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Abstract. A special case of G-equivariant degree is defined, where G = Z2, and the action

is determined by an involution T : R
p ⊕ R

q → R
p ⊕ R

q given by T (u, v) = (u,−v). The

presented construction is self-contained. It is also shown that two T -equivariant gradient maps

f, g : (Rn, Sn−1) → (Rn,Rn \ {0}) are T -homotopic iff they are gradient T -homotopic. This is

an equivariant generalization of the result due to Parusiński.

1. Introduction. Let Ω be an open bounded subset of Rn. Consider a continuous map

f : Ω → R
n such that f is not equal to 0 at any point on the boundary of Ω. Then an

integer deg(f,Ω) called the Brouwer degree can be associated to f . The classical works

on this subject are [3], [12], [13], and a modern one is [11]. It is well known that the

Brouwer degree is an invariant of homotopy. This means that if h : Ω × [0, 1] → R
n is a

homotopy nowhere vanishing on ∂Ω× [0, 1] then deg(ht,Ω) = deg(h0,Ω) for all t ∈ [0, 1],

where ht(x) = h(x, t).

Let G be a compact Lie group. Assume that V is a real finite-dimensional representa-

tion of G and n = dimV . Take Ω ⊂ V and f : Ω→ V as above. In addition, suppose that

Ω is G-invariant (gx ∈ Ω for all x ∈ Ω, g ∈ G) and f is G-equivariant (f(gx) = gf(x)
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for all x ∈ Ω, g ∈ G). In this case, the G-equivariant degree DegG(f,Ω) ∈ B(G) is

defined, where B(G) stands for the Burnside ring of G. This degree was introduced by

Ize, Massabó and Vignoli in [10]. Up till now, it was considered by many authors. See for

instance [6], [11] and [15]. Of course, G-equivariant degree is an invariant of G-equivariant

homotopy (h(gx, t) = gh(x, t) for all x ∈ Ω, t ∈ [0, 1], g ∈ G).

Let G be equal to Z2. The action of Z2 on R
n is determined by a decomposition of Rn

onto the direct sum R
p ⊕ R

q and the involution T (u, v) = (u,−v), where n = p + q,

p, q ∈ N ∪ {0} and u ∈ R
p, v ∈ R

q. In fact, to define the Z2-equivariant degree we

do not need to use the representation theory. In this work we would like to describe a

construction of this degree. We will call it T -equivariant degree.

Our approach is alternative to the one by Granas and Dugundji in [8]. There are

two basic differences between our and their approach. Contrary to Granas and Dugundji,

from the beginning we work with the family of T -equivariant maps (see Sec. 6, §20,

Theorem 1.2, pp. 551–552 in [8], and Lemma 3.2, Conclusion 3.3 here). We also introduce

notions of T -equivariant normal maps and homotopies, which are different from ones

in [8]. Moreover, the proofs of all lemmas and propositions needed to define the degree

are complete.

Our construction is divided into five main steps. Each step is a separate section.

In [14], Parusiński showed that if we have two gradient vector fields on the unit ball

in R
n and nowhere vanishing on the sphere, then they are homotopic if and only if they

are gradient homotopic. In the last section we will prove this theorem in T -equivariant

case. Namely, consider two T -equivariant gradient vector fields f and g on the unit ball

in R
n and nowhere vanishing on the sphere. It is shown that if there is a T -equivariant

homotopy joining f to g then there is a T -equivariant gradient homotopy joining f to g.

Our result suggests that there is no interesting generalization of T -equivariant degree on

gradient vector fields. The proof is based on the latest results by Ferrario (see [4]) and

Dancer, Gęba and Rybicki (see [1]).

2. T -equivariant maps and homotopy. Let Rn = R
p⊕R

q, where n ∈ N, p, q ∈ N∪{0}

and n = p + q. For every x ∈ R
n we write x = (u, v), where u ∈ R

p and v ∈ R
q. Let

T : R
n → R

n be given by

T (u, v) := (u,−v).

The map T is a linear isomorphism and an involution, i.e. T 2 = IdRn .

Definition 2.1. A set X ⊂ R
n is T -invariant if T (X) ⊂ X.

If a set X is T -invariant then T (X) = X and T|X : X → X is an involution onto X.

Definition 2.2. Let X ⊂ R
n be T -invariant.

1. A map f : X → R
n is called T -equivariant if f(Tx) = Tf(x) for all x ∈ X.

2. h : X×[0, 1]→ R
n is called a T -equivariant homotopy if it is continuous and h(Tx, t) =

Th(x, t) for all x ∈ X and t ∈ [0, 1].

3. A function τ : X → R is called T -equivariant if τ (Tx) = τ (x) for all x ∈ X.
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Remark that if f = (f1, f2), where f1 : X → R
p and f2 : X → R

q, then f is

T -equivariant if and only if f1(u,−v) = f1(u, v) and f2(u,−v) = −f2(u, v) for all

(u, v) ∈ X.

