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Abstract. We introduce the cohomological Conley type index theory for multivalued flows

generated by vector fields which are compact and convex-valued perturbations of some linear

operators.

1. Introduction. In 1999, K. Gęba, M. Izydorek and A. Pruszko [6] constructed an in-

variant which is a version of Conley index for flows determined by compact perturbations

of special linear operators in an infinite-dimensional Hilbert space. Their method of con-

struction is very similar to the definition of the Leray–Schauder degree. This invariant

has been then applied to obtain existence and multiplicity results in variational problems

with strongly indefinite functionals. On the other hand, M. Mrozek [13] considered a

cohomological index for multivalued flows on compact spaces. The aim of this paper is

to give an infinite-dimensional version of Mrozek’s index by use of the above method.

Nontriviality of the obtained invariant gives existence results of invariant sets for inclu-

sions in Hilbert spaces. We can expect also further applications to differential inclusions

coming from e.g. non-smooth analysis. One has to mention also the other definitions of

Conley index for multivalued flows by M. Kunze [11], [12] and G. Gabor [5] consisting

in approximation of the generators of the flow by more smooth one (locally Lipschitz).

Other applications and equivariant version will be a subject of further research. We have

limited our attention to the simplest case of flows. A local version of all considerations

here is natural.

2. Multivalued mappings. A standard reference for this section can be [7].

Let X,Y be two topological spaces. A multivalued mapping ϕ : X → Y is a mapping

which assigns to every x ∈ X a non-empty compact subset ϕ(x) of Y . The graph of a
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multivalued mapping ϕ : X → Y is the set

Γ (ϕ) = {(x, y) ∈ X × Y : y ∈ ϕ(x)}.

The image of a subset A ⊆ X under ϕ is ϕ(A) =
⋃
{ϕ(x) : x ∈ A}. The (small)

inverse-image of a subset B ⊆ Y under ϕ is the set ϕ−1(B) = {x ∈ X : ϕ(x) ⊆ B}.

The multivalued mapping ϕ is called upper semicontinuous (usc) iff for every open

V ⊆ Y the inverse-image ϕ−1(V ) is open in X.

The following properties of usc mappings are easy exercises.

Proposition 2.1. If ϕ : X → Y is usc then the graph Γ (ϕ) is a closed subset of X×Y .

Proposition 2.2. If ϕ : X → Y is usc and K ⊆ X is compact then ϕ(K) is compact.

The functor of the Alexander–Spanier cohomology will be considered as a functor

H∗ : Top2 → GMod, where GMod denotes the category of graded Z-modules and linear

maps of degree zero. A non-empty compact space X is called acyclic iff H0(X) = Z and

Hn(X) = 0 for n 6= 0.

Recall that a mapping f : X → Y is called proper iff for every compact K ⊆ Y ,

f−1(K) is compact. It is called a Vietoris map iff it is proper and for every y ∈ Y , f−1(y)

is acyclic. Note that every Vietoris map is a closed mapping. The following observation

is a consequence of the Vietoris–Begle Theorem (see [14], Chap. 6.9, Thm. 15).

Proposition 2.3. Composition of Vietoris maps is a Vietoris map.

The map of pairs f : (P1, P2) → (Q1, Q2) is called Vietoris iff f : P1 → Q1 and

f|P2
: P2 → Q2 are Vietoris maps.

Using the Five Lemma one can easily deduce a version of the Vietoris–Begle Theorem

for pairs.

Theorem 2.4. If f : (P1, P2) → (Q1, Q2) is a Vietoris map, then f
∗ : H∗(Q1, Q2) →

H∗(P1, P2) is an isomorphism.

Definition 2.5. An usc mapping ϕ : X → Y is called admissible provided there exist:

a space Γ , and continuous mappings p : Γ → X, q : Γ → Y such that p is Vietoris and

for every x ∈ X, ϕ(x) = q(p−1(x)).

We call such a pair of mappings (p, q) a Vietoris pair. We say then that the Vietoris

pair of maps (p, q) determines the multivalued mapping ϕ. Obviously such pairs are non-

unique for a given mapping ϕ. One can define a relation between such pairs (p, q) (see

e.g. [13] for details).

