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Abstract. We give an existence result for a periodic boundary value problem involving mean

curvature-like operators. Following a recent work of R. Manásevich and J. Mawhin, we use an

approach based on the Leray–Schauder degree.

1. Introduction. In this paper we study the existence of periodic solutions of the non-

linear differential problem




(φ(u′))′ = f(t, u, u′)

u(0) = u(T )

u′(0) = u′(T ),

(1.1)

where f : [0, T ]×R
N ×R

N → R
N is a Carathéodory function and φ is a homeomorphism

between R
N and the open ball in R

N with center zero and radius 1, verifying the following

condition:

(H1) φ(x) = w(‖x‖)Ax, where w : [0,+∞) → [0,+∞) is continuous and A is a linear

isomorphism.

Our purpose here is to enrich some recent results obtained in [1] and [2] about prob-

lem (1.1) in the more restrictive assumption that A is the identity.
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The class of nonlinear operators u 7→ (φ(u′))′ verifying (H1) is interesting since it

includes the scalar version of the mean curvature operator

u 7→ div

(
∇u√

1 + |∇u|2

)

which is usually considered in the case when u is a scalar function defined on an open

subset of R
N .

The study of problem (1.1) is motivated by the attempt of applying in our context the

topological approach followed by Manásevich and Mawhin in [8] (see also [9]), in which

they proved an existence result for the periodic boundary value problem




(φ(u′))′ = f(t, u, u′)

u(0) = u(T )

u′(0) = u′(T ),

(1.2)

where f : [0, T ]×R
N ×R

N → R
N is still a Carathéodory function, whereas φ : R

N → R
N

is a homeomorphism satisfying particular monotonicity conditions which include for in-

stance p-Laplacian-like operators. Precisely, under further conditions on φ and f , they ap-

plied the Leray–Schauder degree to prove that (1.2) admits a solution ([8, Theorem 3.1]).

In [1] and [2] we proceeded in the general spirit of Manásevich–Mawhin’s ideas and we

proved, as said before, an existence result for (1.1), assuming that A is the identity. We

still follow here the same approach: under suitable assumptions on f , which we specify in

the sequel, we apply the Leray–Schauder degree and we show (Theorem 4.1 below) that

(1.1) admits a solution.

We point out that similar results has been recently obtained, independently, by

Bereanu and Mawhin (see [3], [4] and [5]). They study the problem

(φ(u′))′ = f(t, u, u′), (1.3)

with Dirichlet, Neumann or periodic boundary conditions on u, where φ : R → (−a, a)
is a homeomorphism such that φ(0) = 0 and f : [0, T ] × R × R → R is continuous.

Bereanu and Mawhin follow a topological approach based on the Leray–Schauder degree

(analogously to [8]), and they find interesting a priori estimates involving f and φ.

Our paper is organized as follows. In the next section we isolate some useful prelim-

inary results concerning the map φ. Then, in Section 3 we consider our problem in the

particular case when f is independent of u and u′. The study of this simplified case is the

first step in the direction of applying the Leray–Schauder degree, as done in Section 4.

That section is, in particular, devoted to the main theorem of this work, that is, an ex-

istence result for system (1.1). In the last section we present an application of the main

theorem to a particular system.

We refer to e.g. [6] or [7] for the definition and the main properties of the Leray–

Schauder degree.

Standing notation. In what follows I will denote the closed interval [0, T ], with T fixed. In

addition, we will put C = C(I,RN), C1 = C1(I,RN ), CT,0 = {u ∈ C : u(0) = u(T ) = 0},
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C1
T = {u ∈ C1 : u(0) = u(T ), u′(0) = u′(T )}, L1 = L1(I,RN ), and, finally, L1

m = {h ∈
L1 :

∫ T

0
h(t) dt = 0}. The norm in C and CT,0 is defined by

‖u‖0 = max
t∈I

‖u(t)‖RN ,

the norm in C1 and C1
T by

‖u‖1 = ‖u‖0 + ‖u′‖0,

and the norm in L1 and L1
m by

‖h‖L1 =

[
N∑

i=1

∫ T

0

‖hi(t)‖2 dt

]1/2

=

(
N∑

i=1

‖hi‖2
L1

)1/2

.

Finally, by ‖ · ‖ we simply denote the Euclidean norm in R
N .

Remark 1.1. By a solution of (1.1) we mean a C1 map u on [0, T ], with values in R
N ,

satisfying the boundary conditions, such that φ(u′) is absolutely continuous and verifies

(φ(u′))′ = f(t, u, u′) a.e. on [0, T ].

