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Abstract. This paper surveys a number of recent results obtained by C. Bereanu and the

author in existence results for second order differential equations of the form

(φ(u′))′ = f(t, u, u′)

submitted to various boundary conditions. In the equation, φ : R → ]−a, a[ is a homeomorphism

such that φ(0) = 0. An important motivation is the case of the curvature operator, where

φ(s) = s/
√

1 + s2. The problems are reduced to fixed point problems in suitable function space,

to which Leray–Schauder theory is applied.

1. Introduction. In recent years much work has been devoted to the study of various

boundary value problems for differential equations of the form

(φ(u′))′ = f(t, u, u′), (1)

where φ : R → R is a homeomorphism such that φ(0) = 0. We refer to the bibliographies

of [8, 9] for references. The most studied example is φ(s) = |s|p−2s if s 6= 0, φ(0) = 0,

for some p > 1, for which (1) is a perturbation of the p-Laplacian operator. A standard

technique is the reduction of the problem to a fixed point problem in a suitable function

space.

Much less attention has been paid to the case of homeomorphisms φ with bounded

range or domain. The case of a bounded domain is not too different from the case of

a homeomorphism of R, and will not be considered here. The case of a bounded range,

for example φ(s) = s/
√

1 + s2, which occurs in some geometric and hydrodynamical

problems, is more delicate, because of the occurence of φ−1 in the fixed point operators

mentioned above. As a consequence, those operators cease to be defined everywhere,

leading to some difficulties in the use of Leray–Schauder degree.
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After rapidly surveying, for the sake of introduction and comparison, the reduction

to fixed point problems in the case of φ : R → R, we concentrate on the case where

φ : R → ]−a, a[, describing some recent joint work with C. Bereanu [2, 3]. After finding

necessary and sufficient conditions for the solvability of the forced problem

(φ(u′))′ = f(t)

under Dirichlet, Neumann or periodic boundary conditions, we consider similar problems

for (1). In the case where |f(t, u, v)| is bounded by a suitable constant depending upon

a and T , we show that the associated fixed point operators are defined everywhere, and

the classical Leray–Schauder continuation theorem (see e.g. [10]) can be applied. The

situation is different when f(t, u, v) is unbounded, and we overcome the difficulty, for f

bounded from below or from above and Neumann or periodic boundary conditions, by

using Leray–Schauder’s degree homotopy invariance with parameter dependent domain.

The requested a priori estimates are obtained by extending a technique of Ward [12] for

periodic solutions of semilinear equations.

2. Perturbed φ-Laplacian with φ : R → R and equivalent fixed point problems.

For h ∈ L1(0, T ), and φ : R → R, a homeomorphism such that φ(0) = 0, let us consider

the forced φ-Laplacian equation

(φ(u′))′ = h(t) (2)

associated with the Dirichlet

u(0) = 0 = u(T ), (3)

the Neumann

u′(0) = 0 = u′(T ) (4)

or the periodic

u(0) − u(T ) = 0 = u′(0) − u′(T ) (5)

boundary conditions. A solution of equation (2) is a function u ∈ C1([0, T ]) such that

(φ(u′)) is absolutely continuous, and which satisfies (2) almost everywhere on [0, T ]. The

solution of Dirichlet or periodic problem uses the following special case of a lemma proved

in [8].

Lemma 1. For each h ∈ C[0, T ], there exists a unique α := Qφ(h) such that

∫ T

0

φ−1(h(s) − α) ds = 0.

Furthermore Qφ : C[0, T ] → R is completely continuous.

Notice that

QI(h) =
1

T

∫ T

0

h := Q(h)

so that Qφ can be seen as an extended mean value operator associated to φ.
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If we define

H : C → C, h 7→
∫

·

0

h(s) ds, P : C → C, h 7→ h(0)

uL := min
[0,T ]

u, uM := max
[0,T ]

u, Osc[0,T ] u = uM − uL,

then the following results are easily proved, using Lemma 1.

