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Abstract. We establish five theorems giving lists of nonlinear contractive conditions which
turn out to be mutually equivalent. We derive them from some general lemmas concerning subsets
of the plane which may be applied both in the single- or set-valued case as well as for a family of
mappings. A separation theorem for concave functions is proved as an auxiliary result. Also, we
discuss briefly the following problems for several classes of contractions: stability of procedure
of successive approximations, existence of approximate fixed points, continuous dependence of
fixed points on parameters, existence of invariant sets for iterated function systems. Moreover,
James Dugundji’s contribution to the metric fixed point theory is presented. Using his notion
of contractions, we also establish an extension of a domain invariance theorem for contractive
fields.

1. Introduction. Let (X, d) be a complete metric space and T be a selfmap of X. We

say that x∗ in X is a contractive fixed point (abbr. CFP) of T if x∗ = Tx∗ and the Picard

iterates Tnx converge to x∗ as n → ∞ for all x ∈ X. There are numerous results in the
literature giving sufficient conditions for the existence of a CFP. It seems, however, that

the Banach Principle is still the most important here for its simplicity and an amazing

efficiency in applications. Nevertheless, in this paper we wish to give a detailed analysis of
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several contractive conditions; in particular, our main purpose is to illuminate connections

between them. Part of this study has already been done in our articles [Ja97P] and [Ja99],

and we shall partially use this material in Sections 3 and 4. In general, the rest of the

results given in Sections 2, 5 and 6 seem to be new.

As far as we know, the first significant generalization of Banach’s Principle was ob-

tained by Rakotch [Ra62] in 1962 (the problem was suggested by H. Hanani). We say

that T is a Rakotch contraction if there is a decreasing function α : R+ → [0, 1] such that

α(t) < 1 for all t > 0, and

d(Tx, Ty) ≤ α(d(x, y))d(x, y) for all x, y ∈ X. (1)

(Here R+ denotes the set of all non-negative reals; in the sequel we use ‘decreasing’ for

‘non-increasing’ and ‘increasing’ for ‘non-decreasing’.) Then each Rakotch contraction

has a CFP.

Subsequently, in 1968 Browder [Br68] introduced a more general definition. Given a

function ϕ : R+ → R+ such that

ϕ(t) < t for all t > 0, (2)

we say that T is ϕ-contractive if

d(Tx, Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X. (3)

Then we call T a Browder contraction if ϕ is increasing and right continuous. Such a T

has a CFP. (Actually, that was shown by Browder [Br68] under the additional assumption

that (X, d) be bounded.) This result, in turn, was extended by Boyd and Wong [BW69]

in 1969 who observed that it was enough to assume only the right upper semi-continuity

of ϕ, i.e.,

lim sup
s→t+

ϕ(s) ≤ ϕ(t) for all t ∈ R+.

(Moreover, the boundedness of (X, d) is superfluous.) Then T is said to be a Boyd–Wong

contraction.

Another natural generalization of Banach’s Principle was given in [KV72] in 1972. We

say that T is a Krasnosel’skĭı contraction if given a, b ∈ R+ with 0 < a < b, there is an

L(a, b) ∈ [0, 1) such that for all x, y ∈ X,
d(Tx, Ty) ≤ L(a, b)d(x, y) if a ≤ d(x, y) ≤ b. (4)

However, we have shown in [Ja97P] that this definition is equivalent to the one of Browder.

In particular, this corrects a remark in [GD03, p. 16].

Further two conditions were proposed by Geraghty in 1973 [Ge73] and 1974 [Ge74].

T is said to be a Geraghty (I) contraction if it satisfies (1) with a function α : R+ → [0, 1]

having the property that given a sequence (tn)n∈N,

α(tn)→ 1 implies tn → 0. (5)

This definition was slightly modified in [Ge74]—the above property of α was replaced

there by the following: Given a sequence (tn)n∈N,

if (tn)n∈N is decreasing and α(tn)→ 1, then tn → 0. (6)
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Then we call T a Geraghty (II) contraction. It turns out that this class of mappings

coincides with the Boyd–Wong class as shown by Hegedüs and Szilágyi [HS80]. On the

other hand, in Section 2 we shall show that T is a Geraghty (I) contraction if and only if

it is a Rakotch contraction. Also, we shall consider in Section 3 the following variant of

the above conditions: T is a Geraghty (III) contraction if it satisfies (1) with a function

α : R+ → [0, 1) such that given a sequence (tn)n∈N,

if (tn)n∈N is bounded and α(tn)→ 1, then tn → 0. (7)

We shall show this definition is equivalent to the one of Browder.

Another variant of Browder’s condition was given by Matkowski [Ma75] in 1975 who

replaced the continuity assumption on ϕ by the condition:

lim
n→∞

ϕn(t) = 0 for all t > 0. (8)

Then T is said to be aMatkowski contraction. Though this class of mappings is essentially

wider than Browder’s class (see Proposition 2 and Example 2), in some sense both these

conditions are equivalent. More precisely, in [Ja99] we have shown that if T is a Matkowski

contraction, then the second iterate T 2 satisfies Browder’s condition. Hence, since by

Browder’s theorem, T 2 has a CFP, so does T .

In 1976 James Dugundji [Du76] established a very general coincidence theorem from

which he derived a fixed point theorem for the following class of mappings. We say T

is a Dugundji contraction if the function (x, y) 7→ d(x, y) − d(Tx, Ty) is positive definite
mod ∆(X), the diagonal in X ×X, i.e., given an ε > 0, there is a δ > 0 such that for all

x, y ∈ X,

d(x, y)− d(Tx, Ty) < δ implies d(x, y) < ε. (9)

As shown in [Du76], Dugundji’s theorem yields Browder’s result under the assumption

that (X, d) be bounded. However, in Section 5 we present that without the bounded-

ness assumption, the class of Browder’s contractions is essentially wider than the one of

Dugundji. Nevertheless, we also show that each Dugundji contraction enjoys a nice pro-

perty: It has a fixed point which is both contractive and approximate. Recall that a

mapping T has an approximate fixed point (abbr. AFP) x∗ if x∗ = Tx∗ and given a

sequence (xn)n∈N,

d(xn, Txn)→ 0 implies xn → x∗. (10)

(Let us note that this definition of an AFP is different from that given in [MR03].) On

the other hand, it is not clear if each Browder contraction has such a property. Also, in

Section 5 we give an extension of a domain invariance theorem for Dugundji contractive

fields (see Theorem 10). It seems to be interesting here that the domain of the mapping

need not be open, and the normed linear space need not be complete whereas these

additional assumptions were used by Dugundji and Granas [DG78] in the proof of their

domain invariance theorem for Browder contractions (also see [GD03, p. 11] for the case

of Banach contractions). We close Section 5 with a theorem on continuous dependence

of fixed points on parameters for a family of Dugundji contractions (see Theorem 11).
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Yet another contractive definition was given by Dugundji and Granas [DG78] in 1978.

A mapping T is said to be a Dugundji–Granas contraction if

d(Tx, Ty) ≤ d(x, y)−Θ(x, y) for all x, y ∈ X, (11)

where the function Θ : X × X → R+ is compactly positive on X, i.e., given a, b ∈ R+

such that 0 < a < b,

inf{Θ(x, y) : a ≤ d(x, y) ≤ b} > 0.

As observed in [DG78], the above definition is equivalent to that of Krasnosel’skĭı [KV72].

A domain invariance theorem for such mappings was also given in [KV72].

In Section 6 we study the class of ϕ-contractive maps with an increasing and conti-

nuous ϕ satisfying the following limit condition

lim
t→∞

(t− ϕ(t)) =∞ (12)

which was introduced by Matkowski [Ma77] in 1977; independently, it also appeared in

Walter’s [Wa81] paper in 1981. Such contractive maps are said to be Matkowski–Walter

contractions. (Incidentally, both authors considered more general conditions than (3).)

This class of ϕ-contractions is of some importance in the theory of iterated function

systems (see Theorem 13) and the asymptotic fixed point theory.