2. Preliminary results. In this section we show some important consequences following

from assumption (H1).

Lemma 2.1. Let φ : R
N → B(0, 1) be a homeomorphism between R

N and the open ball

in R
N with center zero and radius 1, verifying condition (H1). Then

i) ‖Ax‖ = ‖Ay‖ if ‖x‖ = ‖y‖;
ii) 〈Ax,Ay〉 = 0 if 〈x, y〉 = 0.

Proof. i) Let x and y be such that ‖x‖ = ‖y‖. Given λ > 0, we have

‖φ(λx)‖ = λw(λ ‖x‖)‖Ax‖ and ‖φ(λy)‖ = λw(λ ‖y‖)‖Ay‖.
Since ‖φ(λx)‖ and ‖φ(λy)‖ converge to 1 when λ→ +∞, and since w(λ ‖x‖) = w(λ ‖y‖)
for any λ > 0, one has

1

‖Ax‖ = lim
λ→+∞

λw(λ ‖x‖) = lim
λ→+∞

λw(λ ‖y‖) =
1

‖Ay‖ ,

and the claim follows.

ii) Observe first that, by i), we can assume without loss of generality that ‖Ax‖ = ‖x‖
for any x. Consider now x and y such that 〈x, y〉 = 0 and ‖x‖ = ‖y‖. If 〈Ax,Ay〉 6= 0

then ‖x+ y‖ 6= ‖Ax+Ay‖, but this is a contradiction.

Remark 2.2. By the above argument, from now on and without loss of generality we

will suppose that A is an orthonormal linear isomorphism.

The following lemma concerns the particular case when A is the identity.

Lemma 2.3. Let ψ : R
N → B(0, 1) be a homeomorphism between R

N and the open ball

in R
N with center zero and radius 1 of the form ψ(x) = w(‖x‖)x, where w : [0,+∞) →

[0,+∞) is continuous. Then, for any x, y ∈ R
N with x 6= y, one has

〈ψ(x) − ψ(y), x− y〉 > 0.
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Proof. Consider first the particular case y = λx, with λ ≥ 0, λ 6= 1 and x 6= 0. One has

〈ψ(x) − ψ(λx), x− λx〉
=
〈
w(‖x‖)x− w(‖λx‖)λx, (1 − λ)x

〉
=
(
w(‖x‖)‖x‖ − w(‖λx‖)‖λx‖

)
(1 − λ)‖x‖.

Using the fact that t 7→ w(t)t is strictly increasing, one can easily show that
[
w(‖x‖)‖x‖ − w(‖λx‖)‖λx‖

]
(1 − λ) > 0 ∀λ ≥ 0, λ 6= 1.

Consider now any x, y ∈ R
N with ‖x‖ 6= ‖y‖. We have

〈ψ(x) − ψ(y), x− y〉 = w(‖x‖)‖x‖2 + w(‖y‖)‖y‖2 −
(
w(‖x‖) + w(‖y‖)

)
〈x, y〉

≥ w(‖x‖)‖x‖2 + w(‖y‖)‖y‖2 −
(
w(‖x‖) + w(‖y‖)

)
‖x‖ ‖y‖.

Take y1 = λx such that ‖y1‖ = ‖y‖, with λ ≥ 0. It follows that

w(‖x‖)‖x‖2 + w(‖y‖)‖y‖2 −
(
w(‖x‖) + w(‖y‖)

)
‖x‖ ‖y‖

= w(‖x‖)‖x‖2 + w(‖y1‖)‖y1‖2 −
(
w(‖x‖) + w(‖y1‖)

)
‖x‖ ‖y1‖

= 〈ψ(x) − ψ(y1), x− y1〉 > 0

(the last inequality holds by the first case).

Finally, if x 6= y, but ‖x‖ = ‖y‖, we have

〈ψ(x) − ψ(y), x− y〉 = 〈w(‖x‖)x− w(‖y‖)y, x− y〉 = w(‖x‖)〈x− y, x− y〉 > 0

and the lemma is proved.

Let us point out that the above result is always false for any homeomorphism φ(x) =

w(‖x‖)Ax if A is not the identity.

3. An auxiliary problem. Consider the following periodic boundary value problem




(φ(u′))′ = h(t)

u(0) = u(T )

u′(0) = u′(T ),

(3.1)

where h is in L1
m and φ is a homeomorphism between R

N and the open ball of R
N , with

center zero and radius 1, verifying condition (H1) (see also Remark 2.2). If a C1 function

u : I → R
N solves the equation (φ(u′))′ = h(t), then there exists a ∈ R

N such that

φ(u′(t)) = a+H(h)(t), (3.2)

where H is the integral operator

H(h)(t) =

∫ t

0

h(s) ds.

