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Abstract. The purpose of this paper is to present several fixed point theorems for the so-

called set-valued Y -contractions. Set-valued Y -contractions in ordered metric spaces, set-valued

graphic contractions, set-valued contractions outside a bounded set and set-valued operators on

a metric space with cyclic representations are considered.

1. Introduction

1.1. Basic notions and notation. Throughout this paper, the standard notation and ter-

minology in nonlinear analysis are used. For the convenience of the reader we recall some

of them.

Let (X, d) be a metric space and f : X → X an operator. By Fix f := {x ∈ X :

x = f(x)} we will denote the fixed point set of the operator f and by B̃(x0, r) the closed

ball centered in x0 ∈ X with radius r > 0.

We will also use the following symbols:

P (X) := {Y ⊂ X : Y is nonempty}, Pcl(X) := {Y ∈ P (X) : Y is closed},

Pcp(X) := {Y ∈ P (X) : Y is compact}, Pb(X) := {Y ∈ P (X) : Y is bounded}.

In normed spaces, Pcv(X) := {Y ∈ P (X) : Y is convex}.

Let A and B be nonempty subsets of the metric space (X, d). The gap between these

sets is

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

In particular, D(x0, B) = D({x0}, B) (where x0 ∈ X) is called the distance from the

point x0 to the set B.
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The Pompeiu–Hausdorff generalized distance between the nonempty closed subsets A

and B of the metric space (X, d) is defined by the formula

H(A,B) := max{sup
a∈A

inf
b∈B
d(a, b), sup

b∈B
inf
a∈A
d(a, b)}.

If A and B are nonempty and bounded subsets of the metric space (X, d), then one

defines

δ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B}.

The symbol T : X ⊸ Y means T : X → P (Y ), i.e., T is a set-valued operator from

X to Y . We will denote by M
0(X,Y ) the set of all set-valued operators T : X ⊸ Y .

If X = Y then M
0(Y ) := M

0(Y, Y ). For K ∈ P (X), T (K) :=
⋃
x∈K

T (x) will denote the

image of the set K, while Graf(T ) := {(x, y) ∈ X×Y : y ∈ T (x)} is the graph of T . Recall

that the set-valued operator is called closed if Graf(T ) is closed in X × Y . If X and Y

are Hausdorff topological spaces then T+(U) := {x ∈ X : T (x) ⊂ U}, for U ∈ P (Y ).

The set-valued operator T : X → P (Y ) is said to be upper semi-continuous on X (briefly

u.s.c.) if and only if T+(U) is open in X for each open subset U of Y .

For T : X → P (X) the set of all nonempty invariant subsets of X will be denoted by

I(T ), i.e. I(T ) := {Y ∈ P (X) : T (Y ) ⊂ Y }. Also Fix(T ) := {x ∈ X : x ∈ T (x)} denotes

the fixed point set of the set-valued operator T , while SFix(T ) := {x ∈ X : {x} = T (x)}

is the strict fixed point set of T .

If (X, d) is a metric space, recall that T : X → Pcl(X) is called a set-valued

a-contraction if a ∈ ]0, 1[ and H(T (x1), T (x2)) ≤ a · d(x1, x2), for each x1, x2 ∈ X.

In the same setting, an operator T : X → Pcl(X) is a multivalued weakly Picard operator

(briefly MWP operator) (see [25]) if for each x ∈ X and each y ∈ T (x) there exists a

sequence (xn)n∈N in X such that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T (xn) for all n ∈ N;

(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

A sequence (xn)n∈N in X satisfying the condition (ii) from the previous definition is

called the sequence of successive approximations of T starting from x0 ∈ X.

(Here N denotes the set of all nonnegative integers. The set of all positive integers

will be denoted by N
∗.)

Let X be a nonempty set. By definition (see [20]), the triple (X,S(X),M0) is a fixed

point structure (briefly f.p.s.) if:

(i) S(X) ⊂ P (X), S(X) 6= ∅;

(ii) M0 : P (X) ⊸

⋃
Y ∈P (X)

M
0(Y ), with Y ⊸ M0(Y ) ⊂ M

0(Y ) is a mapping such that

if Z ⊂ Y , Z 6= ∅ then M0(Z) ⊃ {T|Z : T ∈M0(Y ), Z ∈ I(T )};

(iii) every Y ∈ S(X) has the fixed point property with respect to M0(Y ).

