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Abstract.We prove that a spaceM with Disjoint Disk Property is a Q-manifold if and only

if M ×X is a Q-manifold for some C-space X. This implies that the product M × I2 of a space

M with the disk is a Q-manifold if and only if M × X is a Q-manifold for some C-space X.

The proof of these theorems exploits the homological characterization of Q-manifolds due to

Daverman and Walsh, combined with the existence of G-stable points in C-spaces. To establish

the existence of such points we prove (and afterward apply) homological versions of the Brouwer

Fixed Point Theorem and of Uspenskij’s Selection Theorem.

It was noticed in [BR] that the famous Shchepin’s Characterization Theorem for

Tikhonov cube [Sc] implies a surprising

Theorem 1 (Division Theorem for Tikhonov cubes). If the product X×Y of two spaces

is homeomorphic to a Tikhonov cube [0, 1]τ of uncountable weight τ , then X or Y is

homeomorphic to [0, 1]τ .

This theorem has essentially non-metric nature and is not true for the Hilbert cube

Q = [0, 1]ω. A suitable counterexample can be found in [Sin].

Example 1 (Singh). There is a compact absolute retract S such that S× [0, 1] is homeo-

morphic to Q but S contains no closed ANR-subspace of dimension ≥ 2.

Singh’s space S contains no topological copy of the 2-disk I2 and hence does not

possess the Disjoint Disks Property. We recall that a space X has the Disjoint Disks
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Property (briefly, DDP) if any two maps f, g : I2 → X from a 2-dimensional cube can

be uniformly approximated by maps with disjoint images.

It turns out that the pathology appearing in Singh’s example cannot occur among

spaces with DDP. This fact was first noticed by Daverman and Walsh in [DW].

Theorem 2 (Daverman–Walsh). A space M with DDP is a Q-manifold if and only if

M ×X is a Q-manifold for some finite-dimensional space X.

We recall that a topological space X is a Q-manifold if it is paracompact and has an

open cover by subsets homeomorphic to open subsets of the Hilbert cube Q = [0, 1]ω.

In this paper we show that the finite-dimensionality of X in the Daverman–Walsh

Theorem can be weakened to the C-space property. We recall that a space X is a C-space

if for any countable sequence (Un)n∈ω of open covers of X there is a sequence (Vn)n∈ω
such that

⋃
n∈ω Vn is a cover of X and each Vn is a discrete family of open sets refining

the cover Un.

The class of C-spaces includes all metrizable countable-dimensional spaces, i.e., spaces

that can be written as countable unions of zero-dimensional subspaces, see [En, 6.3.8].

The famous Pol’s example [En, 6.1.21] of a compact metrizable C-space that contains a

strongly infinite-dimensional subspace shows that the class of C-spaces is not hereditary

and is wider than the class of countable-dimensional spaces.

The following Division Theorem, generalizing Daverman–Walsh Theorem, is one of

the principal results of this paper.

Theorem 3 (Division Theorem for Q-manifolds). A spaceM with DDP is a Q-manifold

if and only if the product M ×X is a Q-manifold for some C-space X.

There is a version of this theorem not involving DDP. It generalizes Corollary 6.3

of [DW].

Theorem 4. If the product M × X of a space M with a C-space X is a Q-manifold,

then the product M × I2 is a Q-manifold, too.

The proof of these theorems consists of two basic ingredients: the homological charac-

terization of Q-manifolds due to Daverman and Walsh [DW] and Theorem 9 on existence

of G-stable points in C-spaces. The proof of the latter theorem is not trivial and relies

on homological versions of the Brouwer Fixed Point Theorem and Uspenskij’s Selection

Theorem [Us], see Theorems 7 and 8. The mentioned homological theorems seem to have

independent value and may be helpful for some other applications.

1. Homological preliminaries. All topological spaces considered in the paper are

Tikhonov. We use singular relative homology H∗(X,A;G) with coefficients in a non-

trivial abelian group G. By H̃∗(X;G) we denote the singular homology of X, reduced in

dimension zero. If G = Z, then we omit the symbol of the group and will write H∗(X,A)

in place of H∗(X,A; Z).

Among coefficient groups G, the most important for us are: the group F0 = Q of

rational numbers, and the cyclic groups Fp = Z/pZ of prime order p. Note that these

groups carry the structure of a field, so we shall call them basic fields. Basic fields Fp
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are parametrized by numbers p ∈ Π0 = {0} ∪Π where Π stands for the set of all prime

numbers.