Remark 3.1. Notice that the condition u′(0) = u′(T ) implies that
∫ T

0
h(t) dt = 0 and

this justifies the assumption that h ∈ L1
m.

By the inversion of φ in (3.2) we have

u′(t) = φ−1(a+H(h)(t)),
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and thus the image of H(h), which contains the origin of R
N , is included in an open ball

of radius 1. In addition, any a verifying the above equality is such that ‖a‖ < 1. Call D̃

the set of functions h in L1
m such that there exists a ∈ R

N with

‖a+H(h)(t)‖ < 1 ∀t ∈ I.

The set D̃ is unbounded in L1
m. Indeed, take for simplicity T = 1 and consider the

sequence of real functions {hn}n∈N, where

hn : [0, 1] → R, hn(t) =

{
n t ∈ [k/n, (2k + 1)/(2n))

−n t ∈ [(2k + 1)/(2n), (k + 1)/n) ∪ {1},
(3.3)

k = 0, . . . , n−1. Consider the sequence {kn} ⊆ L1
m, where kn = (hn, 0, . . . , 0). A straight-

forward computation shows that, for each n,

‖kn‖L1 = n and ‖H(kn)‖0 = 1/2.

Thus, {kn} is an unbounded sequence contained in D̃. On the other hand, even if D̃ is

unbounded, it is easy to see that it does not contain any one-dimensional subspace of L1
m.

Moreover, D̃ is open in L1
m. To see this, let h ∈ D̃ be given. One has

max
t1,t2∈I

‖H(h(t2)) −H(h(t1))‖ = max
t1,t2∈I

∣∣∣∣
∫ t2

t1

h(t) dt

∣∣∣∣ = δ < 2.

Then, given ε in L1
m, it follows that

max
t1,t2∈I

∥∥H(h(t2) + ε(t2)) −H(h(t1) + ε(t1))
∥∥ ≤ δ + ‖ε‖L1 .

Therefore the open ball in L1
m of center h and radius 2 − δ is contained in D̃ and the

claim follows.

The open ball of L1
m of center zero and radius 2 is contained in D̃. To see this, consider

first any map g ∈ L1(I,R) such that
∫ T

0
g(t) dt = 0. Then, define

g+(t) =

{
g(t) if g(t) ≥ 0

0 if g(t) < 0
and g−(t) =

{
0 if g(t) ≥ 0

−g(t) if g(t) < 0.

As
∫ T

0
g(t) dt = 0, one has ‖g+‖L1 = ‖g−‖L1 = 1

2‖g‖L1 . In addition,
∣∣∣∣
∫ t

0

g(s) ds

∣∣∣∣ ≤ ‖g+‖L1 ∀t ∈ I.

Hence

‖H(g)‖0 ≤ 1

2
‖g‖L1 .

Now consider any h = (h1, . . . , hN ) ∈ L1
m, with ‖h‖L1 < 2. It is immediate to check that

‖H(h)‖0 ≤ 1

2
‖h‖L1 < 1,

and this proves the assert.

The closure of the open ball of L1
m of center zero and radius 2 is not contained in D̃.

Indeed, it is obvious that the constant map h(t) = 2/T is not in D̃.
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Coming back to problem (3.1), we have seen that it admits a solution only if h belongs

to D̃. Then, any C1 solution u can be written as

u(t) = u(0) +

∫ t

0

φ−1(a+H(h)(s)) ds.

The boundary condition u(0) = u(T ) implies that
∫ T

0

φ−1(a+H(h)(t)) dt = 0. (3.4)

Thus (3.1) has a solution in C1
T if and only if h belongs to the subset D of D̃ defined as

the set of functions h ∈ D̃ such that there exists a ∈ R
N verifying (3.4). The next result

lists some properties of D.

Proposition 3.2. The following conditions hold.

(1) For any h ∈ D the point a ∈ R
N such that

∫ T

0

φ−1
(
a+H(h)(t)

)
dt = 0

is unique and then defines a map α : D → R
N which is bounded and continuous.

(2) The set D is open, unbounded in L1
m, and contains the open ball in L1

m with center

zero and radius 2/3.