A multivalued mapping ϕ : X → Y is called acyclic, if it is usc and ϕ(x) is acyclic

for every x ∈ X. A good example of such maps are compact convex-valued mappings in

Banach spaces. One can easily check that the projections from the graph of an acyclic

mapping ϕ form a Vietoris pair and they determine it. Therefore acyclic mappings are

admissible. Moreover we have the following.

Proposition 2.6. A composition of acyclic mappings is an admissible mapping.
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3. Multivalued flows. Let X be a metric space.

Definition 3.1. An usc mapping ϕ : X × R→ X is a multivalued flow on X provided

for every s, t ∈ R, x, y ∈ X

(i) ϕ(x, 0) = {x},

(ii) st ≥ 0 ⇒ ϕ(x, t+ s) = ϕ(ϕ(x, t)× s),

(iii) y ∈ ϕ(x, t) ⇔ x ∈ ϕ(y,−t).

The flow is called admissible, if there exists T > 0 such that the restriction of ϕ to

X × [0, T ] is an admissible mapping.

If we admit the empty set as a value we can say about a partial multivalued flow.

Let ∆ ⊆ R.

Definition 3.2. A continuous mapping σ : ∆→ X is a ∆-solution if for every t, s ∈ ∆,

σ(t) ∈ ϕ(σ(s), t− s).

The set of all ∆-solutions in N ⊆ X originating in x (i. e. such that 0 ∈ ∆, σ(0) = x)

is denoted by SltnN (∆,x).

A connection from x to y in N is a [0, t]-solution σ in N such that σ(0) = x and

σ(t) = y. The set of all such connections is denoted by ConnN (t, x, y).

Let N be a compact subset of X. We can define a mapping ϕN : N × R → N by
the formula ϕN (x, t) = {y : ConnN (t, x, y) 6= ∅}. It is easy to verify that ϕN is a partial

multivalued flow on N .

Definition 3.3. Let A ⊆ X be an arbitrary subset. Define invariant, right-invariant,

left-invariant part of A to be:

InvA := {x ∈ A : SltnA(R, x) 6= ∅},

Inv+A := {x ∈ A : SltnA(R+, x) 6= ∅},

Inv−A := {x ∈ A : SltnA(R−, x) 6= ∅},

respectively.

Definition 3.4. A subset A ⊆ X is invariant (resp. positively (negatively) invariant)
iff InvA = A (resp. Inv+A = A (Inv−A = A)).

Notice that the set InvA is a maximal invariant subset of A. There is also a stronger

version of invariance which is equivalent to the above in the single-valued case.

Definition 3.5. The set A ⊆ X is strongly (positively, negatively) invariant if for every

x ∈ A we have ϕ(x,R) ⊆ A (resp. ϕ(x,R+) ⊆ A, ϕ(x,R−) ⊆ A).

Let now X be a locally compact metric space with an admissible flow ϕ.

A subset K ⊆ X is an isolated invariant set iff there exists a compact neighbourhood
N of K in X such that K = InvN . The set N is called then an isolating neighbourhood

of K.

Definition 3.6. A pair (P1, P2) of subsets of N ⊆ X is an index pair in N provided

(i) P1, P2 are compact and strongly positively invariant with respect to ϕN ,

(ii) Inv−N ⊆ IntN P1, Inv
+N ⊆ N \ P2,

(iii) cl(P1 \ P2) ⊆ IntN .
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Theorem 3.7 ([13]). Let ϕ be a multivalued flow on a locally compact space X and

let K be an isolated invariant set with an isolating neighbourhood N . Then for every

neighbourhood W of K there exists an index pair in N such that cl(P1 \ P2) ⊆W .

Theorem 3.8 ([13]). If the flow is admissible and K is an isolated invariant set, then

the Alexander–Spanier cohomology groups H∗(P1, P2) do not depend on the choice of

the isolating neighbourhood N and of the index pair in N .

Theorem 3.8 assures that the following notion is well-defined:

Definition 3.9 ([13]). We define the cohomological Conley index of an isolated invari-

ant set K ⊆ X to be

CH(K) = H∗(P1, P2)

where (P1, P2) is an index pair for K.

This index has at least two fundamental properties:

(i) If CH(K) is non-trivial, then K 6= ∅,

(ii) The index is invariant under continuation of admissible flows.

