the same as to require PA ⊂ AP .Then the restri
tion A↾L is 
alled the part of A in L. A is irredu
ible if it has no nontrivialredu
ing subspa
e. Compared to the more familiar 
ase of bounded operators some nuan
esbe
ome requisite here. Therefore, if L redu
es A, then (A↾L) = Ā↾L and (A↾L)∗ = A∗↾L.
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q < 0 0 6 q < 1 1 6 qnormal general SOMEExa. 10 SOMEExa. 10unilat. shift SOMETh. 19subnormal bilat. shift NONEExa. 7 NONEExa. 7others SOMEExa. 5 SOMEExa. 5 NONEProp. 16(a)unilat. shifts SOMETh. 19hyponormal bilat. shift NONEExa. 7 NONEExa. 7other SOMEExa. 5 SOMEExa. 5The 
ase of S unboundedThe 
ase of q < 0. There is no hope to �nd subnormal solutions of (Oq,op) amongweighted shifts, neither one- nor two-sided.The only one-sided weighted shifts satisfying (Oq,op) are for −1 < q < 0 and they aregiven as in (i) of Theorem 19. They are apparently not hyponormal (their weights arenot in
reasing).The only two-sided weighted shifts whi
h satisfy (Oq,op) are those of Example 7.They are normal bilateral weighted shifts. So if there are subnormal operators satisfying(Oq,op) they 
annot be weighted shifts or bounded operators of norm less than or equalto (1 − q)−1/2, 
f. Corollary 17.The 
ase of 0 6 q < 1. Lemma 10 does not leave any hope for subnormal solutionsdi�erent than those in Theorem 19 but they must ne
essarily be bounded.The 
ase of q > 1. This is the right 
ase for unbounded solutions to exist.Theorem 21. For a densely de�ned 
losable operator S in a 
omplex Hilbert spa
e H
onsider the following 
onditions:(i) H is separable and has an orthonormal basis of the form {en}∞n=0 
ontained in

D(S̄) and su
h that
S̄en =

√

[n + 1]q en+1, n = 0, 1, . . . ; (21)(ii) S is irredu
ible, satis�es (Oq,D) with some D invariant for S and S∗ and beinga 
ore of S, and S is a subnormal operator having a tight and ∗-tight normalextension;(iii) S is irredu
ible, satis�es (Oq,D) with some D being a 
ore of both S and S∗;(iv) S is irredu
ible, satis�es (Oq,w) and D(S̄) = D(S∗);
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ible, satis�es (Oq,w) with D(S̄) ∩ D(S∗) dense in H, N (S∗) 6= {0}and S̄n(N (S∗)) ⊂ D(S̄) ∩ D(S∗) for n = 0, 1, . . . .Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(i).Proof. The impli
ation (i)⇒(ii) follows from (20). Proposition 1 leads us from (ii) to (iii),and then Lemma 15 drives us up to (v). Now, like in the proof of Theorem 19, 
al
ulatingthe weights 
loses the 
hain of impli
ations.Now we visualize this se
tion's �ndings in the following table.
q < 0 0 6 q < 1 1 6 qnormal general NONEProp. 6unilat. shiftsubnormal bilat. shift NONEExa. 7others NONEProp. 3(b) NONEProp. 3(a)unilat. shiftshyponormal bilat. shift NONEProp. 3(b)others MAYProp. 4(a)&(b)The q-os
illator: models in RKHSA general look. A reprodu
ing kernel Hilbert spa
e H and its kernel K whi
h suitsour 
onsiderations is of the form

K(z, w)
def

=
+∞
∑

n=0

cnznwn, z, w ∈ D, D = C or D = {z; |z| < R 6 1}. (22)Noti
e (
√

cnZn)+∞
n=0 is an orthonormal basis of H.The following fa
t is a byprodu
t of some general results on subnormality in [16℄; wegive here an ad ho
 argument. Let us make a shorthand notation