Proof. (1) Recalling Remark 2.2, the map ψ(x) = w(‖x‖)x is a homeomorphism between

R
N and the open ball in R

N with center zero and radius 1, and we have

φ(x) = Aψ(x) = ψ(Ax).

Let h ∈ D be given and consider the function

GH(h)(a) =

∫ T

0

ψ−1
(
a+H(h)(t)

)
dt (3.5)

which is well defined and continuous on the set
{
a ∈ R

N : ‖a+H(h)(t)‖ < 1 ∀t ∈ I
}
.

We have
〈
GH(h)(a1) −GH(h)(a2), a1 − a2

〉
> 0, if a1 6= a2. (3.6)

Indeed,

〈
GH(h)(a1) −GH(h)(a2), a1 − a2

〉

=

∫ T

0

〈
ψ−1(a1 +H(h)(t))−ψ−1(a2 +H(h)(t)), a1 +H(h)(t)− (a2 +H(h)(t))〉 dt > 0.

The last inequality is a consequence of Lemma 2.3 and thus, by (3.6), GH(h)(a) = 0 has

a unique solution. Since
∫ T

0

φ−1(a+H(h)(t)) dt = A−1GH(h)(a) (3.7)
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and A is an isomorphism, it follows that the unique a such that GH(h)(a) = 0 coincides

with the unique a such that
∫ T

0

φ−1(a+H(h)(t)) dt = 0.

Thus it turns out we defined well the map α : D → R
N which associates to any h ∈ D the

unique a ∈ R
N such that the above equality holds. Clearly α is a bounded map, whose

image is contained in the open ball in R
N with center zero and radius 1.

To see the continuity of α we proceed as follows. Define the set

C =
{
l ∈ CT,0 : ∃a ∈ R

N with ‖a+ l(t)‖ < 1 ∀t ∈ I and

∫ T

0

ψ−1(a+ l(t)) dt = 0
}
, (3.8)

where ψ is as above. Recalling the equality (3.7), we have

C =
{
l ∈ CT,0 : ∃a ∈ R

N with ‖a+ l(t)‖ < 1 ∀t ∈ I and

∫ T

0

φ−1(a+ l(t)) dt = 0
}
.

Consider the function α̃ : C → R
N such that, for each l ∈ C,

∫ T

0

ψ−1(α̃(l) + l(t)) dt = 0.

Let us prove the continuity of α̃. Let {ln} be a sequence in C, converging to l ∈ C. Since

α̃ is bounded, any subsequence of α̃(ln) admits a convergent subsequence, say α̃(lnj
) → â

as j → ∞. Let us show that ψ−1(â+ l(t)) is well defined. To this purpose, define a = α̃(l)

and call B an open ball centered at a such that Gl is well defined on B, where Gl is given

in (3.5). As seen for (3.6), Lemma 2.3 implies that 〈Gl(a), a − a〉 > 0 for each a ∈ B,

a 6= a. In particular

〈Gl(a), a− a〉 > 0 ∀a ∈ ∂B. (3.9)

Observe that there exists a neighborhood U of l in CT,0 such that, for each x ∈ U , Gx is

well defined on B. In addition, the map

x 7→ inf
a∈∂B

〈Gx(a), a− a〉,

is easily seen to be continuous on U . Then

〈Gm(a), a− a〉 > 0 ∀a ∈ ∂B,

for each function m in a suitable neighborhood V ⊆ U of l. This implies, by a simple

application of the homotopy invariance property of the Brouwer degree, that the equation

Gm(a) = 0 has its (unique) solution in B, given m in V . Hence α̃(lnj
) ∈ B, for j

sufficiently large, and thus â belongs to B. Therefore ψ−1(â+ l(t)) is well defined. Now,

by letting j → ∞ in
∫ T

0

ψ−1(α̃(lnj
) + lnj

(t)) dt = 0,

we have
∫ T

0

ψ−1(α̂+ l(t)) dt = 0,
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and this proves the continuity of α̃. Finally, the definition of C implies that α = α̃ ◦H
and this shows the continuity of α, being H continuous.

(2) To prove that D is open in L1
m, we first observe that the set C, defined by (3.8), is

open. Indeed, this can be proved by the same argument following inequality (3.9). Now,

as D = H−1(C), we see that D is open in L1
m.

The unboundedness of D can be proved in the same way as done for D̃. Precisely, for

simplicity let T = 1, and take the sequence of real functions {hn}, defined by formula

(3.3). Then, let {kn} ⊆ L1
m be given by kn = (hn, 0, . . . , 0), n ∈ N. For any n the function

Gn(a) =

∫ 1

0

ψ−1(a+H(kn)(t)) dt

is well defined, in particular, for any a of the form a = (a1, 0, . . . , 0), with a1 ∈ (−1, 1/2).