In the following lemma we collect four homological results that will be applied later.

The first three of them follow from the Universal Coefficients Formula [Hat, 3.A.3] and

the last one from the Künneth formula (see Theorem 10 [Spa, §5.3]).

Lemma 1. Let A ⊂ X, B ⊂ Y be closed subsets of topological spaces X,Y .

(1) If H∗(X,A) = 0, then H∗(X,A;G) = 0 for any coefficient group G.

(2) If Hn(X,A) contains an element of infinite order, then Hn(X,A; Q) 6= 0.

(3) If Hn(X,A) contains an element of prime order p, then Hn+1(X,A; Zp) 6= 0.

(4) If for some field G the groups H∗(X,X \ A;G) and H∗(Y, Y \ B;G) are not trivial,

then so is the group H∗(X × Y,X × Y \A×B;G).

Next, we recall the classical notion of a Z-set introduced by R.D. Anderson [An]

and then define their homological counterparts called homological Z-sets (more detail

information on such sets can be found in [BCK]). A closed subset A of a space X is

called

• a Z-set if for every open set U ⊂ X the relative homotopy groups πk(U,U \ A) are

trivial for all k;

• a G-homological Z-set if for every open set U ⊂ X the relative homology groups

Hk(U,U \A;G) are trivial for all k;

• a homological Z-set if it is a Z-homological Z-set in X.

In [DW] homological Z-sets are referred to as closed sets with infinite codimension.

Lemma 1(1) implies that each homological Z-set is a G-homological Z-set for any coeffi-

cient group G.

A point x ∈ X is called a (homological) Z-point if the singleton {x} is a (homological)

Z-set in X. The Excision Axiom for singular homology [Hat, 2.20] implies that a point

x ∈ X is a G-homological Z-point if and only if Hk(X,X \ {x};G) = 0 for all k.

In the following lemma (whose proof can be found in [DW] or [BCK]) we collect some

basic properties of homological Z-sets.

Lemma 2. Let X be a Tikhonov space and G be a non-trivial abelian group.

(1) If A is a G-homological Z-set in X, then every closed subset B of A is a G-homo-

logical Z-set in X.

(2) For any G-homological Z-set in X and any Tikhonov space Y the product A× Y is

a G-homological Z-set in X × Y .

(3) A closed trt-dimensional subspace A of X is a G-homological Z-set in X if and only

if each point a ∈ A is a G-homological Z-point in X.

A topological space X is called trt-dimensional if trt(X) ≤ α for some ordinal α,

where trt(X) is the transfinite separation dimension introduced in [ACP] inductively:

• trt(X) = −1 iff X = ∅;
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• trt(X) ≤ α for some ordinal α if each closed subspace B ⊂ X containing more than

one point can be separated by a closed subspace P ⊂ B with trt(P ) < α (the latter

means that B \ P is disconnected).

It is clear that each finite-dimensional space is trt-dimensional. By [ACP, 4.7], each

trt-dimensional compact space is a C-space and by [Rad], a locally compact space X

is trt-dimensional provided X is σ-hereditarily disconnected in the sense that X can be

written as the countable union of hereditarily disconnected subspaces. In particular, each

locally compact countable-dimensional space is trt-dimensional.

We define a point x of a space X to be G-stable if x fails to be a G-homological

Z-point in X (equivalently, if H∗(X,X \ {x};G) 6= 0).

The last item of Lemma 2 implies

Corollary 1. Each trt-dimensional space X contains a G-stable point xG ∈ X for

every coefficient group G.

A C-space version of this corollary will be proved in Section 5 by more sophisticated

methods. Now let us prove a result, useful for detecting homological Z-sets. We recall

that by a basic field we understand either the field F0 = Q or rational numbers or the

finite field Fp = Z/pZ of a prime order p.

Lemma 3. Let X be a locally path-connected space containing an Fp-stable point xp ∈ X

for every basic field Fp, p ∈ Π0. A subset A of a topological space M is a homological

Z-set in M if and only if for every p ∈ Π0 the product A × {xp} is a homological Z-set

in M ×X.

Proof. The “only if” part of the lemma follows from Lemma 2. To prove the “if” part,

assume that a closed subset A of M fails to be a homological Z-set in M , which means

that H∗(U,U \A) 6= 0 for some open set U ⊂M . By Lemma 1(2,3), H∗(U,U \A; Fp) 6= 0

for some basic field Fp. Since H∗(X,X \ {xp}; Fp) 6= 0, we may apply Lemma 1(4) to

conclude that H∗(U ×X,U ×X \ A× {xp}; Fp) 6= 0, which means that A× {xp} is not

an Fp-homological Z-set in M ×X.