From now on, every open bounded T -invariant subset of Rn is said to be T -admissible.

Assume that Ω ⊂ R
n is T -admissible. It is obvious that Ω is T -invariant. We say that

f : Ω→ R
n is T -admissible if f is continuous, T -equivariant and f(x) 6= 0 for all x ∈ ∂Ω.

We will denote by AT (Ω) the family of all T -admissible maps from Ω into R
n. In the same

spirit we generalize the notion of homotopy. We say that a homotopy h : Ω× [0, 1]→ R
n

is T -admissible if h is T -equivariant and h(x, t) 6= 0 for all x ∈ ∂Ω and t ∈ [0, 1]. We will

denote by HAT (Ω) the family of all T -admissible homotopies from Ω× [0, 1] into R
n.

Definition 2.3. We say that f is homotopic to g in AT (Ω) and write f ∼ g in AT (Ω)

if there exists h ∈ HAT (Ω) joining f to g, i.e. h(x, 0) = f(x) and h(x, 1) = g(x) for all

x ∈ Ω.

It is easy to check that ∼ is an equivalence relation in AT (Ω). The homotopy class of

f ∈ AT (Ω) under ∼ will be denoted by [f ]. Finally, the set of all homotopy classes of the

relation ∼ will be denoted by AT [Ω].

3. T -equivariant generic maps. Let Ω ⊂ R
n be T -admissible. Here and subsequently,

A∞T (Ω) := {f ∈ AT (Ω) : f|Ω is smooth},

HA∞T (Ω) := {h ∈ HAT (Ω) : ht|Ω is smooth for t ∈ [0, 1]},

where ht : Ω→ R
n is defined by ht(x) := h(x, t).

Definition 3.1. We say that f is homotopic to g in A∞T (Ω) and write f ≃ g in A∞T (Ω)

if there exists h ∈ HA∞T (Ω) joining f to g.

The relation ≃ is easily seen to be an equivalence relation in A∞T (Ω).

A map f ∈ A∞T (Ω) is said to be generic if 0 ∈ R
n is a regular value of f|Ω, i.e. the

derivative Df(x) : R
n → R

n is an isomorphism for all x ∈ f−1({0}).

In this section we show that under some restrictions on Ω, every homotopy class

in AT [Ω] possesses a T -equivariant generic map. For this purpose we prove now a few

lemmas.

Let K be a compact subset of Rn. A map f : K → R
n is called smooth if there exists

an open set X ⊂ R
n such that K ⊂ X and there exists a smooth map f̃ : X → R

n such

that f̃|K = f . Let {Ui}ki=1
be an open covering of K. Set U =

⋃k
i=1
Ui. We call a family

of smooth functions λi : U → [0, 1], where i = 1, 2, . . . , k, a smooth partition of unity

subordinate to the covering {Ui}ki=1
, if this family satisfies the following conditions:

• suppλi = {x ∈ Rn : λi(x) 6= 0} ⊂ Ui for every i = 1, 2, . . . , k,

•
∑k
i=1
λi(y) = 1 for every y ∈ K.

It is well known that such a partition exists (see [16]). Additionally, if K and every Ui
are T -invariant sets and every λi is a T -equivariant function then we say that {Ui}ki=1

is

a T -invariant covering of K and {λi}ki=1
is a T -equivariant partition of unity.
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Lemma 3.1. Assume that K ⊂ R
n is compact and T -invariant, and {Ui}

k
i=1
is an open

T -equivariant covering of K. Then there exists a smooth T -equivariant partition of unity

subordinate to the covering {Ui}ki=1
.

Proof. Let {λi}ki=1
be a smooth partition of unity subordinate to the covering {Ui}ki=1

of K. For every i = 1, 2, . . . , k, let λ̂i be given by λ̂i = 1

2
(λi + λiT ). It is obvious that

each function λ̂i is smooth and T -equivariant. The family {λ̂i}ki=1
is a desired one.

Let K ⊂ R
n be compact and T -invariant. We say that T acts freely on K if Tx 6= x

for every x ∈ K, i.e. K ∩ R
p = ∅. Then

dist(K,Rp) := inf{|x− y| : x ∈ K, y ∈ R
p}

is a positive number.

Lemma 3.2. Let K ⊂ R
n be a compact T -invariant set such that T acts freely on K.

If a map f : K → R
n is continuous and T -equivariant then for every ε > 0 there is a

smooth T -equivariant map g : K → R
n such that

sup
x∈K
|f(x)− g(x)| < ε.

From now on, B(a, r) stands for an open ball of radius r, centered at a point a ∈ R
n.

