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Abstract. We give two examples of the generic approach to fixed point theory. The first

example is concerned with the asymptotic behavior of infinite products of nonexpansive mappings

in Banach spaces and the second with the existence and stability of fixed points of continuous

mappings in finite-dimensional Euclidean spaces.

1. Introduction. The asymptotic behavior of infinite products of operators finds ap-

plications in many areas of Mathematics. See, for example, [1–5, 10–12, 14, 16–24] and

the references mentioned therein. Given a bounded, closed and convex subset K of a

Banach space and a sequence A = {At}
∞

t=1 of self-mappings of K, we are interested in

the convergence properties of the sequence of products {An · . . . ·A1x}
∞

n=1, where x ∈ K.

In the special case of a constant sequence A, we are led to study the asymptotic be-

havior of a single operator and the possible convergence of its powers to a fixed point.

In their seminal 1976 paper [7], De Blasi and Myjak show that the powers of a generic

nonexpansive self-mapping of K do converge. Such an approach, when a certain prop-

erty is investigated for a whole space of operators and not just for a single operator,

has already been successfully applied in many areas of Analysis. For instance, in two re-

cent papers [18, 22] we have extended the De Blasi–Myjak result in several directions to

certain sequence spaces of nonexpansive mappings. One of these directions has involved

weak ergodicity in the sense of population biology (see [6, 13, 15, 18, 25]). More precisely,

we have shown that for most (in the sense of Baire category) sequences, the distances

between the corresponding (random) infinite products with different initial points tend to

zero, uniformly on K. The first main result of the present paper (Theorem 2.1 below) is a

generic weak ergodic theorem for infinite products of nonself-mappings which takes into

account computational errors. As a matter of fact, we use in this theorem the concept of
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porosity [8, 9, 24] which refines the notion of Baire’s first category.

Our second and third main results (Theorems 3.1 and 3.2 below) establish generic

existence and stability of fixed points for a class of nonself-mappings defined on certain

closed (but not necessarily either convex or bounded) subsets of a finite-dimensional

Euclidean space. In these theorems, we endow the relevant space of mappings with two

topologies, one weaker than the other. In Theorem 3.1 we find an open (in the weak

topology) and everywhere dense (in the strong topology) set such that each mapping in

it possesses a fixed point. In Theorem 3.2 we construct a countable intersection of open

(in the weak topology) and everywhere dense (in the strong topology) sets such that each

mapping in this intersection has a stable fixed point.

2. Infinite products. Let (X, ‖ · ‖) be a Banach space and let K ⊂ X be a nonempty,

bounded and closed subset of X.

Denote by M the set of all sequences {At}
∞

t=1 such that each At : K → X, t = 1, 2, . . . ,

satisfies the following two conditions:

‖Atx−Aty‖ ≤ ‖x− y‖ for each x, y ∈ K, t = 1, 2, . . . ; (2.1)

for any ǫ > 0, there exists a sequence {xt}
∞

t=0 ⊂ K such that ‖xt+1 − At+1xt‖ ≤ ǫ,

t = 0, 1, 2, . . . .

It is easy to see that if K is a compact set in the norm topology, then for each

{At}
∞

t=1 ∈ M, there is {xt}
∞

t=0 ⊂ K such that xt+1 = At+1xt, t = 0, 1, . . . . Set

rad(K) = sup{‖x‖ : x ∈ K}. (2.2)

Proposition 2.1. Let {At}
∞

t=1 ∈ M. Then for each integer t ≥ 1 and each x ∈ K,

‖Atx‖ ≤ 3 rad(K) + 1.

Proof. By definition, there exists a sequence {xt}
∞

t=0 ⊂ K such that

‖xt+1 −At+1xt‖ ≤ 1, t = 0, 1, . . . . (2.3)

By (2.1) and (2.3), for each integer t ≥ 0 and each x ∈ K,

‖At+1x‖ ≤ ‖At+1x− At+1xt‖ + ‖At+1xt − xt+1‖ + ‖xt+1‖

≤ ‖x− xt‖ + 1 + ‖xt+1‖ ≤ 3 rad(K) + 1,

as claimed.