2. Homological characterization of Q-manifolds. In this section we survey some

homological and product characterizations of Q-manifolds essentially due to Daverman

and Walsh [DW].

Theorem 5 ([DW, 6.1]). A space X is a Q-manifold if and only if X is a locally compact

ANR with DDP, containing a countable family Z of homological Z-sets such that each

closed subset A of X missing
⋃
Z is a homological Z-set in X.

Theorem 6. A spaceM with DDP is a Q-manifold if and only ifM×X is a Q-manifold

for some space X containing an Fp-stable point xp ∈ X for every basic field Fp.

Proof. This theorem was implicitly proved in Appendix of [DW] but not stated there as

a separate result. So we give a proof for the convenience of the reader.

The “if” part of the theorem is trivial. To prove the “only if” part, assume that the

product M ×X is a Q-manifold for some space X containing an Fp-stable point xp for

every basic field Fp. It follows that both spaces M and X are locally compact ANR’s.



A DIVISION THEOREM FOR Q-MANIFOLDS 15

Since all points of the Q-manifold M × X are homological Z-points, we may apply

Lemma 3 to conclude that all points of the space M are homological Z-points.

The product M ×X, being a Q-manifold, contains a countable family {An : n ∈ ω}

of finite-dimensional Z-sets such that each closed subset of M × X missing the union⋃
nAn is a homological Z-set in M ×X.

For every n ∈ ω and p ∈ Π0 consider the closed finite-dimensional set Bn,p = {z ∈M :

(z, xp) ∈ An} in M . Since each point of M is a homological Z-point, the sets Bn,p, being

finite-dimensional (and thus trt-dimensional), are homological Z-sets in M , see Corollary

2.5 of [DW] (or Lemma 2(3) ). It remains to prove that each closed subset F ⊂ X that

misses the union
⋃
n,pBn,p is a homological Z-set in X. Observe that for every p ∈ Π0

the set F × {xp} misses the union
⋃
n∈ω An and thus is a homological Z-set in M ×X

by the choice of the family {An}. By Lemma 3, F is a homological Z-set in M .

Now it is legal to apply the Daverman–Walsh Theorem 5 to conclude that the space

M is a Q-manifold.

The following corollary of Theorem 6 generalizes Corollary 6.3 of [DW].

Corollary 2. For a space M the following conditions are equivalent :

(1) M × I2 is a Q-manifold ;

(2) M ×X is a Q-manifold for some space X containing an Fp-stable point xp for every

basic field Fp.

Proof. The implication (1)⇒ (2) is trivial since the point x0 = ( 1
2 ,

1
2 ) of the square I2 is

G-stable for every group G (because H2(I
2, I2 \ {x0};G) = H1(I

2 \ {x0};G) = G).

(2) ⇒ (1). Assume that M × X is a Q-manifold for some space X containing an

Fp-stable point xp for every basic field Fp. Applying Lemma 3, conclude that each point

of the space M is a homological Z-point. By Proposition 5.2 of [DW], the space X × I2

has DDP. Since M × I2×X is a Q-manifold, we may apply Theorem 6, to conclude that

M × I2 is a Q-manifold.

Combining the preceding results with Corollary 1 we obtain “trt-dimensional” versions

of Theorems 3 and 4:

Proposition 1. A space M with DDP is a Q-manifold if and only if the product M ×X

is a Q-manifold for trt-dimensional space X.

Proposition 2. If the product M ×X of a space M with a trt-dimensional space X is

a Q-manifold, then the product M × I2 is a Q-manifold, too.

Theorems 3 and 4 will follow in the same manner as soon as we prove that each locally

compact locally contractible C-space X contains an Fp-stable point xp for every basic

field Fp. For this we need to elaborate some tools like homological versions of the Brouwer

Fixed Point Theorem and of the Uspenskij Selection Theorem [Us].

3. A Homological Fixed Point Theorem. In this section we prove a homological

version of the classical Brouwer Fixed Point Theorem asserting that each continuous

map f : X → X on a compact absolute retract X has a fixed point. The homological

version of this result guarantees the existence of a fixed point for chain morphisms between
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complexes of singular chains on X and by its spirit is close to the classical Lefschetz–Hopf

Fixed Point Theorem, see [Bre, 23.4].