We close our shortened history of studies on nonlinear contractive conditions with

recalling the following definition given by Burton [Bu96] in 1996. We say that T is a large

contraction if given an a > 0, there is an L(a) ∈ [0, 1) such that for all x, y ∈ X,
d(Tx, Ty) ≤ L(a)d(x, y) if d(x, y) ≥ a. (13)

Somewhat unexpectedly, we are coming back here to the beginning point since Burton’s

condition turns out to be equivalent to the one of Rakotch (see Theorem 1).

Finally, we would like to emphasize that our study is far from being comprehensive

since there is a huge number of papers dealing with contractive type conditions. Many

useful references concerning this topic may be found, e.g., in the books [KS01, Chapter 1]

and [RPP02].

Throughout this paper we use the convention that inf ∅ = ∞ and—since we are
working on the half-line R+—sup ∅ = 0.

2. Rakotch contractions. We begin with the following auxiliary result concerning a

subset of the quadrant R+ × R+. (The idea of such an approach goes back to the paper

by Hegedüs and Szilágyi [HS80].) Given a function ϕ : R+ → R+, set

Eϕ := {(t, u) ∈ R+ × R+ : u ≤ ϕ(t)}.

Lemma 1. Let D be a subset of R+ × R+ such that for any u ∈ R+,

(0, u) ∈ D implies u = 0. (14)

The following statements are equivalent :

(i) there is a decreasing function α : R+ → [0, 1] such that α(t) < 1 for all t > 0, and

D ⊆ Eϕ, where ϕ(t) := tα(t) (t ∈ R+);
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(ii) given an a > 0, there is an L ∈ [0, 1) such that (t, u) ∈ D and t ≥ a imply u ≤ Lt,
i.e.,

sup
{u

t
: (t, u) ∈ D and t ≥ a

}

< 1;

(iii) there is a function α : R+ → [0, 1) such that (5) holds and D ⊆ Eϕ, where ϕ(t) :=

tα(t) (t ∈ R+);

(iv) there is a strictly increasing and concave function ϕ : R+ → R+ satisfying (2) and

such that D ⊆ Eϕ;
(v) there is a subadditive function ϕ : R+ → R+ satisfying (2) and such that D ⊆ Eϕ;
(vi) there is a subadditive function ϕ : R+ → R+ which is continuous at 0 and such

that ϕ(tn) < tn for some sequence (tn)n∈N convergent to 0, and D ⊆ Eϕ;
(vii) there is an increasing and right continuous function ϕ : R+ → R+ satisfying (2)

such that lim supt→∞ ϕ(t)/t < 1 and D ⊆ Eϕ;
(viii) there is an upper semi-continuous function ϕ : R+ → R+ satisfying (2) such that

lim supt→∞ ϕ(t)/t < 1 and D ⊆ Eϕ.
The proof of Lemma 1 will be preceded by the following separation theorem for

concave functions which extends Matkowski’s result [Ma93, Lemma 1]. Moreover, our

proof seems to be simpler.

Lemma 2. Assume that functions ϕ, λ : R+ → R+ are such that ϕ(t) < λ(t) for all t > 0,

and λ is concave and strictly increasing. If given an s > 0,

sup

{

ϕ(t)

λ(t)
: t ≥ s

}

< 1,

then there is a concave and strictly increasing function ψ : R+ → R+ such that

ϕ(t) < ψ(t) < λ(t) for all t > 0.

Proof. Set

Φ := {η : R+ → R+ | η is concave, increasing and ϕ(t) ≤ η(t) for t > 0}.
Clearly, Φ 6= ∅ since λ ∈ Φ. Define

π(0) := 0 and π(t) := inf{η(t) : η ∈ Φ} for t > 0.

Then ϕ(t) ≤ π(t) for t > 0. It is easily seen that since every η ∈ Φ is increasing, so is π.

Moreover, since the infimum of any family of concave functions which are equibounded

from below is concave, we infer π|(0,∞) is concave. Hence, also π is concave since π is

non-negative and π(0) = 0. We show π(t) < λ(t) for t > 0. Let s > 0. By hypothesis,

there is an α ∈ (0, 1) such that

ϕ(t) ≤ αλ(t) for t ≥ s
which implies ϕ(t) ≤ αλ(t) + (1 − α)λ(s) for t > 0. Indeed, this holds for t ≥ s since

λ(s) > 0; if 0 < t < s, then by hypothesis,

ϕ(t) < λ(t) = αλ(t) + (1− α)λ(t) < αλ(t) + (1− α)λ(s).

Set

µs(t) := αλ(t) + (1− α)λ(s) for t ∈ R+.
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It is clear that µs ∈ Φ, so π(t) ≤ µs(t) for t > 0. In particular, if t > s, then by the strict

monotonicity of λ,

π(t) ≤ αλ(t) + (1− α)λ(s) < αλ(t) + (1− α)λ(t) = λ(t).

Since s was any positive number, we infer π(t) < λ(t) for all t > 0. Now it suffices to set

ψ(t) := (λ(t) + π(t))/2 for t ∈ R+.

Remark 1. Lemma 2 was proved in [Ma93] in case when the function λ is linear.

Proof of Lemma 1. (i)⇒(ii). Let a > 0. Set L := α(a). By (i), L ∈ [0, 1). Let (t, u) ∈ D
and t ≥ a. By (i),

u ≤ tα(t) ≤ tα(a) = Lt,

so (ii) holds.

(ii)⇒(iii). Set

α(0) := 0 and α(t) := sup
{u

t
: (t, u) ∈ D

}

for t > 0.

By (ii), α : R+ → [0, 1). Assume that (tn)n∈N is such that α(tn) → 1. Suppose, on the

contrary, that tn 6→ 0. Without loss of generality we may assume tn ≥ δ for some δ > 0

and all n ∈ N. By (ii), there is an L(δ) ∈ [0, 1) such that (tn, u) ∈ D implies u ≤ L(δ)tn.

Hence we infer

α(tn) ≤ L(δ) < 1

which yields a contradiction since α(tn) → 1. Thus tn → 0. Moreover, by the definition

of α, D ∩ (0,∞)2 ⊆ Eϕ. Hence and by (14), D ⊆ Eϕ.
(iii)⇒(iv). Let ϕ be as in (iii), so that ϕ(t)/t = α(t) for t > 0. Hence and by (iii),

given an s > 0,

sup{ϕ(t)/t : t ≥ s} < 1.

(Otherwise, there is a (tn)n∈N such that tn ≥ s and α(tn) → 1, a contradiction.) By

Lemma 2 (with λ(t) := t for t ∈ R+), there is a strictly increasing and concave function

ψ : R+ → R+ such that ϕ(t) < ψ(t) < t for t > 0. Since D ⊆ Eϕ and Eϕ ⊆ Eψ, we get

D ⊆ Eψ, so ψ is a desirable function.
(iv)⇒(v). Let ϕ be as in (iv). Then, by [HP57, Theorem 7.2.5], ϕ is also subadditive,

so (v) holds.

(v)⇒(vi). It is easily seen that for any ϕ : R+ → R+, ϕ is subadditive if its restriction

ϕ|(0,∞) is subadditive. Hence, if ϕ is as in (v), then we may assume without loss of

generality that ϕ(0) = 0. This implies the continuity of ϕ at 0 since ϕ(t) < t for t > 0.

Moreover, by (14), D ⊆ Eϕ with such a modified ϕ. Thus (vi) holds.
(vi)⇒(vii). Let ϕ be as in (vi). By [Ma93, Corollary 1], ϕ satisfies (2). Hence and by

[Ma93, Remark 1], we have for any s > 0,

sup

{

ϕ(t)

t
: t ≥ s

}

< 1. (15)

By Lemma 2, there is an increasing and concave function ψ : R+ → R+ such that

ϕ(t) < ψ(t) < t for t > 0. By concavity, ψ is continuous on (0,∞). By monotonicity,

ψ(0) ≤ ψ(t) < t for t > 0, and hence ψ is also continuous at 0. Since ψ is non-negative



NONLINEAR CONTRACTIVE CONDITIONS 129

and concave, [HP57, Theorem 7.2.5] implies ψ is subadditive. Now [HP57, Theorem 7.6.2]

yields the existence of the limit limt→∞ ψ(t)/t and, moreover,

lim
t→∞

ψ(t)

t
= inf

{

ψ(t)

t
: t > 0

}

≤ ψ(1) < 1.