For each {At}
∞

t=1, {Bt}
∞

t=1 ∈ M, set

ρ
(

{At}
∞

t=1, {Bt}
∞

t=1

)

= sup
{

‖Atx−Btx‖ : x ∈ K and t = 1, 2, . . .
}

. (2.4)

By Proposition 2.1, ρ
(

{At}
∞

t=1, {Bt}
∞

t=1

)

is finite for each pair {At}
∞

t=1, {Bt}
∞

t=1 ∈ M.

Clearly, ρ is a metric on M.

Proposition 2.2. The metric space (M, ρ) is complete.

Proof. Let {A
(n)
t }∞t=1, n = 1, 2, . . . , be a Cauchy sequence in M. Clearly, for each x ∈ K

and each integer t ≥ 1, the sequence {A
(n)
t x}∞t=1 is a Cauchy sequence in (X, ‖ · ‖) and

therefore it converges to Atx ∈ X in the norm topology of X. Thus

Atx = lim
n→∞

A
(n)
t x for each point x ∈ K and each integer t ≥ 1. (2.5)
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It is not difficult to see that for each integer t ≥ 1,

‖Atx−Aty‖ ≤ ‖x− y‖ for all x, y ∈ K. (2.6)

Let ǫ > 0. Since {A
(n)
t }∞t=1, n = 1, 2, . . . , is a Cauchy sequence, there exists a natural

number q such that for each pair of integers m,n ≥ q,

‖A
(m)
t x−A

(n)
t x‖ ≤ ǫ/8 (2.7)

for all integers t ≥ 1 and all points x ∈ K. By (2.7) and (2.5),

‖A
(m)
t x−Atx‖ ≤ ǫ/8 (2.8)

for each integer m ≥ q, each integer t ≥ 1, and each x ∈ K. Since {A
(q)
t }∞t=1 ∈ M, there

is a sequence {xt}
∞

t=0 ⊂ K such that

‖xt+1 −A
(q)
t+1xt‖ ≤ ǫ/4, t = 0, 1, 2, . . . . (2.9)

In view of (2.9) and (2.8), for each integer t ≥ 0,

‖xt+1 −At+1xt‖ ≤ ‖xt+1 − A
(q)
t+1xt‖ + ‖A

(q)
t+1xt −At+1xt‖ ≤ ǫ/4 + ǫ/8 < ǫ/2.

Since ǫ is an arbitrary positive number, we conclude that

{At}
∞

t=1 ∈ M.

In view of (2.8),

ρ
(

{At}
∞

t=1, {A
(m)
t }∞t=1

)

≤ ǫ/8 for each integer m ≥ q.

This completes the proof of Proposition 2.2.

Denote by E the set of all {At}
∞

t=1 ∈ M for which there exists a sequence {xt}
∞

t=1 ⊂ K

such that

At+1xt = xt+1 for all integers t ≥ 0.

Proposition 2.3. The set E is an everywhere dense subset of M.

Proof. Let {At}
∞

t=1 ∈ M and ǫ > 0. By definition, there exists a sequence {xt}
∞

t=0 ⊂ K

such that

‖At+1xt − xt+1‖ ≤ ǫ/4, t = 0, 1, 2 . . . .

For each t = 1, 2, . . . , define

Btx = Atx−Atxt−1 + xt, x ∈ K.

It is not difficult to see that

Btxt−1 = xt, t = 1, 2, . . . , {Bt}
∞

t=1 ∈ E

and

ρ({At}
∞

t=1, {Bt}
∞

t=1) ≤ ǫ.

Proposition 2.3 is proved.

Before stating our first main result we recall the notion of porosity [8, 9, 24].

Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of center

y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous in (Y, d) if there exist α ∈ (0, 1)
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and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y , there exists z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous in (Y, d) if it is a countable union of porous

subsets in (Y, d).

Since porous sets are nowhere dense, all σ-porous sets are of the first Baire category.

If Y is a finite-dimensional Euclidean space, then σ-porous sets are of Lebesgue measure

zero. In fact, the class of σ-porous sets in such a space is much smaller than the class of

sets which have measure zero and are of the first category.

