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Abstract. In this paper we investigate the linear initial value problem in Banach spaces. In

order to obtain existence results the Fredholm operator technique is used.

In the paper [3] the authors consider the problem of the existence of solutions in

Sobolev space H1(R+,R
N ) for the ODE system
{
u̇+ F (t, u) = f(t), t ∈ R+ = [0,∞),

u1(0) = ζ,

where F : R+ × RN −→ RN is a C1 mapping such that F (t, 0) = 0 for all t ∈ R+, and

u1 is the component of u along the first factor of a given splitting RN = X1 ⊕X2. Both

f ∈ L2(R+,R
N ) and ζ ∈ X1 are given.

In the case X1 = R
N and X2 = {0} the above problem is the classical initial value

problem. Our aim is to generalize this problem to the infinite-dimensional case. In this

work we investigate only the linear equation.

Let us fix the notation.

Let (E, ‖ · ‖) be a real separable Banach space. Denote by L(E) the space of linear

bounded operators on E and by Lc(E) the subspace of L(E) consisting of compact

operators.

For a measurable function u : (a, b) −→ E, −∞ ≤ a < b ≤ ∞, the integral∫ b
a
u(t) dt means the integral in Bochner sense. We recall that a measurable function u(·)

is (Bochner) integrable on (a, b) if and only if the real function ‖u(·)‖ is (Lebesgue) inte-
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grable on (a, b). The vector space L2 = L2(R+, E) consists of all functions u : R+ −→ E

such that ‖u‖ ∈ L2(R+,R) with the norm ‖u‖2 =
(∫∞

0
‖u(t)‖2 dt

)1/2
. We denote by

H1 = H1(R+, E) the Sobolev space of such functions u : R+ −→ E that u, u̇ ∈ L
2.

The space H1 is equipped with the norm ‖u‖H1 = (‖u‖22 + ‖u̇‖22)
1/2. We recall that the

derivative u̇ means the derivative in the distributional sense.

It can be shown that if u ∈ H1 and ũ is a continuous function such that u = ũ a.e.

on R+, then limt→∞ ‖ũ(t)‖ = 0.

The main problem. Let A ∈ L(E) be such that σ(A) ∩ Ri = ∅, where σ(A) denotes

the spectrum of the operator A. Then A gives the standard unique decomposition E =

X+⊕X−, where the subspaces X+ and X− are invariant with respect to A. The operators

A+ := A|X+
, A− := A|X

−

have their spectra contained in C+ = {λ ∈ C : Re(λ) > 0}

and C−, respectively. Every function u : R+ −→ E has a unique decomposition of the

form u = u+ + u−, where u± : R+ −→ X±.

Proposition 1. Under the above conditions the linear mapping

H1 ∋ u 7−→ (u̇+Au, u+(0)) ∈ L2 ×X+

is an isomorphism.

Proof. Fix ζ+ ∈ X+, f ∈ L
2. We will show that the problem

{
u̇+Au = f

u+(0) = ζ+
(1)

has a unique solution u ∈ H1. The above problem is equivalent to the conjunction of two

problems:
{
u̇+ +A+u+ = f+

u+(0) = ζ+
and u̇− +A−u− = f− . (2)

The first is a Cauchy problem in the Banach space X+ and has a unique solution given

by the formula

u+(t) = e−tA+ζ+ +

∫ t

0

e−(t−s)A+f+(s) ds. (3)

We will show that u+ ∈ H
1. First we consider the function

R+ ∋ t 7−→ e
−tA+ζ+ ∈ X+. (4)

Because σ(−tA|X+
) = σ(−tA+) ⊂ C−, there are α > 0 and M > 0 such that

‖e−tA+ζ+‖ ≤ ‖e
−tA+‖ · ‖ζ+‖ ≤Me

−αt · ‖ζ+‖. Therefore∫ ∞

0

‖e−tA+ζ+‖
2 dt ≤

∫ ∞

0

(Me−αt · ‖ζ+‖)
2 dt <∞

and it follows that the function (4) belongs to L2. In order to estimate the second com-

ponent of the function defined in (3) we will use the Young inequality:

‖g ∗ f‖r ≤ ‖g‖p · ‖f‖q

for 1 ≤ p, q, r ≤ ∞ such that 1/p+ 1/q = 1 + 1/r (‖ · ‖p is the norm in L
p).
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Let us denote by g the function

R+ ∋ s 7−→ g(s) = e−sA+ ∈ L(E).