Finally, since D ⊆ Eϕ ⊆ Eψ, we infer ψ is a desirable function for (vii).
(vii)⇒(viii) is obvious since each increasing function is left upper semi-continuous.
(viii)⇒(i). Let ϕ be as in (viii). We show given an s > 0, (15) holds. Suppose, on

the contrary, this supremum is equal to 1. There is a (tn)n∈N such that tn ≥ s and

ϕ(tn)/tn → 1. Then (tn)n∈N is bounded; otherwise, we would get lim supt→∞ ϕ(t)/t = 1,

a contradiction. Thus, without loss of generality, we may assume (tn)n∈N converges to

some t0 ≥ s. By the upper semi-continuity,

1 = lim
n→∞

ϕ(tn)

tn
≤ lim sup

t→t0

ϕ(t)

t
≤ ϕ(t0)

t0
< 1

which yields a contradiction. Now Lemma 2 ensures the existence of a concave function

ψ : R+ → R+ such that ϕ(t) < ψ(t) < t for t > 0. Set

α(0) := 1 and α(t) := ψ(t)/t for t > 0.

Since ψ is concave, we infer α is decreasing (cf. [HP57, proof of Theorem 7.2.5]). Moreover,

tα(t) = ψ(t) for t ∈ R+, and D ⊆ Eψ, so (i) holds.
Theorem 1. Let (X, d) be a metric space and T be a selfmap of X. The following sta-

tements are equivalent :

(i) T is a Rakotch contraction (cf. (1));

(ii) T is Burton’s large contraction (cf. (13));

(iii) T is a Geraghty (I) contraction (cf. (5));

(iv) T is ϕ-contractive, where ϕ is strictly increasing and concave;

(v) T is ϕ-contractive, where ϕ is subadditive;

(vi) T is ϕ-contractive (here (2) is not required), where ϕ is subadditive and continuous

at 0, and such that ϕ(tn) < tn for some sequence (tn)n∈N convergent to 0;

(vii) T is ϕ-contractive, where ϕ is increasing and right continuous, and such that

lim supt→∞ ϕ(t)/t < 1;

(viii) T is ϕ-contractive, where ϕ is upper semi-continuous and lim supt→∞ ϕ(t)/t < 1.

Proof. Set D :=
{

(d(x, y), d(Tx, Ty)) : x, y ∈ X
}

. It is clear that D satisfies (14), so it

suffices to apply Lemma 1.

Remark 2. The implication (ii)⇒(i) was essentially used by Reich and Zaslavski [RZ00]
though they were unaware of the existence of the paper [Bu96].

Below we inform the reader about other possible applications of Lemma 1.

Remark 3. If T is a set-valued mapping with values in CB(X), the family of all non-

empty closed and bounded subsets ofX endowed with the Hausdorff metric, then applying

Lemma 1 with D defined by

D :=
{

(d(x, y), H(Tx, Ty)) : x, y ∈ X
}
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we obtain a counterpart of Theorem 1 for set-valued mappings. (In particular, such a

class of contractive set-valued mappings was studied by Reich [Re72] and Reich–Zaslavski

[RZ02].) As another application of Lemma 1, we may set (for a single-valued T )

D :=
{

(M(x, y), d(Tx, Ty)) : x, y ∈ X
}

,

where M(x, y) := max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

to get the result on

the equivalence of other contractive conditions studied in the literature.

Remark 4. It follows from Theorem 1 ((ii)⇔(vii)) that a theorem of Chen [Ch00, The-
orem 3.2] on pointwise convergence of a sequence (Tn ◦ . . . ◦ T1)n∈N and a result of Ja-

chymski [Ja97A, Theorem 5] are identical. Moreover, applying Lemma 1 ((i)⇔(ii)) with
D defined as

D :=
{

(d(x, y), d(Tnx, Tny)) : x, y ∈ X, n ∈ N
}

,

we infer that the assumptions of another result of Chen [Ch00, Theorem 3.3] mean all

maps Tn are Rakotch contractions with a function α independent of n.

In the rest of this section we wish to quote two results dealing with Rakotch con-

tractions. The first one concerns the problem of stability of iteration procedure. Recall

that the procedure of successive approximations for a mapping T having a CFP is stable

(see Ostrowski [Os67]) if for any sequence (εn)n∈N of positive reals convergent to 0, every

sequence (yn)
∞

n=0 such that

d(yn, T yn−1) ≤ εn for n ∈ N

converges to the fixed point of T . (The reals εn can be interpreted as the ‘round-off

errors’ of Tny0.) Ostrowski [Os67] proved that for any Banach contraction, the procedure

of successive approximations is stable. This result was extended in [Ja97A] in the following

way.

Theorem 2. Let (X, d) be a complete metric space and T be a ϕ-contractive selfmap

of X such that lim supt→∞ ϕ(t)/t < 1, and ϕ is increasing and right continuous. Then

the procedure of successive approximations for T is stable.

Now it follows from Theorem 1 ((i)⇔(vii)) that Theorem 2 deals in fact with the
class of Rakotch contractions. It remains an open question whether this result can be

extended to whichever class considered in the next sections. Recently, a partial answer

to this question was given by Butnariu, Reich and Zaslavski [BRZ06, Corollary 1.1].

We also wish to mention a result related to generic aspects of metric fixed point theory

in which the class of Rakotch contractions plays an important role. Let X be a Banach

space, and K be a non-empty closed bounded convex subset of X. Denote by A the set
of all non-expansive selfmaps of K, i.e.,

‖Ax−Ay‖ ≤ ‖x− y‖ for all A ∈ A and x, y ∈ K.
Endow A with the metric h defined by

h(A,B) := sup{‖Ax−Bx‖ : x ∈ K} for A,B ∈ A.
Then (A, h) is a complete metric space. In 1976 De Blasi and Myjak [DM76] proved that
most of mappings in A—in the sense of Baire’s category—have a CFP. Recently, their
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result was improved by Reich and Zaslavski [RZ00] (see also [KS01, p. 561]) who obtained

the following

Theorem 3 (Reich–Zaslavski). There exists a set F which is a countable intersection of

open everywhere dense sets in A such that each A ∈ F is a Rakotch contraction.

In particular, a typical non-expansive mapping is a Rakotch contraction, and hence

it has a CFP. On the other hand, in a Hilbert space the set of all Banach contractions is

only of the first category as shown by De Blasi and Myjak [DM76]. Finally, let us note

that Theorem 3 has been strengthened in [RZ01C] by using the concept of sigma-porosity.

3. Browder contractions. We again begin with a result concerning a subset of the

quadrant R+ × R+.

Lemma 3. Let D and Eϕ be as in Lemma 1. The following statements are equivalent :

(i) there is an increasing and right continuous function ϕ : R+ → R+ satisfying (2)

such that D ⊆ Eϕ;
(ii) given a, b > 0 with a < b, there is an L ∈ [0, 1) such that (t, u) ∈ D and a ≤ t ≤ b

imply u ≤ Lt, i.e.,
sup
{u

t
: (t, u) ∈ D and t ∈ [a, b]

}

< 1;

(iii) given a, b > 0 with a < b, there is a δ > 0 such that (t, u) ∈ D and a ≤ t ≤ b imply
u ≤ t− δ, i.e.,

inf{t− u : (t, u) ∈ D and t ∈ [a, b]} > 0;

(iv) there is a strictly increasing and continuous function ϕ : R+ → R+ satisfying (2)

such that D ⊆ Eϕ;
(v) there is a continuous function ϕ : R+ → R+ satisfying (2) such that D ⊆ Eϕ;
(vi) there is a continuous function ψ : R+ → R+ such that ψ(t) > 0 for t > 0 and

D ⊆ Eϕ, where ϕ(t) := t− ψ(t) (t ∈ R+);

(vii) there is an upper semi-continuous function ϕ : R+ → R+ satisfying (2) such that

D ⊆ Eϕ;
(viii) there is a function ϕ : R+ → R+ satisfying (2) such that

lim sup
s→t

ϕ(s) < t for all t > 0,

and D ⊆ Eϕ;
(ix) there is a strictly increasing function ϕ : R+ → R+ such that (8) holds, and

D ⊆ Eϕ;
(x) there is a function α : R+ → [0, 1) such that (7) holds for any sequence (tn)n∈N,

and D ⊆ Eϕ, where ϕ(t) := tα(t) (t ∈ R+).