Let X be a nonempty set. Define s(X) := {(xn)n∈N : xn ∈ X, n ∈ N}.

Let c(X) ⊂ s(X) be a subset of s(X) and Lim : c(X)→ X an operator. By definition

the triple (X, c(X),Lim) is called an L-space (Fréchet [4]) if the following conditions are
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satisfied:

(i) If xn = x for each n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.

(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences, (xni)i∈N, of

(xn)n∈N we have (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.

By definition an element of c(X) is a convergent sequence and x := Lim(xn)n∈N is

the limit of this sequence and we write xn → x as n→∞.

In what follow we denote an L-space by (X,→). Hausdorff topological spaces, metric

spaces, generalized metric spaces (d(x, y) ∈ R
m
+ , or d(x, y) ∈ R+ ∪{+∞}, or d(x, y) ∈ K,

K a cone in an ordered Banach space, or d(x, y) ∈ E, E an ordered linear space with a no-

tion of linear convergence, etc.), gauge spaces, 2-metric spaces, D-R-spaces, probabilistic

metric spaces, syntopogenous spaces, are examples of L-spaces.

1.2. The aim of the paper. The purpose of this work is to consider the following open

question of I. A. Rus [21]:

I. Let (X, d) be a metric space and Y ⊆ X ×X. The operator T : X → Pcl(X) is called

a set-valued (Y, a)-contraction if

a ∈ ]0, 1[ and H(T (x1), T (x2)) ≤ a · d(x1, x2) for each (x1, x2) ∈ Y. (1.1)

Construct a fixed point theory for set-valued (Y, a)-contractions.

Of course, in the previous definition, one can imagine generalized type conditions

for T , such as

there exists ϕ : R
5
+ → R+ such that

H(T (x1), T (x2)) ≤ ϕ
(
d(x1, x2), D(x1, T (x1)), D(x2, T (x2)), D(x1, T (x2)), D(x2, T (x1))

)

for each (x1, x2) ∈ Y. (1.2)

In connection with the above problem one can consider

II. Let (X, d) be a metric space and Y ⊆ X ×X. The operator T : X → Pb(X) is called

a set-valued (Y, a)-δ-contraction if

a ∈ ]0, 1[ and δ(T (x1), T (x2)) ≤ a · d(x1, x2) for each (x1, x2) ∈ Y. (1.3)

Construct a fixed point theory for set-valued (Y, a)-δ-contractions.

III. Let (X, d) be a metric space and Y ⊆ X × X. The operator T : X → Pcl(X) is

called a set-valued (Y, a)-Gap-contraction if

a ∈ ]0, 1[ and D(T (x1), T (x2)) ≤ a · d(x1, x2) for each (x1, x2) ∈ Y. (1.4)

Construct a fixed point theory for set-valued (Y, a)-Gap-contractions.

Obviously, as in case I, generalized type conditions on T can be also considered.

The following examples are in connection with the above problems.

Example 1.1. Let (X, d) be a metric space and Y := X ×X. Then a set-valued (Y, a)-

contraction is a set-valued a-contraction ([1], [2], [3], [6], [8], [11], [16], [21], [26], etc.).

Example 1.2. Let (X, d) be a metric space, T : X → Pcl(X) and Y := Graf(T ). Then

a set-valued (Y, a)-contraction is a set-valued a-graphic contraction ([17], [18]).
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Example 1.3. Let (X, d) be a metric space, x0 ∈ X and r > 0. Consider Y := B̃(x0, r)×

B̃(x0, r). Then for T : X → Pcl(X) the set-valued (Y, a)-contraction condition means that

the following Frigon–Granas type condition (see [5], [12]) holds:

there is a ∈ ]0, 1[ such that H(T (x), T (y)) ≤ a · d(x, y) for all x, y ∈ B̃(x0, r). (1.5)

Example 1.4. Let (X, d) be a metric space, Z ∈ Pb(X) and Y := (X\Z)×(X\Z). Then

a set-valued (Y, a)-contraction is a set-valued a-contraction outside a bounded subset, see

[21], [19].