Then ∫ t

0

e−(t−s)A+f+(s) ds = (g ∗ f+)(t).

Taking in the Young inequality r = 2, q = 2, p = 1, we have the estimate

‖g ∗ f+‖2 ≤ ‖g‖1 · ‖f+‖2 =

∫ ∞

0

‖e−sA+‖ ds ·

(∫ ∞

0

‖f+‖
2 ds

)1/2

≤

∫ ∞

0

Me−sα ds ·

(∫ ∞

0

‖f+(s)‖2 ds

)1/2

<∞.

It follows that the function

R+ ∋ t 7−→

∫ t

0

e−(t−s)A+f+(s) ds ∈ X+

belongs to L2, and therefore the function (3) belongs to L2. Because u̇+ = f+−A+u+ ∈ L
2

we deduce that u+ ∈ H
1.

The second problem of (2) is not an initial value problem but we will show that it has

a unique solution in the class H1. Any solution of

u̇− +A−u− = f− (5)

is given by the formula

u−(t) = e−tA−u−(0) +

∫ t

0

e−(t−s)A
−f−(s) ds = e−tA−

(
u−(0) +

∫ t

0

esA−f−(s) ds
)
.

We observe first that the limit

lim
t→∞

∫ t

0

esA−f−(s) ds =

∫ ∞

0

esA−f−(s) ds ∈ X−

exists (this follows from the fact that σ(A−) ⊂ C−).

Next, let us notice that

u−(0) +

∫ ∞

0

esA−f−(s) ds = 0.

Indeed, if the above does not hold then the norm of the expression

e−tA−
(
u−(0) +

∫ t

0

esA−f−(s) ds

)

tends to the infinity and the function u− is not in L
2. Consequently u− is not in H

1.

Therefore, in order to have u− ∈ H
1 the condition

u−(0) = −

∫ ∞

0

esA−f−(s) ds (6)

has to be satisfied. We can write the solution of (5) in the form

u−(t) = e−tA−
(
u−(0) +

∫ ∞

0

esA−f−(s) ds−

∫ ∞

t

esA−f−(s) ds

)
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and if we allow (6) it will take the form

u−(t) = −

∫ ∞

t

e(s−t)Af−(s) ds. (7)

Using again the Young inequality and the fact that σ(A−) ⊂ C− we prove that u− ∈ L
2

and in consequence u− ∈ H
1. Then the condition (6) is also sufficient to have u− ∈ H

1.

Therefore the solutions of both problems in (2) are uniquely determined in H1.

We have actually proved

Corollary 1. The semi-Cauchy problem
{
u̇+Au = f

u+(0) = ζ+; ζ+ ∈ X+, f ∈ L
2

has a unique solution u ∈ H1.

We are going to investigate the above problem if the pair of spaces (X+, X−) is

perturbed via maps which are compact perturbations of the identity. For this purpose we

introduce the following

Definition 1. Let (X1, X2), (Y1, Y2) be two pairs of closed subspaces of the space E such

that E = X1⊕X2 = Y1⊕Y2. We say that the pairs (X1, X2) and (Y1, Y2) are equivalent if

there exist a compact mapping B ∈ Lc(E) and a finite-dimensional subspace V of E such

that the mapping I + B ∈ L(E) is an isomorphism and one of the following conditions

(a) or (b) is satisfied

(a) X̂1 = Y1 ⊕ V and X̂2 ⊕ V = Y2

(b) X̂1 ⊕ V = Y1 and X̂2 = Y2 ⊕ V,

where X̂i = (I +B)(Xi), i = 1, 2.