Proof. (i)⇒(vii) follows immediately from the fact that each increasing function is left
upper semi-continuous.

(vii)⇒(viii). If ϕ is as in (vii), then given t > 0,

lim sup
s→t

ϕ(s) ≤ ϕ(t) < t,
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so (viii) holds.

(viii)⇒(iv) follows directly from a separation lemma [Ja97P, Lemma 1].
(iv)⇒(i) is obvious.
(We have shown (i), (iv), (vii) and (viii) are equivalent.)

(iv)⇒(ix). If ϕ is as in (iv), then (8) holds (see [Br68]), so (ix) holds.
(ix)⇒(viii). If ϕ is as in (ix), then ϕ satisfies (2) (see [GD03, p. 15]), so by the

monotonicity, given t > 0,

lim
s→t−

ϕ(s) ≤ ϕ(t) < t.

Moreover, lims→t+ ϕ(s) < t; otherwise, lims→t+ ϕ(s) = t and then, by [Ja97P, The-

orem 7], there is a δ > 0 such that ϕ|(t,t+δ) is constant which contradicts the strict
monotonicity of ϕ. Thus lims→t ϕ(s) < t, so (viii) holds.

(iv) implies (v) a fortiori. To show (v)⇒(vi), it suffices to set ψ(t) := t−ϕ(t) (t ∈ R+).

Similarly, to prove (vi)⇒(vii), it is enough to set ϕ(t) := t− ψ(t) for t ∈ R+.

(We have shown (i), (iv), (v), (vi), (vii), (viii) and (ix) are equivalent. Thus it suffices

to prove: (v)⇒(ii)⇒(iii)⇒(viii) and (v)⇒(x)⇒(viii).)
(v)⇒(ii). Let 0 < a < b, (t, u) ∈ D and t ∈ [a, b]. By (v),

u

t
≤ ϕ(t)

t
≤ sup

{

ϕ(s)

s
: s ∈ [a, b]

}

=
ϕ(s0)

s0

for some s0 ∈ [a, b], because s 7→ ϕ(s)/s (s ∈ [a, b]) attains its maximum in view of the

continuity of ϕ. It suffices to set L := ϕ(s0)/s0. Indeed, u ≤ Lt and by (2), L ∈ [0, 1).

(ii)⇒(iii). Let 0 < a < b and L be as in (ii). Set δ := a(1 − L). Clearly, δ > 0 and

given (t, u) ∈ D with t ∈ [a, b], we have

u ≤ Lt = t− (1− L)t ≤ t− (1− L)a = t− δ.
Thus (iii) holds.

(iii)⇒(viii). By (iii), there is a sequence (δn)n∈N of positive reals such that if (t, u) ∈ D
and t ∈ [1/n, n+1], then u ≤ t−δn. Without loss of generality, we may assume δn ≤ 1/n.

Set
ϕ(0) := 0, ϕ(t) := t− δ1 for t ∈ [1, 2],

ϕ(t) := t− δn for t ∈ [1/n, 1/(n− 1)) ∪ (n, n+ 1] and n ≥ 2.

It is easily seen that ϕ has all the properties we need, so (viii) holds. (Here we also use

condition (14).)

(v)⇒(x). Let ϕ be as in (v). Set

α(0) := 0 and α(t) :=
ϕ(t)

t
for t > 0.

Let (tn)n∈N be bounded and such that α(tn)→ 1. Suppose, on the contrary, that tn 6→ 0.

Without loss of generality, we may assume there are a, b > 0 such that a ≤ tn ≤ b for all
n ∈ N, and (tn)n∈N converges to some t0 ∈ [a, b]. Then, by continuity of ϕ, we have

1 = lim
n→∞

α(tn) = lim
n→∞

ϕ(tn)

tn
=
ϕ(t0)

t0
< 1

which yields a contradiction. Thus tn → 0, so (x) holds.
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(x)⇒(viii). Let α be as in (x). Set ϕ(t) := tα(t) for t ∈ R+. Clearly, ϕ satisfies (2).

Let t > 0. Suppose, on the contrary, lim sups→t ϕ(s) = t. There is an (sn)n∈N such that

sn → t and ϕ(sn) → t. Hence α(sn) = ϕ(sn)/sn → 1, so by hypothesis, sn → 0 which

yields a contradiction.

Theorem 4. Let (X, d) be a metric space and T be a selfmap of X. The following sta-

tements are equivalent :

(i) T is a Browder contraction (cf. (3));

(ii) T is a Krasnosel’skĭı contraction (cf. (4));

(iii) T is a Dugundji–Granas contraction (cf. (11));

(iv) T is ϕ-contractive, where ϕ is strictly increasing and continuous;

(v) T is ϕ-contractive, where ϕ is continuous;

(vi) there is a continuous function ψ : R+ → R+ such that ψ(t) > 0 for t > 0, and for

all x, y ∈ X,
d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y));

(vii) T is ϕ-contractive, where ϕ is upper semi-continuous;

(viii) T is ϕ-contractive, where ϕ is such that lim sups→t ϕ(s) < t for t > 0;

(ix) T is ϕ-contractive, where ϕ is strictly increasing and such that (8) holds;

(x) T is a Geraghty (III) contraction (cf. (7)).

Proof. Set D :=
{

(d(x, y), d(Tx, Ty) : x, y ∈ X
}

and apply Lemma 3. For example, to

show that (ii) implies (iii), define Θ(x, y) := d(x, y)− d(Tx, Ty), and then use Lemma 3
((ii)⇒(iii)).

Remark 5. Condition (vi) is taken from the book of Krasnosel’skĭı et al. [KV72, p. 52].

(vii) is a stronger version of the Boyd–Wong [BW69] condition in which ϕ is right upper

semi-continuous, however, these two versions are not equivalent (see Proposition 3). Si-

milarly, (ix) is a variant of Matkowski’s [Ma75] condition in which ϕ need not be strictly

monotonic. (viii) was given by Tasković [Ta78].

Theorem 1 ((i)⇒(vii)) implies that every Rakotch contraction is a Browder contrac-
tion. The following result illuminates more relations between these classes. In particular,

they do not coincide.

Proposition 1. Assume that ϕ : R+ → R+ is increasing and right continuous, and sa-

tisfies (2). The following statements are equivalent :

(i) lim supt→∞ ϕ(t)/t < 1;

(ii) given a metric space (X, d) and a ϕ-contractive map T : X → X, T is a Rakotch

contraction.

Proof. (i)⇒(ii) follows from Theorem 1 ((vii)⇒(i)).
(ii)⇒(i). Define X := R+ and set for any x, y ∈ X,

d(x, y) := max{x, y} if x 6= y; d(x, x) := 0.
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Then (X, d) is an ultrametric space. Further, set T := ϕ. By monotonicity of ϕ, we have

for x, y ∈ X with x 6= y,

d(Tx, Ty) ≤ max{ϕ(x), ϕ(y)} = ϕ(max{x, y}) = ϕ(d(x, y)),

so T is ϕ-contractive. By hypothesis, there is a decreasing function α : R+ → [0, 1] such

that α(t) < 1 for t > 0, and (1) holds. Setting in (1) y := 0, we get

ϕ(x) ≤ α(x)x for x ∈ R+

which implies lim supt→∞ ϕ(t)/t ≤ limt→∞ α(t) < 1 because of monotonicity of α.

Example 1. Set ϕ(t) := t2/(t + 1) for t ∈ R+. Then Proposition 1 yields the existence

of a ϕ-contractive map in Browder’s class which is not a Rakotch contraction.

With the help of the same trick as in the proof of Proposition 1 (a use of an ultrametric

space), the following result was obtained in [Ja97P].

Proposition 2. Assume that ϕ : R+ → R+ is increasing and satisfies (8). The following

statements are equivalent :

(i) {t > 0 : lims→t+ ϕ(s) = t} = ∅;
(ii) given a metric space (X, d) and a ϕ-contractive map T : X → X, T is a Browder

contraction.