Example 3.10. Let F : R
n → R

n be an usc mapping with compact convex values, and

let F be bounded (or of at most a linear growth). Then the solutions of the differential

inclusion x′(t) ∈ −F (x(t)) a.e. form an admissible flow in R
n. This follows from the fact

that the set of all solutions of the Cauchy problem for this inclusion is an acyclic set

(comp. e.g. [1] for a detailed formulation) and therefore the mapping associating with t

the set of values at t of solutions starting at t0 is admissible as a composition of an acyclic-

valued one and a continuous evaluation at t. See [13] for more detailed description of this

flow. We use the sign “−” in the inclusion in order to be consistent with the notation
used in [8] (see also Remark 4.7).

4. LS-flows in a Hilbert space. Let E = (E, 〈·, ·〉) be a real Hilbert space and

L : E → E a linear bounded operator with spectrum σ(L). We assume the following

• E =
⊕∞
k=0Ek with all subspaces Ek being mutually orthogonal and of finite dimen-

sion,

• L(E0) ⊆ E0. E0 is the invariant subspace of L corresponding to the part of spectrum

σ0(L) = iR ∩ σ(L) lying on the imaginary axis,

• L(Ek) = Ek for all k > 0,

• σ0(L) is isolated in σ(L), i.e. σ0(L) ∩ cl(σ(L) \ σ0(L)) = ∅.

Definition 4.1. A multivalued flow ϕ : E × R → E is called an LS-flow if it can be
written in the form

ϕ(x, t) = etL + U(t, x),

where U : E×R→ E is an admissible mapping which is completely continuous, i.e. maps
bounded sets to relatively compact sets.

Definition 4.2. A bounded and closed subset X ⊂ E is an isolating neighbourhood for
a flow ϕ, if Inv(X) ⊂ IntX.

Let Λ be a compact metric space.
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Definition 4.3. An LS-family of flows is a multivalued flow η : E ×R×Λ→ E of the
form

η(x, t, λ) = etL + U(x, t, λ),

where U : E × R× Λ→ E is an admissible completely continuous mapping.

Proposition 4.4. Let η : E×R×Λ→ E be an LS-family of flows. If X ⊂ E is bounded

and closed, then the set

S = Inv(X × Λ, η) := {(x, λ) : x ∈ Inv(X)}

is a compact subset of X × Λ.

Proof. Denote by E− (E+) the L-invariant subspace corresponding to all the eigenvalues

of L with negative (resp. positive) real part. Then E clearly splits into the direct sum

E = E− ⊕ E0 ⊕ E+.

Denote by P− : E → E−, P+ : E → E+, P0 : E → E0 the orthogonal projections.

We assumed that σ0(L) is isolated in σ(L). Therefore for every ̺ > 0 there exists t0 > 0

such that

♥ ‖etLx‖ ≥ ̺‖x‖ for all t ≥ t0, x ∈ E+,

and

♠ ‖etLx‖ ≥ ̺‖x‖ for all t ≤ −t0, x ∈ E−.

It is clear from the definition that S is a closed subset of E × Λ. Suppose that it is
not compact.

Consider the set S0 := {x ∈ X : (x, λ) ∈ S for some λ ∈ Λ}. Observe that S0 ⊂
clP−(S0)×clP0(S0)×clP+(S0). The set clP0(S0) is compact being a closed and bounded

subset of a finite-dimensional space E0. Therefore either clP−(S0) or clP+(S0) is non-

compact. Without loss of generality we can assume that P+(S0) is not relatively compact.

Since E+ is a complete metric space, there exists an ε > 0 such that P+(S0) does

not admit a finite ε-net. Hence, we can choose a sequence (yn, λn) ∈ S such that the
projections xn = P+(yn) satisfy ‖xi − xj‖ ≥ ε whenever i 6= j. Now we can choose δ > 0

such that X ⊂ B(0, δ) and t0 large enough that the inequality ♥ holds with ̺ = 3δ/ε.

Let us take un := et0Lyn and an arbitrary vn ∈ U(yn, t0, λn). Then

un + vn ∈ e
t0Lyn + U(yn, t0, λn) = η(yn, t0, λn) ⊂ X ⊂ B(0, δ).

Thus

3δ ≤ ‖ui − uj‖ ≤ ‖ui + vi‖+ ‖vi − vj‖+ ‖uj + vj‖ < 2δ + ‖vi − vj‖

and consequently

‖vi − vj‖ > δ whenever i 6= j.