Proposition 2. The above relation is an equivalence relation.

The proof is elementary, but it needs some calculations. We omit it.

Remark. If E = RN then any two splittings (X1, X2) and (Y1, Y2) are equivalent in the

above sense.

In what follows we will consider two decompositions of E, X+ ⊕X− = X1 ⊕X2. The

first one is associated with the operator A ∈ L(E) satisfying σ(A)∩Ri = ∅ and the second

decomposition E = X1 ⊕X2 is such that the pairs (X1, X2), (X+, X−) are equivalent in

the above sense. Choose a compact operator B ∈ Lc(E) and a finite-dimensional subspace

V ⊂ E such that I +B is an isomorphism and one of the following conditions holds

(a) X̂+ = X1 ⊕ V and X̂− ⊕ V = X2

(b) X̂+ ⊕ V = X1 and X̂− = X2 ⊕ V,
(8)

where as earlier X̂± = (I +B)(X±).

Let X,Y be closed subspaces of E such that E = X ⊕ Y . By PX : E −→ E we will

denote the projection onto X along Y .

Lemma 1. The operators PX+
−P
X̂+

, PX
−

−P
X̂
−

, P
X̂+

−PX1
, P
X̂
−

−PX2
are compact.



A BOUNDARY VALUE PROBLEM ON THE HALF-LINE 119

Proof. We have of course E = X̂+ ⊕ X̂−. Then for each w = z + Bz ∈ E we have

w = P
X̂+

w + P
X̂
−

w = P
X̂+

(z + Bz) + P
X̂
−

(z + Bz) = (P
X̂+

z + P
X̂+

Bz) + (P
X̂
−

z +

P
X̂
−

Bz) = w+ + w− ∈ X̂+ ⊕ X̂−.

On the other hand, w = z + Bz = PX+
z + PX

−

z + B(PX+
z + PX

−

z) = PX+
z +

BPX+
z + PX

−

z + BPX
−

z = (I + B)PX+
z + (I + B)PX

−

z = ŵ+ + ŵ− ∈ X̂+ ⊕ X̂−.

From the uniqueness of the decomposition we get w+ = ŵ+ and w− = ŵ−. Therefore

P
X̂+

z +P
X̂+

Bz = PX+
z +BPX+

z and PX+
−P

X̂+

= P
X̂+

B −BPX+
∈ Lc(E). Similarly

P
X̂
−

z + P
X̂
−

Bz = PX
−

z +BPX
−

z and PX
−

− P
X̂
−

= P
X̂
−

B −BPX
−

∈ Lc(E).

Now let condition (a) from (8) be fulfilled. Then E = X1 ⊕ X̂− ⊕ V . For any w ∈ E

we have w = P
X̂+

w+P
X̂
−

w ∈ X̂+ ⊕ X̂− and w = PX1
w+ PX2

w = PX1
w+P

X̂
−

PX2
w+

PV PX2
w = (PX1

w+PV PX2
w)+P

X̂
−

PX2
w ∈ X̂+⊕ X̂−. It follows that PX̂+

w = PX1
w+

PV PX2
w. Therefore P

X̂+

− PX1
= PV PX2

∈ Lc(E) (since PV is finite-dimensional).

Similarly w = P
X̂+

w + P
X̂
−

w = PX1
P
X̂+

w + (PV PX̂+

w + PX2
w) ∈ X1 ⊕ X2 and w =

PX1
w+PX2

w ∈ X1⊕X2. Hence PV PX̂+

w+P
X̂
−

w = PX2
w and P

X̂
−

−PX2
= −PV PX̂+

∈

Lc(E).

If condition (b) from (8) is fulfilled the proof is similar.