First we recall some definitions. Throughout this section, G is a field. For a subset A

of a topological space X and a cover U of X let St(A,U) =
⋃
{U ∈ U : U ∩ A 6= ∅} be

the star of A with respect to the cover U . Also we shall write A ≺ U if A ⊂ U for some

U ∈ U .

For a space X by S(X;G) we denote the complex of singular chains of the space X.

So S(X;G) =
⊕
k≥0 Sk(X;G) is the direct sum of free modules Sk(X;R) over G gener-

ated by singular k-simplexes in X. The modules Sk(X;G) are linked via the boundary

homomorphisms ∂ : Sk(X;G)→ Sk−1(X;G) where S−1(X;G) = G.

By ∆k = {(t0, . . . , tk) ∈ [0, 1]k+1 : t0+ . . .+tk = 1} we denote the standard k-simplex.

For a singular k-simplex σ : ∆k → X by ‖σ‖ = σ(∆k) we denote the carrier of σ and

for a k-chain c ∈ Sk(X;G) we put ‖c‖ =
⋃
i ‖σi‖, where c =

∑
i giσi is the irreducible

representation of c as a linear combination of singular k-simplexes.

For a cover U of X let S(X,U ;G) stand for the submodule of S(X;G), generated by

singular simplexes whose supports lie in elements of U .

A homomorphism ϕ : S(X,U ;G)→ S(Y ;G) is called a chain morphism if ∂◦ϕ = ϕ◦∂

and ϕ(Sk(X,U ;G)) ⊂ Sk(Y ;G) for all k ∈ ω. Each continuous map f : X → Y induces a

chain morphism f# : S(X,U ;G)→ S(Y ;G) assigning to a singular simplex σ : ∆k → X

the simplex f ◦ σ : ∆k → Y .

A point x ∈ X is called a fixed point of a chain morphism ϕ : S(X,U ;G)→ S(X;G) if

for any neighborhood V ≺ U of x there is a chain c ∈ S(V ;G) such that ‖ϕ(c)‖∩ V 6= ∅.

Observe that the set of fixed points of a continuous map f : X → X coincide with

the set of fixed points of the induced chain morphism f# : S(X,U ;G) → S(X;G). So,

detecting fixed points of chain morphisms can help in detecting fixed points of continuous

maps.

The principal result of this section is the following homological version of the Brouwer

Fixed Point Theorem. For the field G = Q of rational numbers a much more general result

(treating compact maps of so-called algebraic ANR’s) was proved in Theorem 5 of [Ca].

However in the framework of usual AR’s it has a simpler proof, which we include here

for the convenience of the reader.

Theorem 7 (A Homological Fixed Point Theorem). Let G be a field and U be an open

cover of a compact absolute retract X. Any chain morphism ϕ : S(X,U ;G) → S(X;G)

has a fixed point x ∈ X.

Proof. First, we reduce the problem to the case X = In for a suitable n ∈ N. Suppose

that some chain morphism ϕ : S(X,U ;G)→ S(X;G) has no fixed point.

Embed X into the Hilbert cube Q and take any retraction r : Q → X. Since the

chain morphism ϕ fails to have a fixed point, then so does the morphism ϕ ◦ r# :

S(Q, r−1(U);G) → S(X;G) ⊂ S(Q;G). Therefore, we lose no generality assuming that

X = Q.

The absence of a fixed point for ϕ implies the existence of an open cover V of X

inscribed into U and such that ‖ϕ(c)‖ ∩ St(V,V) = ∅ for every V ∈ V and every singular

chain c ∈ S(V ;G). We can assume that all sets V ∈ V are of cylindrical form, that is
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V = p−1(p(V )), where p : Q → In is the natural projection of Q = [0, 1]ω onto the n-

dimensional cube In = {(ti) ∈ Q : ti = 0 for all i ≥ n} for some n. Denoting by i : In → Q

the identity embedding, we see that the morphism p# ◦ϕ◦i# : S(In, p(V);G)→ S(In;G)

also has no fixed point. So, we lose no generality assuming that X = In for some n.

Let T be a triangulation of In so fine that the closed star St(σ) of every simplex

σ ∈ T lies in some set V ∈ V . Denote by W the cover of In by open stars of vertices

of the triangulation T . Let T ′ be the barycentric subdivision of T and let C(T ′;G)

denote the complex of oriented simplicial chains of T ′ with coefficients in the field G.