But vn ∈ U({t0} × S) and the last set is relatively compact because U is completely
continuous. Thus vn should have a convergent subsequence and we obtain a contradiction.

In the other case one uses ♠ in the similar argument.

Proposition 4.5. Let Λ be a compact metric space and let η : E × R × Λ → E be a

family of LS-flows. If X is an isolating neighbourhood for some ηλ0 , then it is an isolating

neighbourhood for all λ in some open neighbourhood V of λ0 in Λ.
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Proof. From Proposition 4.4 it follows that the set Inv(X × Λ, η) is a compact subset of
X × Λ. Since Inv(X × Λ, η) ∩ (X × {λ0}) ⊂ IntX there exists an open neighbourhood

V of λ0 such that Inv(X × Λ) ∩ (X × V ) ⊂ IntX × V , and thus Inv(X, ηλ) ⊂ IntX for
every λ ∈ V .

Definition 4.6. An usc mapping f : E → E is an LS-vector field provided it is of the
form f(x) = L(x) + K(x), where K : E → E is completely continuous with compact

convex values, and if f generates an LS-flow ϕ on the whole E.

Remark 4.7. We can assume for simplicity that K(E) ⊂ E is bounded. Then the

solutions of the inclusion x′(t) ∈ −f(x(t)) are defined on the whole R and form an

LS-flow on E (comp. [4]).

5. LS-Conley index. As in the previous section we work with a convex-valued

LS-vector field f : E → E, f(x) = Lx+K(x) which induces an LS-flow ϕ on E.

Denote by Pn : E → E the orthogonal projection onto En =
⊕n
k=0Ek. Define a

sequence of vector fields fn : En → En by the formula fn(x) = Lx + Pn(K(x)), and

Fn : En+1 × [0, 1]→ En+1 by

Fn(x, s) = Lx+ (1− s)Pn(K(x)) + sPn+1(K(x)).

One easily checks that for each n, fn and Fn are compact, convex-valued usc mappings

which are of linear growth (since K(E) is bounded and Pn are linear). Therefore, for

every n, fn generates an admissible flow ϕn, and Fn generates a family ξn of admissible

flows.

Lemma 5.1. Let X ⊂ E be an isolating neighbourhood for ϕ. There exists n0 ∈ N such

that Xn = X ∩ En is an isolating neighbourhood for ϕn and ξn−1, whenever n ≥ n0.

Proof. Define a family of LS-vector fields F : E × [0, 1]→ E by

F (x, 0) = f(x),

F (x, s) = Lx+ (1 + n)(1− ns)Pn+1(K(x)) + n[(n+ 1)s− 1]Pn(K(x)) if s ∈ ( 1
n+1 ,

1
n ].

This family generates a family of multivalued LS-flows ξ. By Proposition 4.4 the set

Inv(X × [0, 1], ξ) is compact in X × [0, 1] and Inv(X × [0, 1], ξ) ∩ X × {0} ⊂ IntX.

Therefore for some s0 we have Inv(X× [0, 1], ξ)∩X× [0, s0] ⊂ Int(X)× [0, s0]. One takes

n0 > 1/s0.

Choose n ≥ n0 from Lemma 5.1. The invariant set Sn := Inv(Xn, ϕn) admits an index

pair (Yn, Zn) and its cohomological Conley index CH(Sn) = H∗(Yn, Zn) is well-defined

by Definition 3.9.

Remark 5.2. For the Alexander–Spanier cohomology we have an isomorphism

H∗(Yn, Zn) = H∗((Yn/Zn), ∗).

Let D+
n := {x ∈ E+

n : ‖x‖ ≤ 1}, D−n := {x ∈ E−n : ‖x‖ ≤ 1}, ∂D−n := {x ∈ E−n :

‖x‖ = 1}. Consider a family of flows θn : En+1 × R × [0, 1] → En+1 generated by

hn(x, s) = Lx+ Pn(K(Pnx+ s(x− Pnx))).

One can easily check that the pair

(Yn ×D
+
n+1 ×D

−
n+1, Zn ×D

+
n+1 ×D

−
n+1 ∪ Yn ×D

+
n+1 × ∂D

−
n+1)
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is an index pair for the isolated invariant set Inv(Xn+1, θn(·, ·, 0)) = Sn.