Theorem 2.1. There exists a set F ⊂ M such that M\F is a σ-porous subset of (M, ρ)

and such that for each {At}
∞

t=1 ∈ F , the following property holds:

(P1) For each ǫ > 0, there exist δ > 0 and a natural number T0 such that if the integers

m1,m2 > T0 and if {xt}
m1

t=0, {yt}
m2

t=0 ⊂ K satisfy

‖xt+1 −At+1xt‖ ≤ δ, t = 0, . . . ,m1 − 1,

‖yt+1 −At+1yt‖ ≤ δ, t = 0, . . . ,m2 − 1,
(2.10)

then

‖xt − yt‖ ≤ ǫ, t = T0 + 1, . . . ,min{m1,m2}. (2.11)

Proof. For each integer n ≥ 1, denote by Fn the set of all {At}
∞

t=1 ∈ M for which the

following property holds:

(P2) there exist δ > 0 and a natural number T0 such that if the integers m1,m2 > T0

and {xt}
m1

t=0, {yt}
m2

t=0 ⊂ K satisfy (2.10), then

‖xt − yt‖ ≤ 1/n, t = T0 + 1, . . . ,min{m1,m2}.

Set

F =

∞
⋂

n=1

Fn.

It is not difficult to see that for each {At}
∞

t=1 ∈ F , property (P1) holds.

In order to complete the proof of the theorem, it is sufficient to show that for each

integer n ≥ 1, M\Fn is a porous subset of (M, ρ).

Indeed, let n ≥ 1 be an integer. Choose a positive number

α < (210n)−1(rad(K) + 1)−1. (2.12)

Let {At}
∞

t=1 ∈ M and r ∈ (0, 1]. By Proposition 2.3, there exists {Bt}
∞

t=1 ∈ E such that

ρ
(

{At}
∞

t=1, {Bt}
∞

t=1

)

≤ r/16. (2.13)

By the definition of E , there exists {xt}
∞

t=0 ⊂ K such that

Bt+1xt = xt+1, t = 0, 1, 2, . . . . (2.14)

Set

γ = 32nαr,

and let t ≥ 1 be an integer. For each x ∈ K, set

Ctx = γxt + (1 − γ)Btx. (2.15)
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It is easy to see that {Ct}
∞

t=1 ∈ M and that

Ctxt−1 = xt, t = 1, 2 . . . . (2.16)

By (2.15), (2.2) and Proposition 2.1,

ρ({Ct}
∞

t=1, {Bt}
∞

t=1) ≤ sup{‖Ctz −Btz‖ : z ∈ K and t = 1, 2, . . . }

= sup{γ‖xt −Btz‖ : t = 1, 2, . . . and z ∈ K} ≤ γ(4 rad(K) + 1). (2.17)

Choose a natural number T0 such that

T0αr > rad(K) + 1 (2.18)

and a positive number

δ < min{αr, (8n)−1T−1
0 }/2. (2.19)

Assume that

{Dt}
∞

t=1 ∈ M and ρ({Dt}
∞

t=1, {Ct}
∞

t=1) ≤ αr. (2.20)

By (2.20), (2.17), (2.13) and (2.15),

ρ
(

{Dt}
∞

t=1, {At}
∞

t=1

)

≤ ρ
(

{Dt}
∞

t=1, {Ct}
∞

t=1

)

+ ρ
(

{Ct}
∞

t=1, {Bt}
∞

t=1

)

+ ρ
(

{Bt}
∞

t=1, {At}
∞

t=1

)

≤ αr + 4γ(rad(K) + 1) + r/16 ≤ αr + 32nαr · (4 rad(K) + 1) + r/16

≤ r
[

8 · 32nα(rad(K) + 1) + 1/16
]

≤ r/2.

Thus

ρ
(

{Dt}
∞

t=1, {At}
∞

t=1

)

≤ r/2. (2.21)

Assume that the integers m1,m2 > T0 and that {xt}
m1

t=0, {yt}
m2

t=0 ⊂ K satisfy

‖xt+1 −Dt+1xt‖ ≤ δ, t = 0, . . . ,m1 − 1,

‖yt+1 −Dt+1yt‖ ≤ δ, t = 0, . . . ,m2 − 1.
(2.22)

We now show that

‖xt − yt‖ ≤ 1/n, t = T0 + 1, . . . ,min{m1,m2}. (2.23)

Indeed, let an integer T satisfy

T0 + 1 ≤ T ≤ min{m1,m2}. (2.24)