For every simplex σ of T ′ fix a corresponding generator of C(T ′;G) and denote it by

the same symbol σ. By ‖σ‖ ⊂ In we denote the geometric realization of a simplex σ

and for a simplicial chain c ∈ C(T ′;G) we put ‖c‖ =
⋃
i ‖σi‖ where c =

∑
i giσi is

an irreducible representation of c as a linear combination of oriented simplexes σi with

non-zero coefficients.

Using the acyclicity of geometric simplexes, by induction on dimension one can con-

struct a chain morphism η : C(T ′;G)→ S(In;G) such that ‖η(σ)‖ ⊂ ‖σ‖ for all simplexes

σ of T ′. According to [Spa, 4.4.14], there is an operator of subdivision Sd : S(In;G) →

S(In,W ;G) such that ‖ Sd(c)‖ ⊂ ‖c‖ for any singular chain c ∈ S(In;G).

Next, we are going to construct a chain morphism ψ : S(In,W ;G)→ C(T ′;G) such

that ‖ψ(c)‖ ⊂ St(‖c‖,W) for every singular chain c ∈ S(Im,W ;G). The construction

of ψ is inductive and relies on the notion of the traverse Tr(σ) of a simplex σ of T .

First some notation. We write τ ⊆ σ if a simplex τ is a face of a simplex σ and τ ( σ

if τ is a proper face of σ. By bσ we denote the barycenter of a simplex σ.

The traverse Tr(σ) of a simplex σ of the triangulation T is the subcomplex of the

barycentric subdivision T ′ formed by geometric simplexes with vertices bσ0 , bσ1 , . . . , bσn
where σ ⊆ σ0 ( · · · ( σn are simplexes of T . It is well known (and easy to see) that the

traverse Tr(σ), being a cone with vertex bσ, is a contractible subcomplex of T
′. It is also

clear that Tr(σ) ⊂ St(‖σ‖,W) and Tr(τ ) ⊃ Tr(σ) if τ is a face of σ.

For every subset A ⊂ In with A ≺ W denote by s(A) the simplex of T with the

vertices v such that A ⊂ St(v,W). Observe that for subsets A ⊂ B of In with B ≺ W

we get s(A) ⊃ s(B) and Tr(s(A)) ⊂ Tr(s(B)).

By induction we shall construct a chain morphism ψ : S(In,W ;G)→ C(T ′;G) such

that ‖ψ(σ)‖ ⊂ Tr(s(‖σ‖)) for every simplex σ ∈ S(In,W ;G). For a 0-dimensional sin-

gular simplex σ we let ψ(σ) be the barycenter bs(‖σ‖) of the simplex s(‖σ‖). Assuming

that for some k ≥ 0 the chain morphism ψ is defined on the space Sk(I
n,W ;G), take

any singular (k + 1)-simplex σ ∈ S(In,W ;G) and consider the chain ∂σ. By the induc-

tive assumption, for every face τ of σ we get ‖ψ(τ )‖ ⊂ Tr(s(‖τ‖)) ⊂ Tr(s(‖σ‖)). Then

‖ψ(∂σ)‖ ⊂ Tr(s(‖σ‖)) and the contractibility of the traverse Tr(s(‖σ‖)) will help us to

find a chain c ∈ Ck+1(T
′;G) with ‖c‖ ⊂ Tr(s(‖σ‖)) and ∂c = ψ(∂σ). Letting ψ(σ) = c

we define the morphism ψ on each (k + 1)-simplex σ ∈ S(In,W ;G), and this morphism

can be extended onto Sk+1(X,W ;G) by linearity.

It follows from the construction that for any singular simplex σ ∈ S(In,W ;G) we

get ‖ψ(σ)‖ ⊂ Tr(s(‖σ‖)) ⊂ St(s(‖σ‖),W) ⊂ St(‖σ‖,W). The linearity of ψ implies that

‖ψ(c)‖ ⊂ St(‖c‖,W) for any chain c ∈ S(In,W ;G).
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Having constructed the morphism ψ, consider the chain morphism

ξ = ψ ◦ Sd ◦ϕ ◦ η : C(T ′;G)→ C(T ′;G).