Proof. Fix ε > 0. SinceK is compact, f is uniformly continuous. Hence, there is δ > 0 such

that if |x− y| < δ then |f(x)− f(y)| < ε. Set δ′ = min{δ, dist(K,Rp)}, and Ux = B(x, δ′)

for every x ∈ K. Then

• TUx = B(Tx, δ′),

• Ux ∩ TUx = ∅,

• K ⊂
⋃
x∈K(Ux ∪ TUx).

The compactness of K implies that there exist points x1, x2, . . . , xk ∈ K such that K ⊂⋃k
i=1

(Ui ∪ TUi), where Ui = Uxi . Consider a smooth T -equivariant partition of unity

{λi}ki=1
subordinate to the covering {Ui ∪ TUi}ki=1

of K. Set U =
⋃k
i=1

(Ui ∪ TUi).

For every i ∈ {1, 2, . . . , k}, let πi : U → R
n be a map such that πi(Ui) = {xi} and

πi(TUi) = {Txi}. The function g : U → R
n is defined by

g(x) =

k∑

i=1

λi(x)f(πi(x)).

Take x ∈ U . If x ∈ Ui ∪ TUi then in a sufficiently small neighbourhood of x the map

f ◦ πi is constant. If x ∈ ∂Ui ∪ ∂TUi then in a sufficiently small neighbourhood of x the

function λi is equal to 0. Hence g is smooth.

Take x ∈ K. If x ∈ Ui then πi(x) = xi and |πi(x)−x| < δ. If x ∈ TUi then πi(x) = Txi
and |πi(x)− x| < δ. Finally, if x /∈ Ui ∪ TUi then λi(x) = 0. From this it follows that

|g(x)− f(x)| =
∣∣∣
k∑

i=1

λi(x)f(πi(x))−
k∑

i=1

λi(x)f(x)
∣∣∣ ≤

k∑

i=1

λi(x)|f(πi(x))− f(x)| < ε.
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Moreover,

g(Tx) =

k∑

i=1

λi(Tx)f(πi(Tx)) =

k∑

i=1

λi(x)f(Tπi(x)) =

k∑

i=1

λi(x)Tf(πi(x)) = Tg(x),

which completes the proof.

Conclusion 3.3. Let Ω ⊂ R
n be a T -admissible set such that T acts freely on Ω. Then

for every f ∈ AT (Ω) there exists g ∈ A∞T (Ω) such that f ∼ g in AT (Ω).

Proof. By the assumption, Ω is a T -invariant compact set and T acts freely on Ω. Set

d = inf{|f(x)| : x ∈ ∂Ω}. From Lemma 3.2 it follows that there exists g ∈ A∞T (Ω) such

that

sup
x∈Ω

|f(x)− g(x)| < d.

Consider the linear homotopy h : Ω× [0, 1]→ R
n joining f to g, i.e.

h(x, t) = tg(x) + (1− t)f(x).

It is trivial that h is continuous and h(Tx, t) = Th(x, t) for all x ∈ Ω and t ∈ [0, 1]. Take

x ∈ ∂Ω and t ∈ [0, 1]. Then

|h(x, t)| = |f(x)− t(f(x)− g(x))| ≥ |f(x)| − t|f(x)− g(x)| ≥ |f(x)| − |f(x)− g(x)| > 0.

Hence h ∈ HAT (Ω).

Let U ⊂ R
n be an open bounded set, and K ⊂ U be compact. It is well known that

there exists a smooth function η : R
n → [0, 1] such that

η(x) =

{
1 for x ∈ K,

0 for x ∈ R
n \ U.

In the mathematical literature, η is called the Urysohn function (see [8]).

Lemma 3.4. Let U and U0 be T -admissible subsets of R
n. Assume that U0 ⊂ U . Then

there exists a smooth T -equivariant function η̃ : R
n → [0, 1] such that η̃(x) = 1 for every

x ∈ U0 and η̃(x) = 0 for every x ∈ R
n \ U .

The proof is similar to that of Lemma 3.1. We leave it to the reader.

Lemma 3.5. Let Ω0 and Ω be T -admissible subsets of Rn such that Ω0 ⊂ Ω. Suppose that

f0 ≃ g0 in A∞T (Ω0) and there is an f ∈ A∞T (Ω) such that f|Ω0
= f0. Then there exist a

map g ∈ A∞T (Ω) and a T -admissible set U0 ⊂ Ω0 satisfying the following conditions :

1. f ≃ g in A∞T (Ω),

2. g(x) = f(x) for every x ∈ Ω \ Ω0,

3. g(x) = g0(x) for every x ∈ U0,

4. g−1

0
({0}) ∩ Ω0 = g−1({0}) ∩ Ω0 ⊂ U0.