Proposition 1. Problem (2)(3) has, for each h ∈ L1(0, T ), a unique solution given by

u = H ◦ φ−1 ◦ (I − Qφ) ◦ H(h).

Problem (2)(4) is solvable if and only if Qh = 0, in which case the solutions are given by

u = Pu + H ◦ φ−1 ◦ H(h).

Problem (2)(5) is solvable if and only if Qh = 0, in which case the solutions are given by

u = Pu + H ◦ φ−1 ◦ (I − Qφ) ◦ H(h).

If f : [0, T ] × R
2 → R is continuous, let us consider now the nonlinearly perturbed

φ-Laplacian

(φ(u′))′ = f(t, u, u′). (6)

We associate to f its Nemytski operator

Nf : C1[0, T ] → C[0, T ], Nf (u) := f(·, u(·), u′(·))
and introduce the Banach spaces

C1
0 := {u ∈ C1[0, T ] : u(0) = 0 = u(T )}

C1
# := {u ∈ C1[0, T ] : u′(0) = 0 = u′(T )}

C1
per := {u ∈ C1[0, T ] : u(0) − u(T ) = 0 = u′(0) − u′(T )}.

Using Proposition 1, one can obtain the following fixed point formulations of our boundary

value problems for (6). The first operator was introduced in [5], the second one in [6, 7],

and the third one in [8] (see e.g. [8, 9] for details).

Proposition 2. The solutions of (6)(3) are the functions u ∈ C1
0 such that

u = H ◦ φ−1 ◦ (I − Qφ) ◦ H ◦ Nf (u) := M0(u).

The solutions of (6)(4) are the functions u ∈ C1
# such that

u = Pu + Q ◦ Nf (u) + H ◦ φ−1 ◦ H ◦ (I − Q) ◦ Nf (u) := M#(u).

The solutions of (6)(5) are the functions u ∈ C1
per such that

u = Pu + Q ◦ Nf (u) + H ◦ φ−1 ◦ (I − Qφ) ◦ H ◦ (I − Q) ◦ Nf (u) := Mper(u).

3. Forced φ-Laplacian with φ : R → ]−a, a[. Let φ : ]−a, a[ → R be a homeomorphism

such that φ(0) = 0. An example is given by

φ(s) =
s√

1 − s2

occurring in special relativity. One can easily check that the construction of the map-

ping Qφ can be done like in the case of φ : R → R. Furthermore, as φ−1 is defined on R,
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the operators M0, M#, Mper are defined everywhere. Consequently, the treatment of

this situation is quite similar to the case where φ : R → R, and will not be considered

here.

The situation is different for a homeomorphism φ : R → ]−a, a[ such that φ(0) = 0.

An example is given by

φ(s) =
s√

1 + s2
,

which is associated to the one-dimensional version of mean curvature and capillary prob-

lems. The following form of Lemma 1 is proved in [3].

Lemma 2. Let B = {h ∈ C[0, T ] : ‖h‖∞ < a/2}. For each h ∈ B, there exists a unique

α ∈ R such that
∫ T

0

φ−1(h(s) − α) ds = 0.

Moreover, if ‖h‖∞ ≤ ε, then α ∈ [−ε, ε]. The function Qφ : B → R defined by Qφ(h) := α

is completely continuous.

As the mapping φ−1 is only defined on ]−a, a[, the operators M0, M# and Mper are

not defined everywhere on their associated function space, which creates serious difficul-

ties in the application of Leray–Schauder theory. To motivate the results for (6), we first

analyze the simple case of the forced φ-Laplacian

(φ(u′))′ = f(t) (7)

with f ∈ L1(0, T ), submitted to Dirichlet, Neumann or periodic boundary conditions.

For each τ ∈ [0, T ], we define Fτ : [0, T ] → R by

Fτ (t) :=

∫ t

τ

f(s) ds, (8)

so that

Fτ (t) = F0(t) − F0(τ ).