Denote by Gn,j , j = 1, . . . , N , the j-th component of Gn. If a is selected as above, we

have

Gn,j(a) = 0

for any a and any j ≥ 2. In addition, Gn,1(a) > 0 if a1 ≥ 0 and Gn,1(a) < 0 if a1 ≤ −1/2.

As Gn,1 is continuous, it admits a zero for a suitable a. Therefore {kn} ⊆ D, which turns

out to be not bounded.

In order to show that D contains the open ball in L1
m centered at zero with radius

2/3 we first prove that the set C, defined by (3.8), contains the open ball in CT,0 of center

zero and radius 1/3. Let l ∈ CT,0, with ‖l‖0 < 1/3, be given. If l is identically zero, then

it clearly belongs to C. Thus, suppose that l is not zero for some t. Denote δ = ‖l‖0.

Then consider 2δ < δ′ < 2/3 and let A be the closed ball in R
N with center zero and

radius δ′. Observe that ‖a+ l(t)‖ < 1 for any t ∈ I and any a ∈ A. We show now that

〈Gl(a), a〉 > 0, if ‖a‖ = δ′. (3.10)

To this purpose denote by v : [0, 1) → R the function such that ψ−1(x) = v(‖x‖)x. We

have

〈Gl(a), a〉 =

∫ T

0

〈ψ−1(a+ l(t)), a+ l(t)〉 dt−
∫ T

0

〈ψ−1(a+ l(t)), l(t)〉 dt

≥
∫ T

0

v(‖a+ l(t)‖)‖a+ l(t)‖2 dt−
∫ T

0

v(‖a+ l(t)‖)‖a+ l(t)‖ ‖l(t)‖ dt

=

∫ T

0

v(‖a+ l(t)‖)‖a+ l(t)‖ (‖a+ l(t)‖ − ‖l(t)‖) dt.

The last integral turns out to be positive if we show that, given a with ‖a‖ = δ′,

‖a+ l(t)‖ > ‖l(t)‖ ∀t ∈ I. (3.11)

We have

‖a+ l(t)‖2 ≥ ‖a‖2 + ‖l(t)‖2 − 2‖a‖ ‖l(t)‖ ≥ ‖l(t)‖2

because ‖a‖ > 2‖l(t)‖ for each t. Hence (3.11) holds and this proves (3.10). Therefore, by

an elementary topological degree argument, the equation Gl(a) = 0 has a solution in A

and hence l ∈ C. Thus, C contains the open ball in CT,0 of center zero and radius 1/3.



NONLINEAR SYSTEMS WITH MEAN CURVATURE-LIKE OPERATORS 43

Now, let h = (h1, . . . , hN ) ∈ L1
m with ‖h‖L1 < 2/3. Define, for i = 1, . . . , N ,

h+
i (t) =

{
hi(t) if hi(t) ≥ 0

0 if hi(t) < 0
and h−i (t) =

{
0 if hi(t) ≥ 0

−hi(t) if hi(t) < 0.

As
∫ T

0
h(t) dt = 0, one has, for any i, ‖h+

i ‖L1 = ‖h−i ‖L1 = 1
2‖hi‖L1 and thus

‖h‖L1 = 2

(
N∑

i=1

‖hi‖2
L1

)1/2

.

In addition,
∣∣∣∣
∫ t

0

hi(t) dt

∣∣∣∣ ≤ ‖h+
i ‖L1 ∀t ∈ I, i = 1, . . .N.

Then

2 ‖H(h)(t)‖RN ≤ ‖h‖L1 ∀t ∈ I,

and, finally,

2 ‖H(h)‖0 ≤ ‖h‖L1 .

This proves that D contains the open ball in L1
m with center zero and radius 2/3.

For any h ∈ D, we have infinite solutions of (3.1) which differ by a constant and can

be written as

u(t) = u(0) +H
(
φ−1[α(h) +H(h)]

)
(t),

where, by an abuse of notation, φ−1[α(h)+H(h)] is the continuous map t 7→ φ−1[α(h)+

H(h)(t)].

Define P : C1
T → C1

T as Pu = u(0). Observe that C1
T admits the splitting

C1
T = E1 ⊕ E2, (3.12)

where E1 contains the maps ũ such that ũ(0) = 0 and E2 is the N -dimensional subspace

of constant maps. It is immediate to see that P is the continuous projection onto E2 by

the above decomposition.