We claim that there is an integer j ∈ {T − T0, . . . , T − 1} such that

‖xj − yj‖ ≤ (4n)−1. (2.25)

Let us assume the converse. Then for each j = T − T0, . . . , T − 1,

‖xj − yj‖ > (4n)−1. (2.26)
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It follows from (2.22), (2.20), (2.25) and (2.1) that for j = T − T0, . . . , T − 1,

‖xj+1 − yj+1‖ ≤ ‖xj+1 −Dj+1xj‖ + ‖Dj+1xj −Dj+1yj‖ + ‖Dj+1yj − yj+1‖

≤ δ + ‖Dj+1xj −Dj+1yj‖ + δ

≤ 2δ + 2ρ({Dt}
∞

t=1, {Ct}
∞

t=1) + ‖Cj+1xj − Cj+1yj‖

≤ 2δ + 2αr + (1 − γ)‖Bj+1xj −Bj+1yj‖

≤ 2δ + 2αr + (1 − γ)‖xj − yj‖.

By this inequality, (2.26), (2.19) and (2.15),

‖xj − yj‖ − ‖xj+1 − yj+1‖ ≥ γ‖xj − yj‖ − 2δ − 2αr ≥ γ(4n)−1 − 4αr ≥ 4αr.

Together with (2.2) and (2.18), this implies that

2 rad(K) ≥ ‖xT−T0
− yT−T0

‖ − ‖xT − yT ‖ ≥ T04αr > 4 rad(K) + 4.

The contradiction we have reached demonstrates that indeed there is an integer

j ∈ {T − T0, . . . , T − 1} such that (2.25) holds.

By (2.1) and (2.22), for each integer i satisfying j ≤ i ≤ T − 1,

‖xi+1 − yi+1‖ ≤ ‖xi+1 −Di+1xi‖ + ‖Di+1xi −Di+1yi‖ + ‖Di+1yi − yi+1‖

≤ δ + ‖xi − yi‖ + δ.

When combined with (2.25) and (2.19), this relation implies that

‖xT − yT ‖ ≤ ‖xj − yj‖ + 2δ(T − j) ≤ ‖xj − yj‖ + 2δT0 ≤ (4n)−1 + (4n)−1.

Therefore

‖xT − yT ‖ ≤ (2n)−1

for all integers T satisfying (2.24). Thus we have shown that each sequence {Dt}
∞

t=1 ∈ M

satisfying (2.20) possesses property (P2) and consequently belongs to Fn. Therefore

M\Fn is indeed a porous subset of (M, ρ). This completes the proof of Theorem 2.1.

3. Existence and stability. Let K ⊂ Rn be a nonempty, closed subset of the n-

dimensional Euclidean space (Rn, ‖·‖). We suppose that K is the closure of its nonempty

interior int(K).

For each x ∈ Rn and each r > 0, set B(x, r) = {y ∈ Rn : ‖x− y‖ ≤ r} and fix θ ∈ K.

Denote by M the set of all continuous mappings A : K → Rn. We equip the space

M with the uniformity determined by the base

Ew(N, ǫ) =
{

(A,B) ∈ M×M : ‖Ax−Bx‖ ≤ ǫ for all x ∈ B(θ,N) ∩K
}

, (3.1)

where N, ǫ > 0.

Clearly, the space M with this uniformity is metrizable and complete. We equip the

space M with the topology induced by this uniformity. This topology will be called the

weak topology.

We also equip the space M with the uniformity determined by the base

Es(ǫ) =
{

(A,B) ∈ M×M : ‖Ax−Bx‖ ≤ ǫ for all x ∈ K
}

, (3.2)
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where ǫ > 0. Clearly, the space M with this uniformity is also metrizable and complete.

The topology induced by this uniformity on M will be called the strong topology.

Denote by Mf the set of all A ∈ M which have approximate fixed points. In other

words, the set Mf consists of all A ∈ M such that

inf{‖x−Ax‖ : x ∈ K} = 0. (3.3)

It is clear that Mf is a closed subset of M with the strong topology.

Note that if the set K is bounded, then Mf consists of all those elements of M which

have fixed points. Every self-mapping of K which is a strict contraction, that is, has a

Lipschitz constant strictly less than one, clearly belongs to Mf .