Consider first the Neumann problem

(φ(u′))′ = f(t), u′(0) = 0 = u′(T ) (9)

If (9) has a solution, then, integrating both members of (9) and using the boundary

condition, we obtain
∫ T

0

f(s) ds = 0. (10)

Then (9) gives, for each t ∈ [0, T ],

φ(u′(t)) = F0(t), (11)

which implies the second necessary condition for existence

‖F0‖∞ < a. (12)

Now, if (10) and (12) hold, (11) is equivalent to

u′(t) = φ−1(F0(t)),
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and the functions u given by

u(t) = u(0) +

∫ t

0

φ−1(F0(s)) ds (13)

are solutions of (9). Hence we have proved the following

Proposition 3. Problem (9) has a solution if and only if conditions (10) and (12) hold,

in which case problem (9) has the family of solutions given by (13).

When f ∈ L∞(0, T ), the sharp inequality

‖F0‖∞ ≤ T

2
‖f‖∞

proved in [3] shows that condition (12) can be replaced by a condition upon f

‖f‖∞ <
2a

T
. (14)

Example 1. The Neumann problem
(

u′

√

1 + u′2

)

′

= α cos t, u′(0) = 0 = u′(π),

for which F0(t) = α sin t, is solvable if and only if |α| < 1. Condition (14) gives |α| < 2/π.

Example 2. The Neumann problem
(

u′

√

1 + u′2

)

′

= αc(t), u′(0) = 0 = u′(1)

with

c(t) =

{

1 if 0 ≤ t ≤ 1/2

−1 if 1/2 < t ≤ 1,

for which

F0(t) =

{

t if 0 ≤ t ≤ 1/2

1/2 − t if 1/2 < t ≤ 1.

is solvable if and only if |α| < 2. Condition (14) also gives |α| < 2.

We now consider the Dirichlet problem

(φ(u′))′ = f(t), u(0) = 0 = u(T ). (15)

If u is a solution of (15), the boundary condition implies the existence of τ ∈ [0, T ] such

that u′(τ ) = 0. Consequently, for each t ∈ [0, T ],

φ(u′(t)) = Fτ (t), (16)

which implies the necessary condition

‖Fτ‖∞ < a. (17)

If (17) holds, (16) is equivalent to

u′(t) = φ−1(Fτ )(t),
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and the boundary conditions give
∫ T

0

φ−1(Fτ (s)) ds = 0. (18)

Now, if there exists τ ∈ [0, T ] such that (17) and (18) hold, it is easy to check that the

function u given by

u(t) =

∫ t

0

φ−1(Fτ (s)) ds (19)

is a solution of (15). Hence we have proved the following

Proposition 4. Problem (15) has a solution if and only if there exists τ ∈ [0, T ] such

that (17) and (18) hold, in which case the solution is given by (19).

It follows from the inequalities

1

2
Osc[0,T ] F0 ≤ ‖Fτ‖∞ ≤ Osc[0,T ] F0 ≤ ‖f‖1 (20)

that Osc[0,T ] F0 < 2a is necessary and Osc[0,T ] F0 < a or ‖f‖1 < a are sufficient for the

solvability of (15). When f ∈ L∞(0, T ) ‖f‖∞ < a/T is also sufficient.

Example 3. The Dirichlet problem
(

u′

√

1 + u′2

)

′

= α, u(0) = 0 = u(1),

for which Fτ (t) = α(t − τ ), hence

∫ 1

0

α(t − τ )

1 − α2(t − τ )2
ds = 0 if and only if τ = 1/2, and

‖α(· − 1/2)‖∞ = |α|/2, is solvable if and only if |α| < 2, with the solution

u(t) =
1

α

[
√

1 − α2

4
−

√

1 − α2
(

t − 1

2

)2
]

.