Consider Q : L1 → L1, defined as Qh = 1
T

∫ T

0
h(t) dt. One can split L1 as

L1 = L1
m ⊕ F2,

where F2 is the N -dimensional subspace of constant maps(1). The operator Q turns easily

out to be the continuous projection on F2 in the above splitting of L1. Then, consider

the subset D̂ of L1, given by

D̂ = D + F2, (3.13)

and the nonlinear operator K : D̂ → C1
T , defined as

K(ĥ)(t) = H
(
φ−1

[
α((I −Q)ĥ) +H((I −Q)ĥ)

])
(t).

(1) The reader could notice that E2 and F2 are actually different, being contained in different

Banach spaces.
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If a C1 function u is a solution of (3.1), for a given h ∈ D, of course u solves the equation

u = Pu+Qh+K(h). (3.14)

Conversely, if u ∈ C1
T is a solution of (3.14), for a given h ∈ D̂, it follows that h belongs

to D and u solves (3.1). The idea of studying equation (3.14), in order to find a solution

of (3.1), is particularly important if we consider an abstract periodic problem




(φ(u′))′ = G(u)(t)

u(0) = u(T )

u′(0) = u′(T ),

(3.15)

where G : C1 → D̂ can be supposed continuous. In fact, if we define G : C1
T → C1

T by

G(u) = Pu+QG(u) +K(G(u)),

we observe that problem (3.15) is equivalent to the fixed point problem u = G(u), which

can be studied, under suitable conditions, by topological methods. Following this idea,

in the next section we will apply the Leray–Schauder degree to obtain our main result,

that is, as said in the Introduction, an existence theorem for (1.1).

We conclude this section showing some important properties of K.

Proposition 3.3. The map K is continuous and sends equi-integrable sets of D̂ into

relatively compact sets in C1
T .

Proof. The continuity of K as valued in C is a straightforward consequence of the fact

that this map is a composition of continuous maps. In addition

(K(ĥ))′(t) = φ−1
[
α((I −Q)ĥ) +H((I −Q)ĥ)

]
(t).

That is, K ′ is a composition of continuous operators and thus K is continuous. Consider

an equi-integrable set S of L1, contained in D̂, and let g ∈ L1(I,R) be such that

∀h ∈ S ‖h(t)‖ ≤ g(t) a.e. in I.

Let us show that K(S) is compact. To see this consider first a sequence {kn} of K(S)

and let {hn} be such that K(hn) = kn. For any t1, t2 ∈ I we have

‖H(I −Q)(hn)(t1) −H(I −Q)(hn)(t2)‖ ≤
∥∥∥
∫ t1

t2

hn(s) ds
∥∥∥+ ‖Qhn‖ |t1 − t2|

≤
∣∣∣
∫ t1

t2

g(s) ds
∣∣∣+

|t1 − t2|
T

∫ T

0

g(s) ds.

Therefore the sequence {H(I − Q)(hn)} is bounded and equicontinuous and then, by

Ascoli–Arzelà Theorem, it admits a convergent subsequence in C, say {H(I −Q)(hnj
)}.

Up to a subsequence, {α((I −Q)(hnj
)) +H((I −Q)(hnj

)} converges in C. In addition

(K(hnj
))′(t) = φ−1

[
{α((I −Q)(hnj

)) +H((I −Q)(hnj
)}
]
(t)

and, by the continuity of φ−1, (K(hnj
))′ is convergent in C. Therefore {knj

} = {K(hnj
)}

converges in C1
T . Now consider a sequence {kn} belonging to K(S) (that is, not necessarily

to K(S)). Let {ln} ⊆ K(S) be such that ‖ln −kn‖1 → 0 as n→ ∞. Let in addition {lnj
}



NONLINEAR SYSTEMS WITH MEAN CURVATURE-LIKE OPERATORS 45

be a subsequence of {ln} that converges to l. Therefore, l ∈ K(S) and {knj
} → l, and

this completes the proof.

4. Main result. In this section we present the main result of this paper, that is, an

existence theorem for the periodic boundary value problem




(φ(u′))′ = f(t, u, u′)

u(0) = u(T )

u′(0) = u′(T ),

(4.1)

where φ is as in the above section and f : I×R
N ×R

N → R
N is a Carathéodory function,

that is,

i) for almost every t ∈ I, f(t, ·, ·) is continuous;

ii) for any (x, y) ∈ R
N × R

N , f(·, x, y) is measurable;

iii) for any ρ > 0 there exists g ∈ L1(I,R) such that, for almost every t ∈ I and

every(x, y) ∈ R
N × R

N , with ‖x‖ ≤ ρ and ‖y‖ ≤ ρ, we have

‖f(t, x, y)‖ ≤ g(t).