If K is bounded and convex, and a continuous mapping A : K → Rn satisfies the

Leray–Schauder condition with respect to w ∈ int(K), that is, Ay − w 6= m(y − w) for

all y on the boundary of K and m > 1, then it also belongs to Mf . If such an A is a strict

contraction, then this continues to be true even if K is neither bounded nor convex.

We endow the topological subspace Mf ⊂M with both the relative weak and strong

topologies.

Theorem 3.1. Let γ ∈ (0, 1). There exists an open (in the weak topology), everywhere

dense (in the strong topology) set Fγ ⊂ Mf such that for each A ∈ Fγ, there are

xA ∈ int(K), rA ∈ (0, 1), and a neighborhood U of A in Mf with the weak topology such

that

B(xA, rA) ⊂ K and AxA = xA,

and for each C ∈ U , there is xC ∈ K such that CxC = xC and ‖xC − xA‖ ≤ γrA.

Theorem 3.2. There exists a set F ⊂ Mf which is a countable intersection of open (in

the weak topology), everywhere dense (in the strong topology) subsets of Mf such that for

each A ∈ F and each γ ∈ (0, 1), there exist xA ∈ int(K), rA ∈ (0, 1), and a neighborhood

U of A in Mf with the weak topology such that

B(xA, rA) ⊂ K and AxA = xA,

and for each C ∈ U , there is xC ∈ K such that CxC = xC and ‖xC − xA‖ ≤ γrA.

Example. Let n = 1, K =
⋃

∞

j=0[2j, 2j + 1], and define, for each integer j ≥ 1 and each

x ∈ [2j, 2j + 1], Ax = x + 2−j . Clearly, inf{|x − Ax| : x ∈ K} = 0, but A is fixed point

free.

4. Auxiliary results. Denote by E the set of all A ∈ Mf for which there exist

xA ∈ int(K) and rA ∈ (0, 1) (4.1)

such that

B(xA, rA) ⊂ K and Ay = xA for all y ∈ B(xA, rA/4). (4.2)

Lemma 4.1. The set E is an everywhere dense subset of Mf with the strong topology.

Proof. Let A ∈ Mf and ǫ > 0. By the definition of Mf (see (3.3)), there exists x0 ∈ K

such that

‖Ax0 − x0‖ < ǫ/16. (4.3)
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Since K is the closure of int(K) and A is continuous, there is x1 ∈ int(K) such that

‖x1 − x0‖ < ǫ/16 and ‖Ax1 −Ax0‖ < ǫ/16. (4.4)

Set

A1y = Ay −Ax1 + x1, y ∈ K. (4.5)

Clearly, A1 ∈ M. In view of (4.5),

A1x1 = x1. (4.6)

By (4.5), (4.4) and (4.3), for each y ∈ K,

‖Ay −A1y‖ = ‖Ax1 − x1‖ ≤ ‖Ax1 −Ax0‖ + ‖Ax0 − x0‖ + ‖x0 − x1‖ < 3ǫ/16. (4.7)

Since A1 has a fixed point (see (4.6)), it is clear that A1 ∈ Mf . Since A1 is continuous

and x1 ∈ int(K), there exists r1 ∈ (0, 1) such that

B(x1, r1) ⊂ K and ‖A1x−A1x1‖ ≤ ǫ/16 for all x ∈ B(x1, r1). (4.8)

Define

ψ(t) =















1, t ∈ [0, r1/2],

2(r1 − t)r−1
1 , t ∈ (r1/2, r1),

0, t ∈ [r1,∞),

(4.9)

and

By = ψ(‖y − x1‖)x1 +
(

1 − ψ(‖y − x1‖)
)

A1y, y ∈ K. (4.10)

Clearly, B ∈ M. It follows from (4.10) and (4.9) that for each y ∈ B(x1, r1/2),

By = x1. (4.11)

Therefore B ∈ E . We will now show that

‖By −Ay‖ ≤ ǫ for all x ∈ K.