Proof. Let h̄ ∈ HA∞T (Ω0) be a homotopy joining f0 to g0. Take an open T -invariant subset

U0 of R
n such that U0 ⊂ Ω0 and h̄(x, t) 6= 0 for every (x, t) ∈ (Ω0 \U0)× [0, 1]. Consider

an open T -invariant subset U of Rn such that U0 ⊂ U ⊂ U ⊂ Ω0. Let η : R
n → [0, 1] be
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a smooth T -equivariant Urysohn function for the pair of sets U0 and U , i.e. η(x) = 1 for

every x ∈ U0 and η(x) = 0 for every x ∈ R
n \ U . Let h : Ω× [0, 1]→ R

n be defined by

h(x, t) =

{
f(x) for x ∈ Ω \ U,

h̄(x, tη(x)) for x ∈ Ω0.

We check that h ∈ HA∞T (Ω) and g(x) := h(x, 1), x ∈ Ω, satisfies the claim of our lemma.

Remark that (Ω\U)∩Ω0 = Ω0\U . If x ∈ Ω0\U then η(x) = 0, and hence h̄(x, tη(x)) =

h̄(x, 0) = f(x) for all t ∈ [0, 1]. In consequence, h is smooth and h(x, 0) = f(x) for every

x ∈ Ω. If x ∈ ∂Ω then h(x, t) = f(x) 6= 0 for all t ∈ [0, 1]. Moreover, for x ∈ Ω0 and

t ∈ [0, 1] we have h(Tx, t) = h̄(Tx, tη(Tx)) = h̄(Tx, tη(x)) = T h̄(x, tη(x)) = Th(x, t).

Thus h is T -equivariant. Summarizing, h ∈ HA∞T (Ω) and it joins f to g.

Take x ∈ Ω \ Ω0. Since Ω \ Ω0 ⊂ Ω \ U , we get g(x) = h(x, 1) = f(x).

If x ∈ U0 then η(x) = 1 and g(x) = h(x, 1) = h̄(x, 1) = g0(x).

Finally, fix x ∈ Ω0. If x ∈ Ω0 \ U then g(x) = h̄(x, 0) = f0(x). If x ∈ U then

g(x) = h̄(x, η(x)). Since {x ∈ Ω0 : h̄(x, t) = 0 for any t ∈ [0, 1]} ⊂ U0, we have g
−1

0
({0})∩

Ω0 = g−1({0}) ∩ Ω0 ⊂ U0, which completes the proof.

Let K ⊂ R
n be nonempty, compact and T -admissible. Set k ∈ N. We call a family of

open sets {Ui}ki=1
a (T, k)-simple covering of K if it satisfies the following conditions:

1. Ui ∩ TUi = ∅ for every i ∈ {1, 2, . . . , k},

2. K ⊂
⋃k
i=1

(Ui ∪ TUi).

We say that K is a (T, k)-simple set if it possesses a (T, k)-simple covering. If K = ∅, it

is said to be (T, 0)-simple.

Proposition 3.6. Every nonempty compact T -invariant subset K of R
n such that

T acts freely on K is (T, k)-simple for a certain k ∈ N.

Proof. Since T acts freely on K, K ∩ R
p = ∅. Set l = dist(K,Rp). We have

K ⊂
⋃

x∈K

B(x, l)

By compactness of K, there are x1, x2, . . . , xk ∈ K such that

K ⊂
k⋃

i=1

B(xi, l).

Let Ui = B(xi, l) for i = 1, 2, . . . , k. It is evident that Ui ∩ TUi = ∅ and

K ⊂
k⋃

i=1

(Ui ∪ TUi).

Let Ω ⊂ R
n be an open bounded set. For every f : Ω→ R

n such that f|Ω is C
r-smooth,

where r ≥ 1, and f(x) 6= 0 for all x ∈ ∂Ω, set

R(f) = {x ∈ f−1({0}) : Df(x) ∈ GL(Rn)}.
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Lemma 3.7. Assume that Ω ⊂ R
n is T -admissible, T acts freely on Ω, which is (T, k)-

simple for a certain k ∈ N. Let f ∈ A∞T (Ω). Then there exists g ∈ A∞T (Ω) such that

(i) f ≃ g in A∞T (Ω),

(ii) g−1({0}) \R(g) is (T, k − 1)-simple.

Proof. Let {Ui}ki=1
be a (T, k)-simple covering of Ω. Set

K = Ω \
k⋃

i=2

(Ui ∪ TUi), K1 = K ∩ U1.

Let us remark that K is T -invariant, K ⊂ (U1 ∪ TU1), K and K1 are compact. Thus K

is (T, 1)-simple and K = K1 ∪ TK1.

From the Sard theorem it follows that there exists a regular value y0 of f|Ω∩U1
such

that |y0| < inf{|f(x)| : x ∈ ∂Ω}. Since f ◦ T = T ◦ f , we have Df(Tx) = T ◦Df(x) ◦ T

for every x ∈ Ω. Hence Ty0 is also a regular value of f|Ω∩TU1
. Moreover, |Ty0| = |y0|.