Theorem 4.1. Let Ω be an open subset of C1
T such that the following conditions hold :

(1) for any u ∈ Ω the map t 7→ f(t, u(t), u′(t)) belongs to D̂, where D̂ is given by (3.13);

(2) denoting by S the set of pairs (u, λ) such that λ ∈ (0, 1], u ∈ Ω and solves the

problem




(φ(u′))′ = λf(t, u, u′)

u(0) = u(T )

u′(0) = u′(T ),

(4.2)

suppose that the closure S in C1
T × [0, 1] is bounded and contained in Ω × [0, 1];

(3) the set of the solutions of the equation

F (a) :=

∫ T

0

f(t, a, 0) dt = 0 (4.3)

is compact in Ω2, where Ω2 := Ω∩E2 and E2 is the subspace of C1
T in the splitting (3.12);

(4) the Brouwer degree degB(F,Ω2, 0) is well defined and non-zero.

Then problem (4.1) has a solution in Ω.

Proof. Let Nf denote the Nemytski operator associated to f , that is,

Nf : C1
T → L1, Nf (u)(t) = f(t, u(t), u′(t)).

Consider the problem




(φ(u′))′ = λNf (u) + (1 − λ)QNf (u)

u(0) = u(T )

u′(0) = u′(T ).

(4.4)

For λ ∈ (0, 1], if u is a solution of (4.2), then, as seen in the previous section, condition

u′(0) = u′(T ) implies QNf (u) = 0 and hence u solves problem (4.4) as well. Conversely,
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if u is a solution of (4.4), then QNf (u) = 0 since it is easy to see that

Q
[
λNf (u) + (1 − λ)QNf (u)

]
= QNf (u),

and thus u solves (4.2) (λ still belongs to (0, 1]). Let us now consider problem (4.4). It

can be written in the equivalent form

u = K(u, λ), (4.5)

where

K(u, λ) = Pu+QNf (u) + (K ◦ [λNf + (1 − λ)QNf ])(u)

= Pu+QNf (u) +
(
K ◦ [λ(I −Q)Nf ]

)
(u)

is well defined in Ω × [0, 1]. Observe that the last equality in the above formula is a

consequence of the fact that K(g) = K(g +Qg) for any g ∈ D.

Since f is Carathéodory, the nonlinear map N : C1
T × [0, 1] → L1, defined by

N (u, λ) = λNf (u) + (1 − λ)QNf (u), (4.6)

is continuous and takes bounded sets into equi-integrable sets. This implies that, recalling

Proposition 3.3, K is completely continuous and, consequently, the map F : Ω × [0, 1] →
C1

T , defined as

F(u, λ) = u−K(u, λ)

is proper on closed bounded subsets of its domain (we mean closed in C1
T × [0, 1]).

Take λ = 0. We have

F(u, 0) = u− u(0) − 1

T

∫ T

0

f(t, u(t), u′(t)) dt

(recall that K(c) = 0 if c is a constant map). Therefore, u is a solution of the equation

F(u, 0) = 0 if and only if u is constant. It follows that
∫ T

0
f(t, u(t), u′(t)) dt = 0, that is,

∫ T

0

f(t, c, 0) dt = 0,

where u(t) = c. Thus, by assumption (3), we can say that the set of solutions of

F(u, 0) = 0 is a compact subset of Ω. Then, by assumption (2) and the above argu-

ment, we deduce that F−1(0) is bounded and closed in the topology of C1
T × [0, 1). It is

not difficult to prove, by the properness of F , that F−1(0) is also compact and contained

in Ω×[0, 1]. Thus, we can apply the homotopy invariance property of the Leray–Schauder

degree to F obtaining

degLS(I −K(·, 0), Ω, 0) = degLS(I −K(·, 1), Ω, 0). (4.7)

Therefore, (4.1) has a solution in Ω if we prove that degLS(I −K(·, 1), Ω, 0) 6= 0. To

this purpose we show that degLS(I − K(·, 0), Ω, 0) 6= 0. To see this we apply a finite-

dimensional reduction property of the Leray–Schauder degree, associated with assump-

tion (3). The operator I −K(·, 0) can be represented in block-matrix form as

I −K(·, 0) =

(
IE1

−K12

0 −F

)
.
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By the properties of the Leray–Schauder degree we have

degLS(I −K(·, 0), Ω, 0) = (−1)N degB(F,Ω2, 0)

and this completes the proof.