We claim that for every k ≥ 0 the kth component ξk : Ck(T
′;G) → Ck(T

′;G) of this

morphism has zero trace; more precisely, the matrix of ξk in the canonical base of C(T ′;G)

has zero trace. The canonical base of C(T ′;G) consists of oriented simplexes σ of the

triangulation T ′. For any such a simplex σ take any V ∈ V with ‖σ‖ ⊂ V and observe

that ‖η(σ)‖ ⊂ ‖σ‖ ⊂ V and hence ‖ϕ(η(σ))‖ ∩ St(V,V) = ∅. Then

‖ Sd ◦ϕ ◦ η(σ)‖ ⊂ ‖ϕ ◦ η(σ)‖ ⊂ In \ St(V,V)

and

‖ξ(σ)‖ = ‖ψ ◦ Sd ◦ϕ ◦ η(σ)‖ ⊂St(‖ Sd ◦ϕ ◦ η(σ)‖,W)

⊂St(In \ St(V,V),W) ⊂ In \ V ⊂ In \ ‖σ‖,

which means that for the representation ξ(σ) =
∑
τ gτ · τ of ξ(σ) as a linear combination

of k-simplexes, the coefficient gσ = 0. Therefore the matrix of the transformation ξk has

zero diagonal and zero trace tr(ξk) = 0.

Then the Lefschetz number

Λ(ξ) =
∑

k≥0

(−1)ktr(ξk)

of the chain morphism ξ equals zero. On the other hand, the Hopf Trace Formula [Bre,

2.3.2] implies that Λ(ξ) = Λ(ξ∗), where ξ∗ : H∗(I
n;G) → H∗(I

n;G) is the induced

homomorphism in homologies. All homological groups of In, except forH0(I
n;G) = G are

trivial, which implies that 1 = Λ(ξ∗) = Λ(ξ) = 0 and this is a contradiction, completing

the proof of the theorem.

4. A homological version of Uspenskij’s Selection Theorem. In this section we

prove another important ingredient for the proof of Theorem 9—a homological version of

Uspenskij’s Selection Theorem [Us]. We recall that Uspenskij’s Theorem guarantees the

existence of a continuous selection for each strongly lower semicontinuous multivalued

function Φ : X ⇒ Y defined on a paracompact C-space X and having aspherical values.

A multivalued function Φ : X ⇒ Y is called strongly lower semicontinuous if for each

compact subset K ⊂ Y the set {x ∈ X : K ⊂ Φ(x)} is open in X.

A space X is aspherical if its homotopy groups all are trivial. A homological version

of Uspenskij’s Selection Theorem treats multivalued functions having G-acyclic values,

where a space X is defined to be G-acyclic if its singular homology H̃∗(X;G) (reduced

in dimension zero) with the coefficient group G is trivial.

Theorem 8. Let G be a ring with unit, X be a paracompact C-space, Y be a topological

space, and Φ : X ⇒ Y be a strongly lower semicontinuous multivalued function having

G-acyclic values Φ(x) for all x ∈ X. Then there are an open cover U of X and a chain

morphism ϕ : S(X,U ;G)→ S(Y ;G) such that ϕ(S(U ;G)) ⊂ S(Φ(x);G) for every U ∈ U

and every point x ∈ U .

Proof. We shall construct two sequences of locally finite open covers of X, Vn = {Vα :

α ∈ An} and Wn = {Wα : α ∈ An} of X so that
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(1) Wα ⊂ Vα for all α.

The index sets An will be taken pairwise disjoint and we shall construct an increasing

sequence K1 ⊂ K2 ⊂ . . . of simplicial complexes and chain morphisms µn : C(Kn;G)→

S(Y ;G) satisfying

(2) µn|C(Kn−1;G) = µn−1.

To every index α ∈ An we shall assign a finite contractible subcomplex Lα of Kn in

such a way that the compact set

Cα =
⋃

σ⊂Lα

‖µn(σ)‖.

will satisfy the inclusion

(3) Cα ⊂ Φ(x) for all x ∈ Vα.

For every x ∈ X, fix a point yx ∈ Φ(x) and consider the setOx = {x′ ∈ X : yx ∈ Φ(x′)}

which is an open neighborhood of x because Φ is strongly lower semicontinuous. Let

V1 = {Vα : α ∈ A1} be an open locally finite cover of X inscribed into {Ox : x ∈ X},

and let W = {Wα : α ∈ A1} be a locally finite open cover satisfying (1). Let K1 be

the zero-dimensional complex having A1 for the set of vertices. For every α ∈ A1 let

Lα = {α} and choose xα ∈ X so that Oxα contains Vα. Let µ1 : C(K1;G) → S(Y ;G)

be the chain morphism assigning to the generator corresponding to α the 0-simplex yxα .