Hence and by Theorem 4 ((i)⇒(ix)), the class of Browder contractions is a proper
subclass of Matkowski’s class. Indeed, consider the following

Example 2. Define ϕ(0) := 0, ϕ(t) := 1/(n + 1) for t ∈ (1/(n + 1), 1/n] and n ∈ N,

ϕ(t) := 1 for t > 1. Then by Proposition 2, there is a ϕ-contractive map in Matkowski’s

class which is not a Browder contraction.

Finally, we would like to quote two interesting theorems of Dugundji and Granas

[DG78] for Browder contractions. The first one is the following domain invariance theorem

for weakly contractive fields. The letter I denotes the identity map.

Theorem 5 (Dugundji–Granas). If X is a Banach space, U ⊆ X is open and T : U → X

is a Browder contraction, then the field F := I − T is a homeomorphism from U onto

F (U).

The second result concerns the problem of continuous dependence of fixed points on

parameters.

Theorem 6 (Dugundji–Granas). Let (X, d) be a complete metric space and (Λ, ρ) be a

metric space. Let T : X × Λ → X be a map such that λ 7→ T (x, λ) is continuous for all

x ∈ X, and
d(T (x, λ), T (y, λ)) ≤ d(x, y)−Θ(x, y) for x, y ∈ X and λ ∈ Λ,

where Θ (independent of λ) is compactly positive. Let xλ be the unique fixed point of Tλ,

where Tλx := T (x, λ). Then the map λ 7→ xλ is continuous at each point where it is

locally bounded.
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The last property means the restriction of the map to some neighbourhood of a point

is bounded.

In Section 5 we give partial extensions of the above results for Dugundji contractions

(see Theorems 10 and 11).

4. Boyd–Wong contractions. With the help of a result by Hegedüs and Szilágyi

[HS80], we shall prove the following

Lemma 4. Let D and Eϕ be as in Lemma 1. The following statements are equivalent :

(i) there is a right upper semi-continuous function ϕ : R+ → R+ satisfying (2) such

that D ⊆ Eϕ;
(ii) given an a > 0, there are b > a and L ∈ [0, 1) such that (t, u) ∈ D and a ≤ t ≤ b

imply u ≤ Lt;
(iii) given an a > 0, there are b > a and δ > 0 such that (t, u) ∈ D and a ≤ t ≤ b imply

u ≤ t− δ;
(iv) given an a > 0, there are b > a and δ > 0 such that (t, u) ∈ D and a ≤ t ≤ b imply

u ≤ a− δ;
(v) there is a right continuous function ϕ : R+ → R+ satisfying (2) such that D ⊆ Eϕ;
(vi) there is a function ϕ : R+ → R+ satisfying (2) such that lim sups→t+ ϕ(s) < t for

t > 0 and D ⊆ Eϕ;
(vii) there is a function α : R+ → [0, 1) such that for any sequence (tn)n∈N, (6) holds,

and D ⊆ Eϕ, where ϕ(t) := tα(t) (t ∈ R+);

(viii) there is a function α : R+ → [0, 1) such that lim sups→t+ α(s) < 1 for t > 0, and

D ⊆ Eϕ, where ϕ(t) := tα(t) (t ∈ R+).

Proof. The equivalence of (i), (iv), (vi), (vii) and (viii) was shown in [HS80]. (v) implies

(i) a fortiori. (i)⇒(v) follows from the separation theorem proved in [Ja97P] according
to which if ϕ is as in (i), then there is a right continuous function ψ : R+ → R+ such

that ϕ(t) ≤ ψ(t) < t for t > 0. Thus it suffices to show (iv)⇒(ii)⇒(iii)⇒(iv).
(iv)⇒(ii). Let a > 0. There are b > a and δ > 0 as in (iv). Without loss of generality,

we may assume δ ≤ a. Set L := (a − δ)/a. Clearly, L ∈ [0, 1) and if (t, u) ∈ D and

a ≤ t ≤ b, then
u ≤ a− δ = La ≤ Lt.

Thus (ii) holds.

(ii)⇒(iii). We use the same argument as in the proof of Lemma 3 ((ii)⇒(iii)).
(iii)⇒(iv). Let a > 0. There are b > a and δ > 0 as in (iii). Without loss of generality,

we may assume δ ≤ 2(b − a). Set δ′ := δ/2 and b′ := a + δ′. Clearly, b′ ≤ b. Hence if

(t, u) ∈ D and a ≤ t ≤ b′, then a ≤ t ≤ b, so
u ≤ t− δ ≤ b′ − δ = a− δ/2 = a− δ′.

Thus (iv) holds.
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Theorem 7. Let (X, d) be a metric space and T be a selfmap of X. The following sta-

tements are equivalent :

(i) T is a Boyd–Wong contraction;

(ii) given an a > 0, there are b > a and L ∈ [0, 1) such that for all x, y ∈ X,
a ≤ d(x, y) ≤ b implies d(Tx, Ty) ≤ Ld(x, y);

(iii) given an a > 0, there are b > a and δ > 0 such that for all x, y ∈ X,
a ≤ d(x, y) ≤ b implies d(Tx, Ty) ≤ d(x, y)− δ;

(iv) given an a > 0, there are b > a and δ > 0 such that for all x, y ∈ X,
a ≤ d(x, y) ≤ b implies d(Tx, Ty) ≤ a− δ;

(v) T is ϕ-contractive, where ϕ is right continuous;

(vi) T is ϕ-contractive, where ϕ is such that lim sups→t+ ϕ(s) < t for t > 0;

(vii) T is a Geraghty (II) contraction (cf. (6));

(viii) T satisfies (1), where α : R+ → [0, 1) is such that lim sups→t+ α(s) < 1 for t > 0.

Proof. Set

D := {(d(x, y), d(Tx, Ty)) : x, y ∈ X}
and apply Lemma 4.

Remark 6. (iv) is a stronger version of the Meir–Keeler [MK69] condition in which the

strict inequality d(Tx, Ty) < a is substituted for d(Tx, Ty) ≤ a − δ in (iv). As shown
in [MK69], these two conditions are not equivalent. (For a discussion of other variants

of the Meir–Keeler condition, see [Ja95].) Nevertheless, it is possible to characterize the

Meir–Keeler condition in terms of a function ϕ as recently done by Lim [Li01]. (v) was

used in a fixed point theorem of Mukherjea [Mu77]; thus his result is equivalent to the

one of Boyd and Wong [BW69].

Remark 7. For a set-valued map T : X → CB(X) (cf. Remark 3), (viii) appears in

Reich’s [Re74] problem: It is still unknown whether each such a multifunction has a fixed

point. Applying Lemma 4 with D defined by

D :=
{(

d(x, y), H(Tx, Ty)
)

: x, y ∈ X
}

,

we get equivalent characterizations of set-valued maps considered by Reich.

The following result given in [Ja97P] explains relations between the classes of Browder

and Boyd–Wong.

Proposition 3. Assume that ϕ : R+ → R+ is right upper semi-continuous and satis-

fies (2). The following statements are equivalent :

(i) {t > 0 : lim sups→t− ϕ(s) = t} = ∅;
(ii) given a metric space (X, d) and a ϕ-contractive map T : X → X, T is a Browder

contraction.

Hence and by Theorem 4 ((i)⇒(vii)), the class of Browder contractions is a proper
subclass of the Boyd–Wong class. In particular, consider the following
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Example 3. Define ϕ(t) := t2 for t ∈ [0, 1) and ϕ(t) := t− 1/2 for t ≥ 1. Then Proposi-

tion 3 yields the existence of a ϕ-contractive map in the Boyd–Wong class which is not

a Browder contraction.

On the other hand, the classes of Matkowski and Boyd–Wong are incomparable. To

see that, consider first the following

Example 4. Let ϕ be as in Example 2, and define (X, d) and T as in the proof of

Proposition 1. Then T is a Matkowski contraction. Suppose, on the contrary, that T is

ψ-contractive, where ψ is right upper semi-continuous. In particular, d(Tx, T0) ≤
ψ(d(x, 0)) for x ∈ X, i.e., ϕ(x) ≤ ψ(x) for all x ∈ R+. Since limx→1+ ϕ(x) = 1 and

ψ(x) < x, we infer limx→1+ ψ(x) = 1. On the other hand, by hypothesis,

lim
x→1+

ψ(x) ≤ ψ(1) < 1,

which yields a contradiction. Thus T is not a Boyd–Wong contraction.