Example 1.5. Let (X, d,≤) be an ordered metric space. Consider Y := {(x, y) ∈ X×X :

x ≤ y or y ≤ x}. Then T : X → Pcl(X) is a set-valued (Y, a)-contraction if (see also

[15], [13]) if

a ∈ ]0, 1[ and H(T (x), T (y)) ≤ a · d(x, y), for all x, y ∈ X,x ≤ y. (1.6)

Example 1.6. Let (X, d) be a metric space, T : X → Pcl(X) and Ai ∈ P (X),

i ∈ {1, 2, . . . ,m}. Suppose that X =
m⋃
i=1

Ai is a cyclic representation with respect to

the set-valued operator T , i.e. T (Ai) ⊂ Ai+1, i ∈ {1, 2, . . . ,m} (where Am+1 = A1).

Consider Y :=
m⋃
i=1

(Ai ×Ai+1). Then T is a set-valued (Y, a)-contraction ([9], [23]) if

a ∈ ]0, 1[ and H(T (x), T (y)) ≤ a · d(x, y)

for all x ∈ Ai and all y ∈ Ai+1, i ∈ {1, 2, . . . ,m}. (1.7)

2. Set-valued (Y, a)-contractions in ordered metric spaces. Let (X,≤) be a par-

tially ordered set. Let X≤ := {(x, y) ∈ X × X : x ≤ y or y ≤ x}. Also, if x, y ∈ X

with x ≤ y, then by [x, y]≤ we will denote the ordered segment joining x and y, i.e.

[x, y]≤ := {z ∈ X : x ≤ z ≤ y}.

Definition 2.1. Let X be a nonempty set. Then, by definition (X, d,≤) is an ordered

metric space if and only if:

(i) (X, d) is a metric space;

(ii) (X,≤) is a partially ordered set;

(iii) (xn)n∈N → x, (yn)n∈N → y and xn ≤ yn for each n ∈ N ⇒ x ≤ y.

The main result of this section is

Theorem 2.2. Let (X, d,≤) be an ordered complete metric space and T : X → Pcl(X)

a set-valued operator. Suppose that the following assertions hold :

(i) there exists x0 ∈ X such that if y ∈ T (x0) then (x0, y) ∈ X≤;

(ii) for each x, y ∈ X, with (x, y) /∈ X≤, there exists c(x, y) ∈ X such that (x, c(x, y))

and (y, c(x, y)) belong to X≤;

(iii) (x, y) ∈ X≤ implies (u ∈ T (x) and v ∈ T (y) then (u, v) ∈ X≤);

(iv) T is a closed set-valued operator ;

(v) T is a set-valued (X≤, a)-contraction.
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Then for each x ∈ X there is a sequence (xn)n∈N of successive approximations of T

starting from x that converges to a fixed point of T .

Proof. Let q > 1 and x1 ∈ T (x0) be arbitrary. Then there exists x2 ∈ T (x1) such that

d(x1, x2) ≤ q · H(T (x0), T (x1)). From (i) we have (x0, x1) ∈ X≤. Using (v) we obtain

H(T (x0), T (x1)) ≤ a · d(x0, x1). As a consequence, d(x1, x2) ≤ q · a · d(x0, x1). Taking

(iii) into account we get (x1, x2) ∈ X≤. Inductively we can construct a sequence (xn)n∈N

having the following two properties:

(a) xn+1 ∈ T (xn) for n ∈ N;

(b) d(xn+1, xn) ≤ q · a · d(xn, xn−1) for n ∈ N
∗.

If we choose q ∈
]
1, a−1

[
then, by standard methods, we obtain the convergence of the

sequence (xn)n∈N to some x
∗ ∈ X. From (iv) it follows that x∗ ∈ FT . Hence Fix(T ) 6= ∅.

We will prove now that for each x ∈ X and each y ∈ T (x) there exists a sequence

(zn)n∈N of successive approximations for T starting from (x, y) ∈ Graf(T ) such that (zn)

converges to a fixed point of T .

Case A. Let z0 ∈ X such that (x0, z0) ∈ X≤. Then there exists z1 ∈ T (z0) such that

d(x1, z1) ≤ q · H(T (x0), T (z0)) ≤ q · a · d(x0, z0). Since (x1, z1) ∈ X≤ we can continue

this procedure and obtain a sequence (zn)n∈N such that zn+1 ∈ T (zn) for n ∈ N and

d(xn+1, zn+1) ≤ q ·a ·d(xn, zn). Choosing q ∈
]
1, a−1

[
we deduce that (zn)→ x

∗ ∈ T (x∗).