Let us think of the circle as S1 = [0, 1]/{0, 1}. Recall that the suspension functor is
defined by the smash product SX := S1 ∧ X and for every m ∈ N we define SmX =

S(Sm−1X) (comp. [15]).

Denote by ν(n) the dimension of E−n = En ∩ E
−. One observes that the quotient

space

(Yn ×D
+
n+1 ×D

−
n+1/Zn ×D

+
n+1 ×D

−
n+1 ∪ Yn ×D

+
n+1 × ∂D

−
n+1)

has the homotopy type of the suspension Sν(n)(Yn/Zn). Thus their cohomology groups

are naturally isomorphic. On the other hand, one easily sees that Xn+1 is an isolating

neighbourhood for both families of admissible flows θn(·, ·, s) and ξn(·, ·, s), s ∈ [0, 1].

Moreover θn(·, ·, 1) = ξn(·, ·, 0). Therefore, by the continuation property of the cohomo-

logical Conley index (see [13]) and Remark 5.2 we obtain an isomorphism

c∗ : H∗(Yn+1/Zn+1, ∗)→ H
∗(Sν(n)(Yn/Zn), ∗)

Remark 5.3. Observe that in the single-valued case we obtain here a homotopy equiv-

alence, because we can use a homotopy index then (see [8]).

Since we have also an isomorphism H∗(Sν(n)(Yn/Zn), ∗) ∼= H
∗+ν(n)(Yn/Zn, ∗), we

conclude that for each n ≥ n0 there is an isomorphism

γn : Hk+ν(n)(Yn+1, Zn+1)→ H
k(Yn, Zn).

Define a map ρ : N ∪ {0} → N ∪ {0} by

ρ(0) = 0 and ρ(n) =

n−1∑

i=0

ν(i) for n ≥ 1.

Consider for a fixed q ∈ Z a sequence of cohomology groups Hq+ρ(n)(Yn, Zn) and

define a sequence of homomorphisms

hn : Hq+ρ(n+1)(Yn+1, Zn+1)→ H
q+ρ(n+1)(Sν(n)(Yn, Zn))→ H

q+ρ(n)(Yn, Zn)

as described above. Since hn are isomorphisms for large n, we can define the cohomological

LS-index as follows.

Definition 5.4.

CHq(X) := lim
←
{Hq+ρ(n)(Yn, Zn), hn}.

As was pointed out in [8], these groups may be non-trivial both for negative and

positive q.

We formulate now two basic properties. They are obvious consequences of respective

properties in finite dimension ([13]).

Proposition 5.5 (non-triviality). Let X be an isolating neighbourhood for an LS-flow ϕ.

If CHq(X) 6= {0} for some q, then Inv(X,ϕ) 6= ∅. Therefore we have a bounded solution
of the inclusion generating ϕ.

Proposition 5.6. Let Λ be a compact, connected and locally contractible metric space.

Assume that η : E ×R→ E is a family of flows generated by a family of LS-vector fields
f : E×Λ→ E. Let X be an isolating neighbourhood for the flow ηλ for some λ ∈ Λ. Then
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there exists a compact neighbourhood C ⊂ Λ of λ such that CH∗(X, ηµ) = CH∗(X, ην)

for all µ, ν ∈ C.

Example 5.7. Let G : R
2n×R→ R be a locally Lipschitz mapping which is 2π-periodic

in the second variable and satisfies some growth condition in respect to the first one. We

consider the Hamiltonian system of differential inclusions

ż ∈ J∂G(z, t)

where J is the standard symplectic matrix and ∂ denotes the Clarke generalized gradient

with respect to z ∈ R
2n (comp. [2]). If one is concerned with the existence of 2π-periodic

solutions (in an appropriate sense), it is natural to work in the Sobolev space E =

H1/2(S1,R2n). One can prove that the generalized gradient of an action functional is an

LS-vector field and we can use our invariant to obtain some multiplicity results (comp. [8])

in non-smooth situation. Details (not all obvious) will be given in a forthcoming paper.

One can also define the notions of attractor, repeller and Morse decomposition in

the context of admissible LS-flows. The properties are then analogous to those described

in [8].
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