We finally consider the periodic problem

(φ(u′))′ = f(t), u(0) − u(T ) = u′(0) − u′(T ) = 0. (21)

If u is a solution of (21), the second boundary condition implies that
∫ T

0

f(s) ds = 0 (22)

and the first boundary condition implies the existence of τ ∈ [0, T ] such that u′(τ ) = 0.

Hence, for each t ∈ [0, T ],

φ(u′(t)) = Fτ (t) (23)

which implies the second necessary condition

‖Fτ‖∞ < a. (24)

Then (23) is equivalent to

u′(t) = φ−1(Fτ (t)),
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and the first boundary condition gives the third necessary condition
∫ T

0

φ−1(Fτ (s)) ds = 0. (25)

Conversely, if (22) holds, as well as (24) and (25) for some τ ∈ [0, T ], it is easily checked

that

u(t) = u(0) +

∫ t

0

φ−1(Fτ (s)) ds. (26)

is a solution of (21). Hence we have proved the following

Proposition 5. Problem (21) has a solution if and only if (22) holds, and if there exists

τ ∈ [0, T ] such that (24) and (25) hold, in which case the solutions are given by (26).

Using (20), we can replace (24) by the more explicit conditions

Osc[0,T ] F0 <
a

2

and, if f ∈ L∞(0, T ), by

‖f‖∞ <
a

2T
.

Remark 1. The existence of τ ∈ [0, T ] such that
∫ T

0

φ−1(Fτ (s)) ds = 0

i.e. such that
∫ T

0

φ−1(F0(s) − F0(τ )) ds = 0

is equivalent to the existence of c ∈ Range F0 such that
∫ T

0

φ−1(F0(s) − c) ds = 0,

to which Lemma 2 can be applied.

4. Bounded perturbations. Let f : [0, T ] × R
2 → R be continuous and such that

|f(t, u, v)| ≤ c (27)

for some c ≥ 0 and all (t, u, v) ∈ [0, T ] × R
2.

Let us first consider the Dirichlet problem

(φ(u′))′ = f(t, u, u′), u(0) = 0 = u(T ). (28)

The following result is proved in [3].

Theorem 1. Problem (28) has a solution if (27) holds with

c <
a

2T
. (29)

Sketch of the proof. To use Leray–Schauder degree we introduce the homotopy

(φ(u′))′ = λf(t, u, u′), u(0) = 0 = u(T ), λ ∈ [0, 1]. (30)
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One can verify that each solution u ∈ C1
0 of the equation

u = H ◦ φ−1 ◦ (I − Qφ) ◦ H ◦ (λNf )(u) := M1(λ, u), λ ∈ [0, 1], (31)

is a solution of (28). Because of condition (29), M1 is defined and completely continuous

on [0, 1] × C1
0 . It is not difficult to check that the set of possible solutions of (30) verifies

the a priori estimate

‖u‖ < (T + 1)M

where

‖u‖ = ‖u‖∞ + ‖u′‖∞,

and

M = max
{

|φ−1(−2cT )|, |φ−1(2cT )|
}

.

As M1(0, ·) = I, the conclusion follows from Leray–Schauder’s theory (see e.g. [10]).

Remark 2. Returning to Example 3, we see that if f(t) = α and T = 1, Theorem 1

gives the sufficient condition |α| < 1/2, instead of the necessary and sufficient condition

|α| < 2.

In the case of Neumann or periodic boundary conditions, the boundedness condition

upon f must be supplemented by a sign condition which corresponds to the necessary

condition (10) when f = f(t). Let us consider the problems

(φ(u′))′ = f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ), (32)

and

(φ(u′))′ = f(t, u, u′), u′(0) = 0 = u′(T ). (33)

The following result of [3] improves, in the Neumann case, a result of [2].

Theorem 2. Assume that the following conditions are satisfied.

(B) (27) holds with

c < a/T (resp. c < 2a/T ).