Let η : R
n → [0, 1] be a smooth function such that η(x) = 1 for all x ∈ K1 and

η(x) = 0 for all x ∈ R
n \ U1. Let g : Ω→ R

n be given by

g(x) =






f(x)− η(x)y0 for x ∈ U1 ∩ Ω,

f(x)− η(Tx)Ty0 for x ∈ TU1 ∩ Ω,

f(x) for x ∈ Ω \ (U1 ∪ TU1),

The map g|Ω is easily seen to be smooth. Let

h(x, t) = f(x) + t(g(x)− f(x))

for all (x, t) ∈ Ω× [0, 1]. Take x ∈ Ω. If x ∈ U1 ∩ Ω then g(Tx) = f(Tx)− η(T 2x)Ty0 =

Tf(x) − η(x)Ty0 = T (f(x) − η(x)y0) = Tg(x). If x ∈ TU1 ∩ Ω then g(Tx) = f(Tx) −

η(Tx)y0 = Tf(x) − η(Tx)y0 = Tf(x) − T 2η(Tx)y0 = T (f(x) − η(Tx)Ty0) = Tg(x).

Finally, if x ∈ Ω \ (U1 ∪ TU1) then g(Tx) = f(Tx) = Tf(x) = Tg(x). Consequently, g is

T -equivariant.

Since |g(x) − f(x)| < |y0| for all x ∈ Ω, we conclude that h is a homotopy joining f

to g in A∞T (Ω).

Remark that g−1({0}) \ R(g) is a compact set and g−1({0}) ⊂
⋃k
i=2

(Ui ∪ TUi) ∪K.

Take x ∈ K. If x ∈ K1 then g(x) = f(x)− y0. If x ∈ TK1 then g(x) = f(x)− Ty0. From

this K∩g−1({0}) ⊂ R(g), and so g−1({0})\R(g) ⊂
⋃k
i=2

(Ui∪TUi) is (T, k−1)-simple.

Lemma 3.8. Let Ω ⊂ R
n be a T -admissible set such that T acts freely on Ω. Assume that

f ∈ A∞T (Ω) and f−1({0}) \ R(f) is (T, k)-simple for a certain k ∈ N. Then there exists

a map g ∈ A∞T (Ω) such that

(i) f ≃ g in A∞T (Ω),

(ii) g−1({0}) \R(g) is (T, k − 1)-simple.

Proof. Since f−1({0}) \R(f) is (T, k)-simple, there is an open and T -invariant subset Ω0

of Ω such that

(a) f−1({0}) \R(f) ⊂ Ω0,

(b) R(f) ⊂ Ω \ Ω0,
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(c) Ω0 is (T, k)-simple.

Set f0 = f|Ω0
. Combining (a) with (b), we see that f0 ∈ A∞T (Ω0). By Lemma 3.7 it

follows that there is g0 ∈ A∞T (Ω0) such that f0 ≃ g0 in A∞T (Ω0) and g
−1

0
({0}) \ R(g0) is

(T, k − 1)-simple. From Lemma 3.5 we have that there is g ∈ A∞T (Ω) such that f ≃ g in

A∞T (Ω) and g−1({0})\R(g) = g−1

0
({0})\R(g0). Thus g

−1({0})\R(g) is (T, k−1)-simple.

Applying the mathematical induction, Lemma 3.8 and Conclusion 3.3, one can im-

mediately prove the next theorem.

Theorem 3.9. Let Ω ⊂ R
n be a T -admissible set such that T acts freely on Ω. If

f ∈ AT (Ω) then there exists a generic map g ∈ A∞T (Ω) such that f ∼ g in AT (Ω).

Conclusion 3.10. Let Ω ⊂ R
n be a T -admissible set such that T acts freely on Ω. If

f ∈ AT (Ω) then deg(f,Ω) ∈ 2Z.

Here and subsequently, deg(f,Ω) stands for the Brouwer degree of f on Ω.

Proof. Fix f ∈ AT (Ω). By Theorem 3.9 there is a generic map g ∈ A∞T (Ω) such that f ∼ g

inAT (Ω). Hence deg(f,Ω) = deg(g,Ω). Since T◦g = g◦T , we haveDg(x) = T◦Dg(Tx)◦T

for every x ∈ Ω. From this

g−1({0}) ∩ Ω = {x1, x2, . . . , xm} ∪ {Tx1, Tx2, . . . , Txm}

and sign detDg(xi) = sign detDg(Txi) for i = 1, 2, . . . ,m. In consequence,

deg(g,Ω) =

m∑

i=1

sign detDg(xi) +

m∑

i=1

sign detDg(Txi) = 2

m∑

i=1

sign detDg(xi),

which completes the proof.

4. T -equivariant normal maps. Let Ω ⊂ R
n be T -admissible and let ε > 0. Define

Ω(ε) = {(u, v) ∈ Ω : |v| < ε}.

Definition 4.1. Let f = (f1, f2) ∈ AT (Ω), where f1 : Ω→ R
p, and f2 : Ω→ R

q.