Simultaneously, there exist Boyd–Wong contractions which do not satisfy Matkowski’s

condition. Instead of an example, we give here somewhat more general result which can

easily be deduced from [Ja97P, Theorems 4 and 6].

Proposition 4. Assume that ϕ : R+ → R+ is right upper semi-continuous and satis-

fies (2). If

inf{t > 0 : lim sup
s→t−

ϕ(s) = t} = 0,

then there is a ϕ-contractive map which is not a Matkowski contraction.

5. Dugundji contractions

Lemma 5. Let D and Eϕ be as in Lemma 1. The following statements are equivalent :

(i) given an a > 0, there is a δ > 0 such that (t, u) ∈ D and t ≥ a imply u ≤ t − δ,
i.e.,

inf
{

t− u : (t, u) ∈ D and t ≥ a
}

> 0;

(ii) there is a function ϕ : R+ → R+ satisfying (2) such that the function t 7→ t− ϕ(t)

is increasing, and D ⊆ Eϕ;
(iii) there is a function ϕ : R+ → R+ satisfying (2) such that for any sequence (tn)n∈N,

tn − ϕ(tn)→ 0 implies tn → 0, and D ⊆ Eϕ;
(iv) there is a strictly increasing and continuous function ϕ : R+ → R+ satisfying (2)

such that limt→∞(t− ϕ(t)) > 0, and D ⊆ Eϕ;
(v) there is an increasing and right continuous function ϕ : R+ → R+ satisfying (2)

such that limt→∞(t− ϕ(t)) > 0, and D ⊆ Eϕ;
(vi) there is an upper semi-continuous function ϕ : R+ → R+ satisfying (2) such that

lim inft→∞(t− ϕ(t)) > 0, and D ⊆ Eϕ;
(vii) there is a function ϕ : R+ → R+ satisfying (2) such that lim sups→t ϕ(s) < t for

t > 0, lim inft→∞(t− ϕ(t)) > 0, and D ⊆ Eϕ.
Proof. (i)⇒(ii). Set ψ(0) := 0 and

ψ(a) := inf{t− u : (t, u) ∈ D and t ≥ a} for a > 0.
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By (i), we have ψ(a) > 0 for a > 0. Without loss of generality, we may assume D

is unbounded; otherwise, we could replace D by the set D ∪ (R+ × {0}) which also
satisfies (i). Then ψ(a) is finite for all a ∈ R+. Clearly, ψ is increasing. Define

ϕ(t) := t− ψ(t) for t ∈ R+.

Then ϕ satisfies (2) and t 7→ t − ϕ(t) (= ψ(t)) is increasing. Moreover, if (t, u) ∈ D and
t > 0, then t− u ≥ ψ(t), i.e., u ≤ ϕ(t). Hence and by (14), we get D ⊆ Eϕ.
(ii)⇒(iii). Let ϕ be as in (ii), and let tn−ϕ(tn)→ 0. Suppose, on the contrary, tn 6→ 0.

Without loss of generality, we may assume tn ≥ δ for some δ > 0. By hypothesis,

tn − ϕ(tn) ≥ δ − ϕ(δ) > 0

which yields a contradiction.

(iii)⇒(iv). It is easily seen (iii) implies
δn := inf{t− ϕ(t) : t ≥ 1/n} > 0 for n ∈ N.

Hence ϕ(t) ≤ t− δn for t ≥ 1/n. Define

η(0) := 0, η(t) := t− δn+1 for t ∈ [1/(n+ 1), 1/n) and n ∈ N,

and η(t) := t− δ1 for t ∈ [1, 2).

It is easily seen that lim sups→t η(s) < t for t ∈ (0, 2), so by [Ja97P, Lemma 1], there is a

strictly increasing and continuous γ : [0, 2)→ R+ such that η(t) ≤ γ(t) < t for t ∈ (0, 2).

Now we define ψ : R+ → R+ setting

ψ(t) := γ(t) for t ∈ [0, 1], and ψ(t) := t− 1 + γ(1) for t > 1.

Clearly, ψ is strictly increasing, continuous and satisfies (2). Since γ(1) ≥ η(1) = 1− δ1,
we get 1− γ(1) ≤ δ1 which yields

ψ(t) ≥ t− δ1 ≥ ϕ(t) for t > 1.

For t ∈ [0, 1], ψ(t) = γ(t) ≥ η(t) ≥ ϕ(t). Thus ϕ(t) ≤ ψ(t) for all t ∈ R+ which gives

Eϕ ⊆ Eψ. Since D ⊆ Eϕ, we infer D ⊆ Eψ.
Implications (iv)⇒(v)⇒(vi)⇒(vii) are obvious.
(vii)⇒(i). Suppose, on the contrary, inf{t − u : (t, u) ∈ D, t ≥ a} = 0. There are

sequences (tn)n∈N, (un)n∈N and an a > 0 such that (tn, un) ∈ D, tn ≥ a and tn−un → 0.

By (vii), un ≤ ϕ(tn), so

0 < tn − ϕ(tn) ≤ tn − un
which yields tn − ϕ(tn) → 0. Since by hypothesis, lim inft→∞(t − ϕ(t)) > 0, we infer

(tn)n∈N is bounded. Thus, without loss of generality, we may assume tn → t0 for some

t0 ≥ a. Then ϕ(tn)→ t0 which yields lim sups→t0 ϕ(s) = t0, a contradiction.

Theorem 8. Let (X, d) be a metric space and T be a selfmap of X. The following sta-

tements are equivalent :

(i) T is a Dugundji contraction;

(ii) given an a > 0, there is a δ > 0 such that for any x, y ∈ X,
d(x, y) ≥ a implies d(Tx, Ty) ≤ d(x, y)− δ;
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(iii) T is ϕ-contractive, where ϕ is such that t 7→ t− ϕ(t) (t ∈ R+) is increasing;

(iv) T is ϕ-contractive, where ϕ is such that for any sequence (tn)n∈N, tn − ϕ(tn)→ 0

implies tn → 0;

(v) T is ϕ-contractive, where ϕ is strictly increasing, continuous and such that

limt→∞(t− ϕ(t)) > 0;

(vi) T is ϕ-contractive, where ϕ is increasing, right continuous and such that

limt→∞(t− ϕ(t)) > 0;

(vii) T is ϕ-contractive, where ϕ is upper semi-continuous and lim inft→∞(t−ϕ(t)) > 0;

(viii) T is ϕ-contractive, where ϕ is such that lim sups→t ϕ(s) < t for t > 0 and

lim inft→∞(t− ϕ(t)) > 0.

Proof. It is easily seen (i) and (ii) are equivalent. Next, define D as in the proof of

Theorem 1 and apply Lemma 5.

Remark 8. The limit condition lim inft→∞(t−ϕ(t)) > 0 was also used in some extension

of the Banach theorem given in [JS99].

Now we give a counterpart of Proposition 1 to illuminate the relations between the

classes of Dugundji and Browder.

Proposition 5. Assume that ϕ : R+ → R+ is increasing, right continuous and satis-

fies (2). The following statements are equivalent :

(i) lim inft→∞(t− ϕ(t)) > 0;

(ii) given a metric space (X, d) and a ϕ-contractive map T : X → X, T is a Dugundji

contraction.

Proof. (i)⇒(ii) follows from Theorem 8 ((vi)⇒(i)).
(ii)⇒(i). Define (X, d) and T as in the proof of Proposition 1. Then T is ϕ-contractive.

By hypothesis and Theorem 8 ((i)⇒(v)), there is an increasing continuous function ψ such
that limt→∞(t− ψ(t)) > 0, and T is ψ-contractive. As in the proof of Proposition 1, we

infer ϕ(t) ≤ ψ(t) for t ∈ R+. Hence, t− ϕ(t) ≥ t− ψ(t) which implies (i).

Example 5. Set ϕ(t) := t/2 for t ∈ [0, 1] and ϕ(t) := t − 1/(t + 1) for t > 1. Then

Proposition 5 yields the existence of a ϕ-contractive map in Browder’s class which is not

a Dugundji contraction.

Our next purpose is to show that each Dugundji contraction has an AFP, or, equiva-

lently, in the terminology of Reich and Zaslavski [RZ01], the fixed point problem for each

Dugundji contraction is well-posed.