(S) There exist R > 0 and ǫ ∈ {−1, 1} such that

ǫ

∫ T

0

f(t, u(t), u′(t)) dt > 0 if uL ≥ R, |u′|∞ ≤ M,

ǫ

∫ T

0

f(t, u(t), u′(t)) dt < 0 if uM ≤ −R, |u′|∞ ≤ M,

with M = max{|φ−1(−cT )|, |φ−1(cT )|}
(resp. M = max{|φ−1(−2cT )|, |φ−1(2cT )|}).

Then the problem (32) (resp. (33)) has at least one solution.

Sketch of the proof. Let us consider the periodic case, the Neumann one being similar

and slightly simpler. To use Leray–Schauder degree we introduce the homotopy

(φ(u′))′ = λNf (u) + (1 − λ)QNf (u),

u(0) − u(T ) = 0 = u′(0) − u′(T ), λ ∈ [0, 1].
(34)
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One can verify that each solution u ∈ C1
per of the equation

u = Pu + QNf (u) + H ◦ φ−1 ◦ (I − Qφ) ◦ H ◦ (I − Q) ◦ (λNf )(u)

:= M2(λ, u), λ ∈ [0, 1] (35)

is a solution of (32). Because of Assumption (B) and the inequality (see [2])

‖H(I − Q)v‖∞ ≤ T

2
‖v‖∞ for all v ∈ C[0, T ],

we have

λ‖H(I − Q)Nf (u)‖∞ ≤ cT

2
<

a

2
,

so that, using Lemma 2, we see that M2 is defined and completely continuous on

[0, 1] × C1
per. If u is a possible solution of (35), we obtain, from Assumption (B),

‖φ(u′)‖∞ = λ‖H(I − Q)Nf (u)‖∞ ≤ cT

2
<

a

2
,

which gives

‖u′‖∞ < M := max
{

|φ−1(−cT/2)|, |φ−1(cT/2)|
}

, (36)

and hence

uM − uL ≤ TM. (37)

Now, we also have
∫ T

0

f(t, u(t), u′(t)) dt = 0,

and Assumption (S) implies that

uM > −R and uL < R. (38)

It then follows from (36), (37) and (38) that

‖u‖ < R + (T + 1)M := ρ.

Consequently, denoting by dLS the Leray–Schauder degree and by dB the Brouwer degree,

we have [10]

dLS[I −M2(1, ·), B(ρ), 0] = dLS[I −M2(0, ·), B(ρ), 0]

dLS[I −M2(0, ·), B(ρ), 0] = dLS[I − (P + QNf ), Bρ, 0]

dLS[I − (P + QNf ), Bρ, 0] = dB[−QNf , (−ρ, ρ), 0]

=
sign(−QNf (ρ)) − sign(QNf (−ρ))

2
.

(39)

Now Assumption (S) implies that QNf (−ρ) · QNf (+ρ) < 0, so that
∣

∣dLS[I −M2(1, ·), B(ρ), 0]
∣

∣ = 1, (40)

and the existence of a solution follows from Leray–Schauder’s continuation theorem.
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Remark 3. By using a perturbation argument, Assumption (S) can be weakened into

(S*) There exist R > 0 and ǫ ∈ {−1, 1} such that

ǫ

∫ T

0

f(t, u(t), u′(t)) dt ≥ 0 if uL ≥ R, |u′|∞ ≤ M,

ǫ

∫ T

0

f(t, u(t), u′(t)) dt ≤ 0 if uM ≤ −R, |u′|∞ ≤ M,

with M = max
{

|φ−1(−cT )|, |φ−1(cT )|
}

(resp. M = max
{

|φ−1(−2cT )|, |φ−1(2cT )|
}

).

Notice that, for f = f(t), (S*) reduces to (10).