H ⊂ L2(C, µ) isometri
ally. (23)Proposition 22. There is a measure µ su
h that (23) holds if and only if there is aStieltjes moment sequen
e (an)+∞
n=0 su
h that
a2n = c−1

n , n = 0, 1, . . . (24)If this happens then a measure µ 
an be 
hosen to be rotationally invariant 7, that is su
hthat µ(ei tσ) = µ(σ) for all t's and σ's.
7 Or radial as some authors say.
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ause (
√

cnZn)+∞
n=0 is an orthonormal sequen
e in L2(C, µ),we have

c−1
n =

∫

C

|z|2nµ(dz), n = 0, 1, . . .Let mµ be the measure on [0, +∞) transported from µ via the mapping C ∋ z → |z| ∈
[0, +∞). Then

an
def

=

∫ +∞

0

rnmµ(dr) =

∫

C

|z|nµ(dz), n = 0, 1, . . . (25)satis�es (24) as well as the sequen
e (an)+∞
n=0 is a Stieltjes moment sequen
e.If (an)+∞

n=0 is any Stieltjes moment sequen
e with a representing measure m andsatisfying (24) then the rotationally invariant measure
µ(σ)

def

= (2π)−1

∫ 2π

0

∫ +∞

0

χσ(r ei t)m(dr) dt, σ a Borel subset of C, (26)makes the imbedding (23) happen.Theorem 23. Under the 
ir
umstan
es of Proposition 22 there exists a non-rotationallyinvariant measure µ su
h that (23) holds if and only if there is a sequen
e (an)+∞
n=0satisfying (24) whi
h is not Stieltjes determinate.Proof. Suppose (23) with µ not rotationally invariant and de�ne (an)+∞

n=0 as in (25). Thusthere is and s ∈ R su
h that µ(τ ) 6= µ(ei s τ ) for some subset τ of C; make τ maximal
losed with respe
t to this property. Let ν be a measure on C transported from µ via therotation z → e− i s z and let mν be the measure on [0, +∞) 
onstru
ted from ν in the way
mµ was from µ, 
f. (25). Be
ause, by a straightforward 
al
ulation, mµ and mν di�er on
{|z|; z ∈ τ}, we get indetermina
y of (an)+∞

n=0 at on
e.The other way around, if m1 and m2 are two di�erent measures on [0, +∞) repre-senting the Stieltjes moment sequen
e (an)+∞
n=0 satisfying (24), then the measure µ on Cde�ned by

µ(σ)
def

= (2π)−1(s

∫ a

0

dt

∫ +∞

0

χσ(r ei t)m1(dr) + (1− s)

∫ 2π

a

dt

∫ +∞

0

χσ(r ei t)(sm2(dr),

σ a Borel subset of C, 0 < s < 1, 0 < a < 2πis not rotationally invariant while still (23) is maintained.Résumé. De�ne two linear operators M and Dq a
ting on fun
tions
(Mf)(z)

def

= zf(z), (Dqf)(z)
def

=

{

f(z)−f(qz)
z−qz if q 6= 1,

f ′(z) if q = 1.
(27)It turns out that for a+ = M and a− = Dq the 
ommutation relation (1) is alwayssatis�ed. What Bargmann did in [3℄ was to �nd, for q = 1, a Hilbert spa
e of entirefun
tions su
h that M and D1 are formally adjoint. This for arbitrary q > 0 leads to thereprodu
ing kernel Hilbert spa
e Hq of analyti
 fun
tions with the kernel

K(z, w)
def

= eq((1 − q)zw̄), z, w ∈ |1 − q|−1/2ωq,
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ωq =

{

{z; |z| < 1} if 0 < q < 1,
C if q > 1.Under these 
ir
umstan
es we always have

〈Zm, Zn〉Hq
= δm,n[m]q!and the operator S = M a
ts as a weighted shift with the weights (

√

[n + 1]q) as inSample Theorem on p. 294.Our keynote, subnormality of M now means pre
isely that (23) with some µ is re-tained. Here we have three qualitatively di�erent situations:(a) for 0 < q < 1 the multipli
ation operator M is bounded and subnormal, thisimplies uniqueness of µ;(b) for q = 1 the multipli
ation operator is unbounded and subnormal, it has anormal extension of 
y
li
 type in the sense of [17℄ and 
onsequently µ is uniquelydetermined as well;(
) for q > 1 the multipli
ation operator is unbounded and subnormal, it has nonormal extension of 
y
li
 type in the sense of [17℄ though it does have plenty ofthose of spe
tral type in the sense of [17℄, whi
h are not unitarily equivalent 8;an expli
it example, based on [2℄, 
an be found in [18℄ (one has to repla
e q by
q−1 there to get the 
ommutation relation (1) satis�ed), an expli
it example of anon-radially invariant measure µ given in [9℄ also results from Theorem 23.The author's afterword. The fundamentals of this paper have been presented onseveral o

asions for the last 
ouple of years, re
ently at the B�dlewo 9th Workshop Non-
ommutative Harmoni
 Analysis with Appli
ations to Probability. It was Marek Bo»ejko's
ontagious enthusiasm that 
atalysed 
onverting at long last my loose notes into a 
ohe-sive exposition.
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