Theorem 9. Let (X, d) be a metric space and T : X → X be a Dugundji contraction.

Then, given sequences (xn)n∈N and (yn)n∈N,

d(xn, Txn)→ 0 and d(yn, T yn)→ 0 imply d(xn, yn)→ 0.

In particular, if (X, d) is complete, then T has an AFP.

Proof. By Theorem 8 ((i)⇒(iv)), T is ϕ-contractive, where ϕ is such that for any (tn)n∈N,

tn − ϕ(tn)→ 0 implies tn → 0. Set tn := d(xn, yn). Then

tn ≤ d(xn, Txn) + d(Txn, T yn) + d(yn, T yn) ≤ d(xn, Txn) + ϕ(tn) + d(yn, T yn)
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which implies tn − ϕ(tn)→ 0, so by the property of ϕ, tn → 0.

Now if (X, d) is complete, then by Dugundji’s theorem, T has a CFP x∗. Applying

the first part of Theorem 9 with yn := x∗, we infer x∗ is an AFP.

Remark 9. Theorem 9 generalizes the result of Reich and Zaslavski [RZ01] who proved

that each Rakotch contraction has an AFP. We do not know, however, if Theorem 9 could

be extended by admitting maps from Browder’s class.

Now we give a domain invariance theorem for Dugundji contractive fields which par-

tially extends the result of Dugundji and Granas [DG78] in that a space need not be com-

plete, and a domain need not be open. However, we slightly strengthen the assumption

on a map substituting Dugundji’s class for the class of Browder. (Compare Theorem 10

with Theorem 5.)

Theorem 10. Let X be a normed linear space, and A be an arbitrary non-empty subset

of X. Let T : A → X be a Dugundji contraction, and F be the field associated with T ,

i.e., F = I − T . Then F : A → F (A) is a homeomorphism; moreover, F and F−1 are

uniformly continuous. If X is a Banach space, then we have:

(a) if A is closed, then F (A) is closed in X;

(b) if A is open, then F (A) is open in X.

Proof. By Theorem 8 ((i)⇒(ii)), T is ϕ-contractive, where ϕ is such that t 7→ t− ϕ(t) is

increasing. First we show F : A→ F (A) is a bijection. Let x, y ∈ A and Fx = Fy. Then

x− y = Tx− Ty. Suppose, on the contrary, x 6= y. Then by (2), we have

‖x− y‖ = ‖Tx− Ty‖ ≤ ϕ(‖x− y‖) < ‖x− y‖
which yields a contradiction.

Since T is uniformly continuous, so is F . Now we show F−1 : F (A)→ A is uniformly

continuous. Clearly, this is equivalent to the condition: Given an ε > 0, there is a δ > 0

such that for all x, y ∈ A, ‖Fx−Fy‖ < δ implies ‖x−y‖ < ε which, in turn, is equivalent

to the following one:

inf
{

‖Fx− Fy‖ : x, y ∈ A, ‖x− y‖ ≥ ε
}

> 0. (16)

Fix an ε > 0. Let x, y ∈ A and ‖x− y‖ ≥ ε. Then by hypothesis and the property of ϕ,

we have

‖Fx− Fy‖ = ‖(x− y)− (Tx− Ty)‖ ≥ ‖x− y‖ − ‖Tx− Ty‖ ≥
‖x− y‖ − ϕ(‖x− y‖) ≥ ε− ϕ(ε)

which yields (16) since ϕ satisfies (2). Thus F : A→ F (A) is a homeomorphism.

To prove (a), assume (yn)n∈N is such that yn ∈ F (A) and yn → y for some y ∈ X.
Then there is an (xn)n∈N such that xn ∈ A and yn = Fxn. Since F

−1 is uniformly

continuous and (yn)n∈N is a Cauchy sequence, so is (xn)n∈N. By completeness of X and

closeness of A, we get xn → x for some x ∈ A. Since F is continuous, we have Fxn → Fx,

i.e., yn → Fx, and hence y = Fx, so y ∈ F (A).

Part (b) follows from the Dugundji–Granas [DG78] result since, in particular, T is a

Browder contraction.
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A novelty here is the fact that with the help of Theorem 10, we may prove the following

result by a simple topological argument instead of using a fixed point theorem as done

in [GD03, p. 12, Corollary (2.2)] and [DG78].

Corollary 1. Let X be a Banach space and T : X → X be a Dugundji contraction.

Then the field F associated with T is a homeomorphism.

Proof. By Theorem 10, F : X → F (X) is a homeomorphism, and F (X) is both closed

and open in X. Since X is connected, we infer F (X) = X.

The last result of this section is a theorem on continuous dependence of fixed points

on parameters for a family of Dugundji contractions.

Theorem 11. Let (X, d) be a complete metric space, and (Λ, ρ) be a metric space. Let

T : X × Λ→ X be a map, and set

Tλx := T (x, λ) for x ∈ X and λ ∈ Λ.
Assume that {Tλ : λ ∈ Λ} is a family of Dugundji contractions which satisfy (9) uniformly
with respect to λ, i.e., given an ε > 0, there is a δ > 0 such that for all x, y ∈ X and all
λ ∈ Λ,

d(x, y)− d(Tλx, Tλy) < δ implies d(x, y) < ε. (17)

For λ ∈ Λ, let xλ be the unique fixed point of Tλ. If each map λ 7→ T (x, λ) (x ∈ X) is

continuous, then λ 7→ xλ is continuous on Λ.

Proof. Let λ0, λ ∈ Λ. Then we have
d(xλ, xλ0

) = d(Tλxλ, Tλ0
xλ0

) ≤ d(Tλxλ, Tλxλ0
) + d(Tλxλ0

, Tλ0
xλ0

),

and hence,

d(xλ, xλ0
)− d(Tλxλ, Tλxλ0

) ≤ d(T (xλ0
, λ), T (xλ0

, λ0)). (18)

Let ε > 0. By hypothesis, there is a δ > 0 such that (17) holds. By the continuity of

λ 7→ T (xλ0
, λ) at λ0, we infer there is a neighbourhood U of λ0 such that for all λ ∈ U ,

d
(

T (xλ0
, λ), T (xλ0

, λ0)
)

< δ.

Now (18) and (17) imply d(xλ, xλ0
) < ε for all λ ∈ U which completes the proof.

Remark 10. Theorem 11 partially extends Theorem 6 of Dugundji and Granas: We

slightly strengthened the contractive condition, but thanks to that we could drop the

assumption on local boundedness of the map λ 7→ xλ which, in practice, is rather hardly

verifiable. We do not know whether this condition is essential in Theorem 6.

Remark 11. Applying Lemma 5 with D defined as

D :=
{

d(x, y), d
(

T (x, λ), T (y, λ)
)

: x, y ∈ X, λ ∈ Λ
}

,

we may get other equivalent characterizations of the family {Tλ : λ ∈ Λ} from The-
orem 11, e.g., the following one: All Tλ are ϕ-contractive (with ϕ independent of λ),

where ϕ is upper semi-continuous and such that lim inft→∞(t−ϕ(t)) > 0. Then it is clear

Theorem 11 yields a well-known parametrized version of the Banach theorem (see, e.g.,

[GD03, (A.4), p. 18]).
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6. Matkowski–Walter contractions. As far as we know, condition (12) first appeared

in the paper of Matkowski [Ma77] who proved that if a map T has a contractive iterate

at a point, i.e., given an x ∈ X, there is an n(x) ∈ N such that

d(Tn(x)x, Tn(x)y) ≤ ϕ(d(x, y)) for all y ∈ X,
where ϕ is increasing and satisfies (8) and (12), then T has a CFP. Subsequently, Benedykt

and Matkowski [BM81] showed (12) was essential in the above result. Independently,

Walter [Wa81] studied the class of maps satisfying the following condition

d(Tx, Ty) ≤ ϕ(M(x, y)) for x, y ∈ X,
where M is as in Remark 3, and ϕ is increasing, continuous and satisfies (2) and (12).

Then, by Walter’s theorem [Wa81, Theorem 4], T has a CFP. Moreover, (12) is also

essential here as shown in [Ja95, Example 2].