1. A map f is said to be ε-normal if there exists ε > 0 such that

f(u, v) = (f1(u, 0), v)

for all (u, v) ∈ Ω(ε).

2. A map f is called normal if there exists ε > 0 such that f is ε-normal.

We will denote by NAT (Ω) the family of all normal maps from Ω into R
n.

Definition 4.2. Let Ω ⊂ R
n be a T -admissible set.

1. A homotopy h ∈ HAT (Ω) is called normal if there exists ε > 0 such that ht : Ω→ R
n

is ε-normal for every t ∈ [0, 1].

2. We say that f is homotopic to g in NAT (Ω) and write f ≈ g in NAT (Ω) if there

exists a normal homotopy joining f to g.

We will denote by HNAT (Ω) the family of all normal homotopies from Ω × [0, 1]

into R
n. The homotopy class of f ∈ NAT (Ω) under ≈ will be denoted by [[f ]]. Finally,

the set of all homotopy classes of the relation ≈ will be denoted by NAT [Ω].
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The construction of the degree for maps in AT (Ω), which will be described in the next

section, is based on the following theorem.

Theorem 4.1. The map τ : NAT [Ω]→ AT [Ω], [[f ]] 7→ [f ] is a bijection.

Proof.

Step 1. We show that τ is a surjection.

Fix f = (f1, f2) ∈ AT (Ω). We show that there is g ∈ NAT (Ω) such that f ∼ g in

AT (Ω). Set d = inf{|f(x)| : x ∈ ∂Ω}. Since f is T -equivariant, f2(u, 0) = 0 for every

(u, 0) ∈ Ω. By the continuity of f , there is 0 < ε ≤ d/12 such that if x, y ∈ Ω and

|x− y| < 2ε then |fi(x)− fi(y)| < d/6 for i = 1, 2.

Let η : R → [0, 1] be a smooth function such that η(t) = 1 for every |t| ≤ ε and

η(t) = 0 for every |t| ≥ 2ε. Let h : Ω× [0, 1]→ R
n be defined by

h(u, v, t) = (1− tη(|v|))f(u, v) + tη(|v|)(f1(u, 0), v).

Then

h(T (u, v), t) = h(u,−v, t) = (1− tη(|v|))f(u,−v) + tη(|v|)(f1(u, 0),−v)

= (1− tη(|v|))Tf(u, v) + tη(|v|)T (f1(u, 0), v) = Th(u, v, t),

for every (u, v) ∈ Ω and t ∈ [0, 1].

Take (u, v) ∈ ∂Ω and t ∈ [0, 1]. If |v| ≥ 2ε then h(u, v, t) = f(u, v) 6= 0. If |v| < 2ε

then

|h(u, v, t)| = |f(u, v)− tη(|v|)
(
f1(u, v)− f1(u, 0), f2(u, v)− v

)
|

≥ |f(u, v)| − tη(|v|)|f1(u, v)− f1(u, 0)| − tη(|v|)|f2(u, v)− v|

≥ |f(u, v)| − |f1(u, v)− f1(u, 0)| − |f2(u, v)− v|

≥ |f(u, v)| −
(
|f1(u, v)− f1(u, 0)|+ |f2(u, v)|+ |v|

)

> d− 3
d

6
=
d

2
> 0.

In consequence, h ∈ HAT (Ω). Set g := h1. If |v| ≤ ε then g(u, v) = h(u, v, 1) =

(f1(u, 0), v). Thus g is normal.

Step 2. We show that τ is an injection.

Take f = (f1, f2) ∈ NAT (Ω) and g = (g1, g2) ∈ NAT (Ω) such that f ∼ g in AT (Ω).

We prove that f ≈ g in NAT (Ω). Let h = (hI , hII) ∈ AT (Ω) be a homotopy joining f

to g in AT (Ω). Set d = inf{|h(x, t)| : x ∈ ∂Ω∧ t ∈ [0, 1]}. Since h is T -equivariant, we get

hII(u, 0, t) = 0 for every (u, 0) ∈ Ω and t ∈ [0, 1]. Take 0 < ε ≤ d/12 such that f , g are

2ε-normal, and if x, y ∈ Ω and |x−y| < 2ε then |h(x, t)−h(y, t)| < d/6. Let η : R→ [0, 1]

be a smooth function such that η(t) = 1 for every |t| ≤ ε and η(t) = 0 for every |t| ≥ 2ε.

Let ĥ : Ω× [0, 1]→ R
n be given by

ĥ(u, v, t) = (1− η(|v|))h(u, v, t) + η(|v|)(hI(u, 0, t), v).

We check at once that ĥ is a normal homotopy joining f to g.
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5. T -equivariant degree. In this section we introduce the degree of T -equivariant maps

in R
n, called the T -equivariant degree. First we define this degree for T -equivariant normal

maps, and next for all T -admissible ones.