Then the set Cα = {yxα} satisfies (3) by the definition of Oxα .

Assume that for some n ≥ 1, the covers Vn and Wn have been constructed. For every

x ∈ X let Px be an open neighborhood of x meeting only finitely many sets of the locally

finite cover
⋃
p≤n Vp and such that Px ⊂ Vα for every α ∈ Ap with Px ∩Wα 6= ∅. Let

J(x) be the set of all α ∈ A1 ∪ . . . ∪ An such that Px ⊂ Vα and let Dx =
⋃
{Cα :

α ∈ J(x)}. The set J(x) is finite, so Dx is compact, and the condition (3) guarantees

that Dx ⊂ Φ(x). Let Mx =
⋃
{Lα : α ∈ J(x)}; this is a finite subcomplex of Kn,

and the definition of Cα ensures that µn(C(Mx;G)) ⊂ S(Dx;G) ⊂ S(Φ(x);G). The

G-acyclicity of Φ(x) guarantees that, for the cone Lx with base Mx and vertex vx /∈Mx,

there is a chain morphism µx : C(Lx;G) → S(Φ(x);G) extending µn|C(Mx;G). Then

Cx =
⋃
σ⊂Lx

‖µx(σ)‖ is a compact set containing Dx and lying in Φ(x). Let Onx = {x′ ∈

Px : Cx ⊂ Φ(x′)}. Since Φ is strongly lower semicontinuous, Onx is an open neighborhood

of x.

Let Vn+1 = {Vα : α ∈ An+1} be a locally finite open cover of X inscribed into

{Onx : x ∈ X}, and let Wn+1 = {Wα : α ∈ An+1} be a locally finite open cover of X,

satisfying (1). For every α ∈ An+1, choose a point xα ∈ X such that O
n
xα
contains Vα, and

let Lα be the cone with baseMxα and vertex α. Put Kn+1 = Kn∪
⋃
α∈An+1

Lα. Let ψα be

the simplicial isomorphism of Lα onto Lxα which is identity onMxα and maps α onto vxα .

Define the chain morphism µn+1 : C(Kn+1;G) → S(Y ;G) by µn+1|C(Kn;G) = µn and

µn+1|C(Lα;G) = µxα ◦(ψα)# for all α ∈ An+1. Then Cα = Cxα , and the definition of O
n
xα

guarantees that (3) holds. Moreover, since Onxα ⊂ Pxα , the definition of Px guarantees

that

(4) If α′ ∈ A1 ∪ . . . ∪An and α ∈ An+1 satisfy Wα ∩Wα′ 6= ∅, then Wα ⊂ Vα′ , and thus

Lα′ ⊂ Lα.
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Let K =
⋃∞
n=1Kn. Since X is a C-space, there are disjoint families Un =

{Uλ : λ ∈ Λn}, n ≥ 1, of open sets in X such that every Un refines Wn and U =
⋃
Un

covers X. We suppose that the index sets Λn are pairwise disjoint and put Λ =
⋃∞
n=1 Λn,

Λ≤n = Λ1 ∪ . . . ∪ Λn, and

Sn =
∑

λ∈Λ≤n

S(Uλ;G).

The sets Sn form an increasing sequence of subcomplexes of S(X;G) with union equal

to S(X,U ;G). For every λ ∈ Λn, select an αλ ∈ An such that Uλ ⊂ Wαλ . We are going

to construct a chain morphism ν : S(X,U ;G)→ C(K;G) such that

(5) ν(S(Uλ;G)) ⊂ C(Lαλ ;G) for all λ ∈ Λ.

Since Lαλ is contractible, for every λ ∈ Λ1 there is a chain morphism νλ : S(Uλ;G)→

C(Lαλ ;G). Since the family Uλ, λ ∈ Λ1, is disjoint, S1 is a direct sum of S(Uλ;G) for

λ ∈ Λ1, so we may define the restriction ν1 of ν to S1 letting ν1|S(Uλ;G) = νλ for all

λ ∈ Λ1.

Suppose that for some n ≥ 1 the restriction νn of ν to Sn has been constructed. If

λ1, λ2 are two distinct elements of Λn+1, then S(Uλ1 ;G)∩S(Uλ2;G) = {0}. So, to extend

νn to Sn+1, it suffices to construct extensions νλ of νn|S(Uλ;G) ∩ Sn onto S(Uλ;G) for

every λ ∈ Λn+1. If λ
′ ∈ Λ≤n satisfies Uλ ∩Uλ′ 6= ∅, then Wαλ ∩Wαλ′ 6= ∅, so Lαλ′ ⊂ Lαλ

according to (4). The condition (5) implies νn(S(Uλ;G) ∩ Sn) ⊂ C(Lαλ ;G), and the

G-acyclicity of Lαλ ensures the existence of the desired extension νλ.