Indeed, let y ∈ K. There are two cases to be considered:

‖x1 − y‖ ≤ r1; (4.12)

‖x1 − y‖ > r1. (4.13)

If (4.13) holds, then (4.13), (4.10), (4.9) and (4.7) imply that

By = A1y and ‖By −Ay‖ = ‖A1y −Ay‖ < ǫ/4. (4.14)

Let (4.12) hold. Then by (4.12), (4.10), (4.9), (4.6) and (4.8),

‖By −A1y‖ =
∥

∥ψ(‖y − x1‖)(x1 −A1y)
∥

∥ ≤ ‖x1 −A1y‖ = ‖A1x1 −A1y‖ < ǫ/16.

When combined with (4.7), this inequality implies that

‖By −Ay‖ ≤ ‖By −A1y‖ + ‖A1y −Ay‖ ≤ ǫ/16 + 3ǫ/16 = ǫ/4.

Thus

‖By −Ay‖ ≤ ǫ/4 for all y ∈ K.

This completes the proof of Lemma 4.1.
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Lemma 4.2. Let A ∈ E, xA ∈ int(K), rA ∈ (0, 1) satisfy (4.2), and let γ ∈ (0, 1). Then

there exists a neighborhood U of A in Mf with the weak topology such that for each

B ∈ U , there is xB ∈ K such that ‖xB − xA‖ ≤ γrA/4 and BxB = xB.

Proof. Set

∆ = γrA/4 (4.15)

and put

U =
{

B ∈ Mf : ‖Bz −Az‖ ≤ ∆ for each z ∈ B(xA, rA)
}

. (4.16)

Clearly, U is a neighborhood of A in Mf with the weak topology.

Let B ∈ U . It follows from (4.16), (4.2) and (4.15) that for each z ∈ B(xA, γrA/4),

‖Bz − xA‖ ≤ ‖Bz −Az‖ + ‖Az − xA‖ ≤ ∆ + ‖Az − xA‖ = ∆ = γrA/4.

Thus

B
(

B(xA, γrA/4)
)

⊂ B(xA, γrA/4).

Since the mapping B is continuous, there is xB ∈ B(xA, γrA/4) such that

BxB = xB.

Lemma 4.2 is proved.

5. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Let A ∈ E . There exist xA ∈ int(K) and rA ∈ (0, 1) such that

(4.2) holds. By Lemma 4.2, there exists an open neighborhood U(A) of A in Mf with

the weak topology such that the following property holds:

(P3) For each B ∈ U(A), there is xB ∈ K such that

BxB = xB and ‖xB − xA‖ ≤ γrA/8. (5.1)

Set

Fγ =
⋃

{U(A) : A ∈ E}. (5.2)

By Lemma 4.1, Fγ is an open (in the weak topology), everywhere dense (in the strong

topology) subset of Mf .

Let B ∈ Fγ . By (5.2), there is A ∈ E such that

B ∈ U(A). (5.3)

By property (P3), for each C ∈ U(A), there is xC ∈ K such that

CxC = xC and ‖xC − xA‖ ≤ γrA/8. (5.4)

Clearly,

‖xB − xA‖ ≤ γrA/8. (5.5)

It follows from (5.5) and (4.2) that

B(xB, rA/2) ⊂ B(xA, rA) ⊂ K. (5.6)

By (5.4) and (5.5), for each C ∈ U(A),

‖xC − xB‖ ≤ ‖xC − xA‖ + ‖xA − xB‖ ≤ γrA/8 + γrA/8 = γrA/4.

This completes the proof of Theorem 3.1.
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Proof of Theorem 3.2. For each integer n ≥ 1, let Fn be as guaranteed in Theorem 3.1

with γ = (2n)−1. Set

F =

∞
⋂

n=1

Fn. (5.7)

Clearly, F is a countable intersection of open (in the weak topology), everywhere dense

(in the strong topology) subsets of Mf .

Let A ∈ F and γ ∈ (0, 1). Choose a natural number n such that

n−1 < γ/8. (5.8)

Since A ∈ Fn and the assertion of Theorem 3.1 holds with γ = (2n)−1 and Fγ = Fn,

there are xA ∈ int(K), rA ∈ (0, 1), and a neighborhood U of A in Mf with the weak

topology such that B(xA, rA) ⊂ K, AxA = xA, and for each C ∈ U there is xC ∈ K such

that CxC = xC and

‖xC − xA‖ ≤ rA(2n)−1 < rAγ.

Thus Theorem 3.2 is also established.
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