5. An application. In this section we show an application of Theorem 4.1 to the two-

dimensional problem




(
u′1√

1 + |u′|2

)′

= g1(t)(arctanu1 − h1(u
′

1)),

(
u′2√

1 + |u′|2

)′

= g2(t)(arctanu2 − h2(u
′

2)),

u1(0) = u1(1), u′1(0) = u′1(1),

u2(0) = u2(1), u′2(0) = u′2(1),

(5.1)

where g1, g2 are positive, continuous, real functions on [0, 1], h1, h2 are bounded, contin-

uous, real functions defined on R. Suppose, in addition, that sup |h1(t)| and sup |h2(t)|
are less than π/2, and assume that g1(t) and g2(t) are less than 2/(3π) for any t ∈ [0, 1].

Remark 5.1. Recalling Remark 1.1, if u ∈ C1
T solves system (5.1), φ(u′) is absolutely

continuous (φ being defined as φ(t) = t/
√

1 + t2). It is immediate to verify that u′

is absolutely continuous as well. Now, observe that u′′ coincides a.e. with a continuous

function and thus it can be continuously extended to [0, 1]. This implies that u′ is actually

C1 and then any solution of the problem is actually a C2 function. Therefore, system

(5.1) can be written in the following equivalent way:




u′′1
(
1 + (u′2)

2
)
− u′1u

′

2u
′′

2 =
(
1 + |u′|2

)3/2
[g1(t)(arctanu1 − h1(u

′

1))]

u′′2
(
1 + (u′1)

2
)
− u′1u

′

2u
′′

1 =
(
1 + |u′|2

)3/2
[g2(t)(arctanu2 − h2(u

′

2))] ,

u1(0) = u1(1), u′1(0) = u′1(1),

u2(0) = u2(1), u′2(0) = u′2(1).

(5.2)

In the attempt of applying Theorem 4.1 to problem (5.1), fix α > 0 and let Ω be the

open subset of C1
T of maps u such that ‖u′‖0 < α. Our purpose is to prove the existence

in Ω of a solution of (5.1).

Suppose that a given u ∈ Ω solves (5.1). If u is not identically zero, without loss of

generality let t0 ∈ [0, 1] be such that

|u1(t0)| = max{|u1(t)|, |u2(t)|, t ∈ [0, 1]}.
Observe that u′1(t0) = 0 (this holds even in the case when t0 coincides with 0 or 1, because

of the condition u′1(0) = u′1(1)). Now, if ‖u‖1 is sufficiently large, that is, if |u1(t0)| is

sufficiently large, then

arctanu1(t0) − h1(u
′

1(t0)) > 0 if u1(t0) > 0,

arctanu1(t0) − h1(u
′

1(t0)) < 0 if u1(t0) < 0.
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On the other hand, we have

u′′1(t0) ≤ 0 if u1(t0) > 0,

u′′1(t0) ≥ 0 if u1(t0) < 0,

and this contradicts the fact that u is a solution of (5.1). Therefore the set of solutions

of (5.1) is bounded and closed in Ω (of course Ω is unbounded in C1
T ). For the same

reason the set S of pairs (u, λ) such that 0 < λ ≤ 1, u ∈ Ω and solves the problem




(
u′1√

1 + |u′|2

)′

= λg1(t)(arctanu1 − h1(u
′

1)),

(
u′2√

1 + |u′|2

)′

= λg2(t)(arctanu2 − h2(u
′

2)),

u1(0) = u1(1), u′1(0) = u′1(1),

u2(0) = u2(1), u′2(0) = u′2(1)

(5.3)

is such that S (the closure is in C1
T × [0, 1]) is bounded and contained in Ω × [0, 1].

Moreover, recalling points (3) and (4) in the statement of Theorem 4.1, the set of

solutions of the equation

F (a, b) =
(∫ 1

0

g1(t) dt arctan a+ h1(0),

∫ 1

0

g2(t) dt arctan b+ h2(0)
)

= (0, 0)

is bounded and compact in Ω2 = Ω ∩E2, where E2 is the subspace of C1
T in the splitting

(3.12). It is immediate to see that degB(F,Ω2, 0) = 1.

Thus we can apply Theorem 4.1 to conclude that (5.1) admits a solution in Ω. It is

also immediate to observe that any solution is non-trivial if h1(0) and h2(0) are not both

zero.
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