Let ϕ = µ ◦ ν : S(X,U ;G)→ S(Y ;G). Using (5) and the definition of Cα, we get, for

every λ ∈ Λ,

ϕ(S(Uλ;G)) ⊂ µ(C(Lαλ ;G)) ⊂ S(Cαλ ;G).

Since Uλ ⊂ Wαλ ⊂ Vαλ , (3) implies that Cαλ ⊂ Φ(x) for every x ∈ Uλ, which completes

the proof of the theorem.

5. G-stable points in C-spaces. Now we are able to prove a promised theorem, which

being combined with Theorem 6 and Corollary 2, implies Theorems 3 and 4 announced

in the Introduction. For the ring G = Z this theorem was proved in [BCK].

Theorem 9. Each metrizable locally compact locally contractible C-space X contains a

G-stable point xG ∈ X for every field G.

Proof. By Gresham’s Theorem [Gre], X, being a locally contractible C-space, is an ANR.

Then Edwards’ ANR-Theorem [Chap, 44.1] guarantees that the product M = X × Q

is a Q-manifold. Take an open subset W ⊂ M such that the closure W of W in M is

homeomorphic to the Hilbert cube and the remainder W \ W is a homotopical Z-set

in W . Let pr : W → X stand for the natural projection.

To derive a contradiction, assume that for some field G the space X contains no

G-stable point; in other terms, each point x of X is a G-homological Z-point. Then

Lemma 2 ensures that the product {x} × Q is a G-homological Z-set in M ×X, which

guarantees that H∗(W,W \ ({x} × Q); G) = 0. The exact sequence of the pair

(W,W \ ({x} ×Q)) = (W,W \ pr−1(x)) implies that

H̃∗(W \ pr
−1(x);G) = H∗(W,W \ pr

−1(x);G) = 0.
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Since the remainder W \W is a homotopical Z-set in W , the space W \ pr−1(x) is

homotopy equivalent to W \ pr−1(x) and hence H̃∗(W \ pr
−1(x);G) = 0, which means

that the multivalued function

Φ : X ⇒W, Φ : x 7→W \ pr−1(x)

has G-acyclic values.

Observe that for every compact subset K ⊂W the set

{x ∈ X : K ⊂ Φ(x)} = X \ pr(K)

is open in X, which means that the multivalued function Φ : X ⇒ W is strongly lower

semicontinuous.

Now it is legal to apply Theorem 8 to find an open cover U onX and a chain morphism

ϕ : S(X,U ;G)→ S(W ;G) such that ϕ(S(U ;G)) ⊂ S(Φ(x);G) for every U ∈ U and every

point x ∈ U .

Consider the open cover pr−1(U) = {pr−1(U) : U ∈ U} of a Hilbert cube W , and let

pr∗ : S(W, pr−1(U);G) → S(X,U ;G) be the chain morphism induced by the projection

pr : W → X.

By the Homological Fixed Point Theorem 7, for the chain morphism

ϕ ◦ pr∗ : S(W, pr−1(U);G)→ S(W ;G)

there are a set U ∈ U and a chain c ∈ S(pr−1(U);G) such that ‖ϕ◦pr∗(c)‖∩pr
−1(U) con-

tains some point (x, q). Since pr∗(c) ∈ S(U ;G), the choice of the morphism ϕ guarantees

that ϕ(pr∗(c)) ∈ S(Φ(x);G) and hence ‖ϕ◦pr∗(c)‖ ⊂ Φ(x) = W \pr−1(x) ⊂W \{(x, q)},

which contradicts the choice of the point (x, q).

6. Open problems. Theorems 3 and 4 would follow from (more simple) Propositions 1

and 2 if the answer to the (first part of the) following question were affirmative.

Problem 1. Is each compact C-space trt-dimensional? Is each compact trt-dimensional

space σ-hereditarily disconnected?

Our other problem asks if Theorem 9 is true for weakly infinite-dimensional compacta.

Problem 2. Let X be a compact weakly infinite-dimensional ANR-space. Does X con-

tain a G-stable point xG for every (basic) field G?
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