Lemma 6. Let D and Eϕ be as in Lemma 1. The following statements are equivalent :

(i) there is an upper semi-continuous function ϕ : R+ → R+ satisfying (2) and (12)

such that D ⊆ Eϕ;
(ii) there is an increasing and right continuous function ϕ : R+ → R+ satisfying (2)

and (12) such that D ⊆ Eϕ;
(iii) there is a strictly increasing and continuous function ϕ : R+ → R+ satisfying (2)

and (12) such that D ⊆ Eϕ.
Proof. (i)⇒(iii) follows from a separation theorem [JJ04, Theorem A.1 and Corollary A.1].
(iii)⇒(ii)⇒(i) are obvious.

As an immediate consequence, we obtain the following

Theorem 12. Let (X, d) be a metric space and T be a selfmap of X. The following

statements are equivalent :

(i) T is a Matkowski–Walter contraction;

(ii) T is ϕ-contractive, where ϕ is strictly increasing, continuous and satisfies (12);

(iii) T is ϕ-contractive, where ϕ is increasing, right continuous and satisfies (12);

(iv) T is ϕ-contractive, where ϕ is upper semi-continuous and satisfies (12).

The following two results illuminate relations between the classes of Matkowski–

Walter, Dugundji and Rakotch. We omit their proofs since they use similar arguments

as the proofs of Propositions 1, 2 and 5.

Proposition 6. Assume that ϕ : R+ → R+ is increasing, continuous and satisfies (2)

and (12). The following statements are equivalent :

(i) lim supt→∞ ϕ(t)/t < 1;

(ii) given a metric space (X, d) and a ϕ-contractive map T : X → X, T is a Rakotch

contraction.

Example 6. Set ϕ(t) := t/2 for t ∈ [0, 1], and ϕ(t) := t −
√
t + 1/2 for t > 1. Then

Proposition 6 yields the existence of a ϕ-contractive map in the Matkowski–Walter class

which is not a Rakotch contraction.
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Proposition 7. Assume that ϕ : R+ → R+ is increasing and right continuous, satis-

fies (2) and lim inft→∞(t− ϕ(t)) > 0. The following statements are equivalent :

(i) limt→∞(t− ϕ(t)) =∞;
(ii) given a metric space (X, d) and a ϕ-contractive map T : X → X, T is a Matkowski–

Walter contraction.

Example 7. Set ϕ(t) := t/2 for t ∈ [0, 1] and ϕ(t) := t − 1/2 for t > 1. By Proposi-

tion 7, there is a ϕ-contractive map in Dugundji’s class which is not a Matkowski–Walter

contraction.

For Matkowski–Walter contractions, the following result concerning invariant sets of

infinite iterated function systems was obtained in [GJ05].

Theorem 13. Let (X, d) be a complete metric space, and Fn : X → X (n ∈ N) be

Matkowski–Walter contractions with a function ϕ independent of n ∈ N. The following

statements are equivalent :

(i) there exists an x0 ∈ X such that (Fnx0)n∈N is bounded ;

(ii) (xn)n∈N is bounded, where xn is a unique fixed point of Fn;

(iii) there is a non-empty bounded and separable set K ⊆ X which is invariant with

respect to the family {Fn : n ∈ N}, i.e.,
K =

⋃

n∈N

Fn(K).

Moreover, if (i) holds, then for any sequence (σn)n∈N of positive integers and x ∈ X, the
limit

Γ (σ) := lim
n→∞

Fσ1
◦ . . . ◦ Fσn(x)

exists and does not depend on x. Furthermore, the set Γ (NN) is the greatest bounded set

which is invariant with respect to {Fn : n ∈ N}.
Finally, let us note that the class of increasing and continuous functions satisfying (2)

and (12) also appeared in a fixed point theorem for asymptotic contractions which was

given in [JJ04].

7. Retrospect. Here we select characterizations of the classes of contractions given in

the previous sections by choosing those formulated in a style of Krasnosel’skĭı. By using

this style, the class of Banach contractions may be described in the following way.

T is a Banach contraction (T ∈ Ba) iff
∃L ∈ [0, 1) ∀a > 0 ∀x, y ∈ X

(

a ≤ d(x, y)⇒ d(Tx, Ty) ≤ Ld(x, y)
)

.

Below we give appropriate characterizations of other classes of maps.

T is a Rakotch contraction (T ∈ Ra) iff
∀a > 0 ∃L ∈ [0, 1) ∀x, y ∈ X

(

a ≤ d(x, y)⇒ d(Tx, Ty) ≤ Ld(x, y)
)

.

T is a Browder contraction (T ∈ Br) iff
∀a > 0 ∀b > a ∃L ∈ [0, 1) ∀x, y ∈ X

(

a ≤ d(x, y) ≤ b⇒ d(Tx, Ty) ≤ Ld(x, y)
)

,
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or, equivalently,

∀a > 0 ∀b > a ∃δ > 0 ∀x, y ∈ X
(

a ≤ d(x, y) ≤ b⇒ d(Tx, Ty) ≤ d(x, y)− δ
)

.

T is a Boyd–Wong contraction (T ∈ BW) iff
∀a > 0 ∃b > a ∃L ∈ [0, 1) ∀x, y ∈ X

(

a ≤ d(x, y) ≤ b⇒ d(Tx, Ty) ≤ Ld(x, y)
)

,

or, equivalently,

∀a > 0 ∃b > a ∃δ > 0 ∀x, y ∈ X
(

a ≤ d(x, y) ≤ b⇒ d(Tx, Ty) ≤ d(x, y)− δ
)

.

T is a Dugundji contraction (T ∈ Du) iff
∀a > 0 ∃δ > 0 ∀x, y ∈ X

(

a ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y)− δ
)

.

Let Bu, DG, Ge I, Ge II, Ge III, Kr, Ma, MW, MK, Mu, Ta denote, respectively, the clas-

ses of Burton, Dugundji–Granas, Geraghty (I), (II) and (III), Krasnosel’skĭı, Matkowski,

Matkowski–Walter, Meir–Keeler (cf. Remark 6), Mukherjea (cf. Remark 6) and Tasković

(cf. Remark 5). In view of the results of previous sections the following relations hold.

Ba

↓
Bu = Ra = Ge I

↓
MW

↓
Du

↓
Ta = DG = Br = Kr = Ge III

ւ ց
Ma BW = Ge II = Mu

↓ ↓
Le ←− MK

In the above diagram Le is the class of Leader contractions (cf. [Le83]): T ∈ Le if
∀ε > 0 ∃δ > 0 ∃r ∈ N ∀x, y ∈ X

(

d(x, y) < ε+ δ ⇒ d(T rx, T ry) < ε
)

.

As shown in [Le83], the last condition is close to a necessary and sufficient condition for

the existence of a CFP.

Acknowledgements. We are grateful to Professor Simeon Reich for sending us some re-

prints of his papers. Also, our sincere thanks are due to the referee for many useful

suggestions.

References

[BM81] Z. Benedykt, J. Matkowski, Remarks on some fixed point theorems, Demonstratio
Math. 14 (1981), 227–232.

[BW69] D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc.
20 (1969), 458–464.



NONLINEAR CONTRACTIVE CONDITIONS 145

[Br68] F. E. Browder, On the convergence of successive approximations for nonlinear func-
tional equations, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968),
27–35.

[Bu96] T. A. Burton, Integral equations, implicit functions, and fixed points, Proc. Amer.
Math. Soc. 124 (1996), 2383–2390.

[BRZ06] D. Butnariu, S. Reich, A. J. Zaslavski, Asymptotic behavior of inexact orbits for a class
of operators in complete metric spaces, J. Appl. Anal., accepted for publication.

[Ch00] Y.-Z. Chen, Inhomogeneous iterates of contraction mappings and nonlinear ergodic
theorems, Nonlinear Anal. 39 (2000), Ser. A: Theory Methods, 1–10.

[DM76] F. S. De Blasi, J. Myjak, Sur la convergence des approximations successives pour les
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[RPP02] I. A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory 1950–2000: Romanian Contri-
butions, House of the Book of Science, Cluj–Napoca 2002.

[Ta78] M. R. Tasković, A generalization of Banach’s contraction principle, Publ. Inst. Math.
(Beograd) (N.S.) 23(37) (1978), 179–191.

[Wa81] W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal.
5 (1981), 21–25.