5. Perturbations bounded from below or above. Let us first consider the Neumann

problem

(φ(u′))′ = f(t, u, u′), u′(0) = 0 = u′(T ), (41)

with f : [0, T ] × R
2 → R continuous and possibly unbounded. We use the homotopy

(φ(u′))′ = λNf (u) + (1 − λ)QNf (u), λ ∈ [0, 1]. (42)

One can verify that each solution of the fixed point problem in C1
#

u = Pu + QNf (u) + H ◦ φ−1 ◦ [λH(I − Q)Nf ](u) := M3(λ, u) (43)

is a solution of (42). The operator M3 is well defined on the nonempty open subset of

[0, 1] × C1
#

Ω :=
{

(λ, u) ∈ [0, 1] × C1
# : ‖λH(I − Q)Nf (u)‖∞ < a

}

.

The following lemma provides a priori estimates for the possible solutions of (43) by

extending a technique of Ward [12] for semilinear periodic problems. See [3] for details.

For v ∈ C[0, T ], let v+ = max(v, 0), v− = max(−v, 0).

Lemma 3. Assume that the following conditions hold.

(LB) There exists c ∈ C[0, T ] such that

‖c−‖1 <
a

2

and

f(t, u, v) ≥ c(t)

for all (t, u, v) ∈ [0, T ] × R
2.

(S) There exist R > 0 and ǫ ∈ {−1, 1} such that

ǫ

∫ T

0

f(t, u(t), u′(t)) dt > 0 if uL ≥ R, |u′|∞ ≤ M,

ǫ

∫ T

0

f(t, u(t), u′(t)) dt < 0 if uM ≤ −R, |u′|∞ ≤ M,

with M = max
{

|φ−1(2‖c−‖1)|, |φ−1(−2‖c−‖1)|
}

).



NONLINEAR PERTURBATIONS OF φ-LAPLACIANS 211

If (λ, u) ∈ Ω is such that u = M3(λ, u), then

‖H(I − Q)Nf (u)‖∞ ≤ 2‖c−‖1, ‖u‖ < R + M(T + 1).

Sketch of the proof. If u = M3(λ, u), then QNf (u) = 0. Furthermore, Assumption (LB)

implies that

|f(t, u, v)| ≤ f(t, u, v) + 2c−(t).

Consequently,

‖φ(u′)‖∞ = ‖λH(I − Q)Nf (u)‖∞ ≤ ‖Nf (u)‖1

≤
∫ T

0

Nf (u)(s)ds + 2‖c−‖1 = 2‖c−‖1 < a,

and hence

‖u′‖∞ ≤ M, uM − uL ≤ TM.

Now Assumption (S) implies that uM > −R and uL < R, which gives ‖u‖∞ < R + TM .

Let now K, ρ be such that

2‖c−‖1 < K <
a

2
, ρ > R + M(T + 1),

and define

V :=
{

(λ, u) ∈ [0, 1] × C1
# : ‖λH(I − Q)Nf (u)‖∞ < K, ‖u‖ < ρ

}

.

V 6= ∅ is open, and V ⊂ Ω. Classical arguments show that M3 is compact on V . Lemma 3

implies that u 6= M3(λ, u) for all (λ, u) ∈ ∂V . Hence, we can use the generalized homo-

topy invariance of Leray–Schauder degree (with varying domain) (see e.g. [11]), to obtain

the following existence result (see [3] for details).

Theorem 3. Assume that the conditions (LB) and (S) of Lemma 3 hold. Then (41) has

at least one solution.

Sketch of the proof. We find, like in (39) and (40), with V1 = {u ∈ C1
# : (1, u) ∈ V },

|dLS[I −M3(1, ·), V1, 0]| =

∣

∣

∣

∣

sign(−QNf (ρ)) − sign(QNf (−ρ))

2

∣

∣

∣

∣

= 1,

Consequently, V1 6= ∅ and there exists u ∈ V1 such that u = M(1, u).