Theorem 1. Let A ∈ L(E), σ(A)∩Ri = ∅ and (X+, X−), (X1, X2) be equivalent pairs.

Then the continuous linear mapping T : H1 −→ L2 ×X1 defined by

Tu := (u̇+Au, u1(0))

is a Fredholm map of index

ind(T ) =

{
dimV if X̂+ = X1 ⊕ V and X̂− ⊕ V = X2

− dimV if X̂+ ⊕ V = X1 and X̂− = X2 ⊕ V.

Proof. Assume condition (a) holds, i.e. X̂+ = X1 ⊕ V and X̂− ⊕ V = X2.

Then E = X1 ⊕ V ⊕ X̂−. The map

H1 ∋ u
T̂

−−−−→ (u̇+Au, (I +B)u+(0)) ∈ L2 × X̂+

is a superposition of isomorphisms

H1 ∋ u
T+
−−−−→ (u̇+Au, u+(0))

(I,I+B)
−−−−−→ (u̇+Au, (I +B)u+(0)) ∈ L2 × X̂+

,

where T+(u) := (u̇+Au, u+(0)) is the isomorphism given by Proposition 1. Let π : L2 ×

(X1⊕V ) −→ L2×X1 be the epimorphism given by the formula π(f, ζ̂+) = (f, PX1
(ζ̂+)),

where PX1
: X1 ⊕ V −→ X1 is the projection operator and let T1 := π ◦ T̂ . Then T1 is

the epimorphism which can be written by the formula

H1 ∋ u 7−→ T1u = (u̇+Au, PX1
(I +B)u+(0)) ∈ L2 ×X1.
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We illustrate all above mappings in the following diagram

H1

T̂

isom

��
T+

//

T1
**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U
L2 ×X+

(I,I+B)
// L2 × X̂+

π=(I,PX1
)

��

= L2 × (X1 ⊕ V )

L2 ×X1

Directly from the definition of the Fredholm index one easily obtains

ind(T1) = dimKer(T1)− codim Im(T1) = dimV.

We will show that ind(T1) = ind(T ). It is enough to show that T1 − T ∈ Lc(E). Indeed,

(T1 − T )(u) = (0, (I +B)u+(0)− u1(0))

= (0, (I +B)PX+
u(0)− PX1

u(0)) = (0, (PX+
− PX1

+BPX+
)u(0)).

Since PX+
−PX1

= PX+
−P

X̂+

+P
X̂+

−PX1
and PX+

−P
X̂+

, P
X̂+

−PX1
, BPX+

are

compact, the map T1 − T ∈ Lc(E).

Now let condition (b): X̂+ ⊕ V = X1 and X̂− = X2 ⊕ V be satisfied. Then E =

X̂+ ⊕ V ⊕X2. Let ι: L
2 × X̂+ →֒ L

2 × (X̂+ ⊕ V ) = L2 ×X1 be the embedding map and

let T2 := ι ◦ T̂ ,

H1 ∋ u 7−→ T2u = (u̇+ Au, (I +B)u+(0)) ∈ L2 ×X1.

Consider the following diagram

H1

T̂

izom
%%

T+
//

T2
**T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T
L2 ×X+

(I,I+B)
// L2 × X̂+

ι

��

L2 ×X1 = L2 × (X̂+ ⊕ V )

The map T2 is a Fredholm operator of ind(T2) = − dim V (dim Ker(T2) = 0 and

codim Im(T2) = dim V ). As earlier it can be shown that T2 − T ∈ Lc(E) and it fol-

lows that ind(T2) = ind(T ).

We can reformulate the above theorem to obtain the following result.

Corollary 2. If T from Theorem 1 is an isomorphism then the space of solutions of

the problem
{
u̇+Au = f

u1(0) = ζ1; ζ1 ∈ X1, f ∈ L
2

is of dimension ind(T ). In particular, if ind(T ) = 0 then this problem has a unique

solution in H1.
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The nonlinear case of (1) will be discussed in the next paper.
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