Let Ω ⊂ R
n be a T -admissible set and let f = (f1, f2) ∈ NAT (Ω), where f1 : Ω→ R

p,

f2 : Ω→ R
q. Set Ω0 = Ω ∩ R

p. Assume that Ω0 6= ∅. The map g0 : Ω0 → R
p is given by

g0(u) = f1(u, 0). Since f(u, v) 6= 0 for all (u, v) ∈ ∂Ω and f2(u, 0) = 0 for all (u, 0) ∈ Ω,

we conclude that g0(u, v) 6= 0 for all (u, v) ∈ ∂Ω0. Define

d0 =

{
deg(g0,Ω0) if Ω0 6= ∅,

0 if Ω0 = ∅.

Since f is normal, there is ε > 0 such that f(x) 6= 0 for all x ∈ ∂Ω(ε). Set Ω1 = Ω \Ω(ε).

Let us remark that T acts freely on Ω1. Define

g1(x) = f(x),

where x ∈ Ω1. It is evident that g1 ∈ AT (Ω1). By Conclusion 3.10 there exists an integer

d1 such that deg(g1,Ω1) = 2d1. The T -equivariant degree of f on Ω is given as follows:

degT (f,Ω) = (d0, d1) ∈ Z⊕ Z.

Let us denote by N the set of all pairs (f,Ω) such that f ∈ NAT (Ω) and Ω ⊂ R
n is

T -admissible.

Theorem 5.1. The map degT : N → Z⊕Z, (f,Ω) 7→ degT (f,Ω), possesses the following

properties :

1. Homotopy invariance:

If h ∈ HNAT (Ω) then degT (ht,Ω) = degT (h0,Ω) for every t ∈ (0, 1].

2. Excision:

Assume that Ω0 ⊂ Ω is T -invariant and f−1({0}) ∩ Ω ⊂ Ω0. Then

degT (f,Ω) = degT (f|Ω0
,Ω0).

3. Additivity:

Assume that Ω1, Ω2 are disjoint open T -invariant subsets of Ω such that f
−1({0})∩Ω ⊂

Ω1 ∪ Ω2. Then

degT (f,Ω) = degT (f|Ω1
,Ω1) + degT (f|Ω2

,Ω2).

4. Existence:

If degT (f,Ω) 6= 0 then there exists a point x ∈ Ω such that f(x) = 0.

We call degT : N → Z ⊕ Z the T -equivariant degree of normal maps. Its properties

follow directly from the definition. It is worth pointing out that if f ∈ NAT (Ω) then

there is the following dependence between deg(f,Ω) and degT (f,Ω):

deg(f,Ω) = d0 + 2d1, d0 = deg(f,Ω(ε)).

Let E denote the family of all pairs (f,Ω) such that f ∈ AT (Ω) and Ω is T -admissible.

Applying Theorem 4.1 one can extend the T -equivariant degree over E . Consider

f ∈ AT (Ω). There exists g ∈ NAT (Ω) such that [g] = [f ]. Set

DegT (f,Ω) = degT (g,Ω).
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From Theorem 4.1 it follows that the above formula does not depend on the choice of g.

Definition 5.1. The map DegT : E → Z ⊕ Z, (f,Ω) 7→ DegT (f,Ω), is called the

T -equivariant degree.

The next theorem is a natural consequence of Definition 5.1 and Theorem 5.1.

Theorem 5.2. The T -equivariant degree possesses the following properties:

1. If h ∈ HAT (Ω) then DegT (ht,Ω) = DegT (h0,Ω) for every t ∈ (0, 1].

2. Assume that Ω0 ⊂ Ω is T -invariant and f−1({0}) ∩ Ω ⊂ Ω0. Then

DegT (f,Ω) = DegT (f|Ω0
,Ω0).

3. Assume that Ω1 and Ω2 are disjoint open T -invariant subsets of Ω such that f
−1({0})∩

Ω ⊂ Ω1 ∪ Ω2. Then

DegT (f,Ω) = DegT (f|Ω1
,Ω1) + DegT (f|Ω2

,Ω2).

4. If DegT (f,Ω) 6= 0 then there exists a point x ∈ Ω such that f(x) = 0.

6. T -homotopies versus gradient T -homotopies. In this section we prove the Paru-

siński theorem in T -invariant case.

From now on, we assume that R
n = R

p ⊕ R
q and p ≥ 2. Let Bn denote the open

unit ball, Sn−1 the unit sphere, and Dn the unit disc in R
n centered at 0. We have

Dn = Bn ∪ Sn−1. It is trivial that these sets are T -invariant. Set Dp = Dn ∩ R
p,

Bp = Bn ∩ R
p and Sp−1 = Sn−1 ∩ R

p.

Among many generalizations of the Brouwer degree there is the stable equivariant

degree. It was considered by several authors (see [2, 4, 17] and the references given there).