Remark 4. Assumption (LB) can be replaced by

(UB) There exists c ∈ C[0, T ] such that

‖c+‖1 <
a

2

and

f(t, u, v) ≤ c(t)

for all (t, u, v) ∈ [0, T ] × R
2.
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Remark 5. Assumption (S) can be weakened into

(S*) There exist R > 0 and ǫ ∈ {−1, 1} such that

ǫ

∫ T

0

f(t, u(t), u′(t)) dt ≥ 0 if minu ≥ R, |u′|∞ ≤ M,

ǫ

∫ T

0

f(t, u(t), u′(t)) dt ≤ 0 if max u ≤ −R, |u′|∞ ≤ M,

with M = max
{

|φ−1(2‖c−‖1)|, |φ−1(−2‖c−‖1)|
}

).

Example 4. The Neumann problems, with α ∈ C[0, T ] positive,
(

u′

√

1 + u′2

)

′

− α(t) expu + h(t) = 0, u′(0) = 0 = u′(T ),

(

u′

√

1 + u′2

)

′

+ α(t) expu − h(t) = 0, u′(0) = 0 = u′(T ),

have at least one solution if

‖h−‖1 < ‖h+‖1 <
1

2
.

The condition ‖h−‖1 < ‖h+‖1 is necessary.

Corresponding results can be obtained in a similar way for periodic boundary condi-

tions (see [2] for details).

Theorem 4. Assume that the following conditions hold.

(ULB) There exists c ∈ C[0, T ] such that

‖c−‖1 < a/4 (resp. ‖c+‖1 < a/4) (44)

and

f(t, u, v) ≥ c(t) (resp. f(t, u, v) ≤ c(t))

for all (t, u, v) ∈ [0, T ] × R
2.

(S*) There exist R > 0 and ǫ ∈ {−1, 1} such that

ǫ

∫ T

0

f(t, u(t), u′(t)) dt ≥ 0 if uL ≥ R, |u′|∞ ≤ M,

ǫ

∫ T

0

f(t, u(t), u′(t)) dt ≤ 0 if uM ≤ −R, |u′|∞ ≤ M,

with M = max
{

|φ−1(2‖c−‖1)|, |φ−1(−2‖c−‖1)|
}

(resp. M = max
{

|φ−1(2‖c+‖1)|, |φ−1(−2‖c+‖1)|
}

).

Then the problem

(φ(u′))′ = f(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ) (45)

has at least one solution.

The proof is similar to the Neumann case and details can be found in [2].
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6. Final remarks and open problems. The case of periodic solutions of systems of

the form

(φ(u′))′ = f(t, u, u′)

with φ : R
N → B(0, 1) a homeomorphism has been recently and independently consid-

ered by Benevieri, do Ó and de Medeiros [1], using a similar approach. They pay a special

attention to the corresponding extension of Lemma 1 and obtain the corresponding gen-

eralization of the continuation theorem in [8].

When φ : R → ]−a, a[ is a diffeomorphism such that φ(0) = 0, then u is a solution

of (1) if and only if u is of class C2 and is a solution of

u′′ = [φ′(u′)]−1f(t, u, u′). (46)

Then the fixed point approach used here can be replaced by the use of classical continu-

ation theorem for semilinear equations. This simplifies the treatment and also allows to

improve estimate (29) of Theorem 1 into

c <
a

T

and estimate (44) of Theorem 4 into

‖c−‖1 < a/2 (resp. ‖c+‖1 < a/2).

For details see [4].

Many problems remain open in this area, for example

1. Improve estimates on f when they are not sharp.

2. Study the Dirichlet problem with nonlinearities only bounded from below or from

above.

3. Use a variational approach when f = f(t, u).

4. Study the corresponding problems for the partial differential case

∇ ·
( ∇u

√

1 + ‖∇u‖2

)

= f(x, u,∇u)

with Dirichlet, Neumann or periodic boundary conditions.
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[1] P. Benevieri, J. M. do Ó, E. S. de Medeiros, Periodic solutions for nonlinear systems with

mean curvature-like operators, Nonlinear Anal. 65 (2006), 1462–1475.

[2] C. Bereanu, J. Mawhin, Nonlinear Neumann boundary value problems with φ-Laplacian
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