The stable equivariant degree of the T -equivariant continuous map f : Sn−1 → Sn−1 is

the element dT (f) ∈ Z⊕ Z given by

dT (f) = (deg(f, Sp−1), deg(f, Sn−1)).

Let [Sn−1, Sn−1]T denote the set of all T -equivariant homotopy classes of T -equivariant

continuous self-maps of Sn−1. Let [f ]T stands for the T -equivariant homotopy class of

f : Sn−1 → Sn−1. D. Ferrario proved that the stable equivariant degree dT classifies

T -equivariant continuous self-maps of Sn−1 (see Theorem 7.1 in [4]). This means that

the map

[Sn−1, Sn−1]T ∋ [f ]T 7−→ dT (f) ∈ Z⊕ Z

is an injection.

Proposition 6.1. Suppose that f : R
n → R

n is a T -equivariant continuous map such

that f(Sn−1) ⊂ R
n \ {0}. Then there exist a T -equivariant continuous map f̂ : R

n → R
n

and a T -equivariant homotopy h : R
n × [0, 1]→ R

n such that

• h0 = f , h1 = f̂ ,

• f̂(Sn−1) ⊂ Sn−1,

• f̂(Dn) ⊂ Dn,

• h(Sn−1 × [0, 1]) ⊂ R
n \ {0}.
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Proof. We check at once that f̂ : R
n → R

n given by

f̂(x) =





|x|

∣∣∣∣f
(
x

|x|

)∣∣∣∣
−1

f

(
x

|x|

)
for x 6= 0,

0 for x = 0

and h(x, t) = tf̂(x) + (1− t)f(x) satisfy all the claims.

Fix f ∈ AT (Bn). Clearly, f can be extended to a T -equivariant continuous map

over Rn. Moreover, two different extensions of f are linear homotopic and the linear homo-

topy joining these extensions has no zeroes on Sn−1× [0, 1]. Therefore we identify f with

its extension. Let f̂ be a map as in Proposition 6.1. Then DegT (f,Bn) = DegT (f̂ , Bn).

Remark that there is one-to-one correspondence between DegT (f,Bn) = (d0, d1) and

dT (f̂) = (deg(f̂ , Sp−1), deg(f̂ , Sn−1)). Namely,

d0 = deg(f̂ , Sp−1), d1 =
1

2

(
deg(f̂ , Sn−1)− deg(f̂ , Sp−1)

)
.

Therefore the map

AT [Bn] ∋ [f ] 7−→ dT (f̂) ∈ Z⊕ Z

is an injection.

Conclusion 6.2. The T -equivariant degree DegT (f,Bn) classifies T -admissible maps

from Dn into R
n.

Another generalization of the Brouwer degree is the T -equivariant degree for gradient

T -equivariant maps from R
n into R

n. This degree was considered in [7, 5, 1].

Assume that f : R
n → R

n is a T -equivariant continuous map. We say that f is

∇T -admissible if f(Sn−1) ⊂ R
n \ {0} and there exists a T -equivariant C1 function

ϕ : R
n → R such that f = ∇ϕ. We will denote by ∇AT (Bn) the set of all ∇T -admis-

sible maps. In the same spirit we introduce the notion of ∇T -admissible homotopy. Let

h : R
n × [0, 1] → R

n be a T -equivariant homotopy. We say that h is ∇T -admissible if

h(Sn−1×[0, 1]) ⊂ R
n\{0} and there exists a T -equivariant C1 function χ : R

n×[0, 1]→ R

such that h(x, t) = ∇xχ(x, t) for all x ∈ R
n and t ∈ [0, 1].

f is homotopic to g in ∇AT (Bn), if there is a ∇T -admissible homotopy h joining f

to g. The ∇T -admissible homotopy class of f ∈ ∇AT (Bn) will be denoted by [f ]∇. The

set of all ∇T -admissible homotopy classes in ∇AT (Bn) will be denoted by ∇AT [Bn].

The T -equivariant degree of f ∈ ∇AT (Bn) is the element ∇T deg(f,Bn) ∈ Z ⊕ Z.

From the construction made by Gęba in [5] (see formula 3.5, Theorems 3.2 and 3.3), it

follows that

∇T deg(f,Bn) = DegT (f,Bn).

Dancer, Gęba and Rybicki proved that this degree classifies ∇T -admissible maps. More

precisely, the map

∇AT [Bn] ∋ [f ]∇ 7−→ ∇T deg(f,Bn) ∈ Z⊕ Z

is a bijection (see Corollary 4.1 and Remark 4.1 in [1]).

Conclusion 6.3. The T -equivariant degree DegT (f,Bn) classifies ∇T -admissible maps.
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From Conclusions 6.2 and 6.3 we get a nice theorem.

Theorem 6.4. Assume that f, g ∈ ∇AT (Bn). If f is homotopic to g in AT (Bn) then f

is homotopic to g in ∇AT (Bn).
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