Case B. Let z0 ∈ X such that (x0, z0) /∈ X≤. Then, from (ii) there exists c(x0, z0) ∈ X

such that

(1) (x0, c(x0, z0)) ∈ X≤

and

(2) (z0, c(x0, z0)) ∈ X≤.

From (1), using the method from Case A, we can construct a sequence of successive

approximations for T starting from c(x0, z0) which converges to x
∗. From (2) and the

above conclusion, we deduce in the same manner as in Case A that there exists a sequence

(zn) of successive approximations for T starting from z0 such that (zn)→ x
∗. This finishes

the proof.

Remark 2.3. It is an open question whether T satisfying the hypotheses of Theorem 2.2

is a MWP operator.

3. Set-valued graphic contractions. Let (X, d) be a complete metric space and

T : X → Pb(X) be a set-valued operator. If there exist a, b, c ∈ R+ with a + b + c < 1

such that

δ(T (x), T (y)) ≤ a · d(x, y) + b · δ(x, T (x)) + c · δ(y, T (y)) for each x ∈ X and y ∈ T (x),

then the problem is to study when Fix(T ) = SFix(T ) 6= ∅.

In connection with the above problem we have:

Example 3.1. Let (X, d) be a metric space and X = X1 ∪ . . . ∪ Xm be a partition

of X. For each i ∈ {1, 2, . . . ,m}, let xi ∈ Xi be given elements. Consider T : X → Pb(X)
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defined by T (x) := {xi}, if x ∈ Xi. Then T satisfies the above condition and Fix(T ) =

SFix(T ) = {x1, . . . , xm}.

The first result of this section is the following strict fixed point theorem for a set-valued

operator satisfying to a certain contractive type condition on its graph.

Theorem 3.2. Let (X, d) be a complete metric space and T : X → Pb(X) be a closed

set-valued operator. Suppose that

there exist a, b, c ∈ R+ with a+ b+ c < 1 such that

δ(T (x), T (y)) ≤ a · d(x, y) + b · δ(x, T (x)) + c · δ(y, T (y))

for each (x, y) ∈ Graf(T ). (3.1)

Then Fix(T ) = SFix(T ) 6= ∅.

Proof. Let q > 1 and x0 ∈ X be arbitrary. Then there exists x1 ∈ T (x0) such that

δ(x0, T (x0)) ≤ q · d(x0, x1). We have δ(x1, T (x1)) ≤ δ(T (x0), T (x1)) ≤ a · d(x0, x1) +

b · δ(x0, T (x0)) + c · δ(x1, T (x1)) ≤ ad(x0, x1) + bqd(x0, x1) + c · δ(x1, T (x1)). Hence

δ(x1, T (x1)) ≤
a+bq
1−c · d(x0, x1). By this procedure, we can obtain the sequence (xn)n∈N

having the property d(xn, xn+1) ≤ (a+bq1−c )n · d(x0, x1) for each n ∈ N. If we choose

q > b
1−a−c then

a+bq
1−c < 1. Hence (xn)n∈N is a Cauchy sequence in the complete metric

space (X, d). Denote by x∗ the limit of the sequence (xn)n∈N. Since Graf(T ) is a closed

set in X ×X we obtain the first conclusion x∗ ∈ T (x∗).

Let us establish now the relation Fix(T ) = SFix(T ). It is enough to prove that

Fix(T ) ⊂ SFix(T ). For, let x ∈ Fix(T ) be arbitrary. Then, using the hypothesis (with

y = x ∈ T (x)) we get successively: δ(T (x)) ≤ (b+ c) · δ(x, T (x)) ≤ (b+ c) · δ(T (x)). Sup-

pose, by absurdum, that cardT (x) > 1. Then δ(T (x)) > 0 and using the above relation

we get 1 ≤ b+ c, a contradiction. Hence δ(T (x)) = 0 and so {x} = T (x).

Remark 3.3. Theorem 3.2 is an extension of some results given in S. Reich [16] and

I. A. Rus [21].

Moreover, condition (3.1) can be replaced with a more general one, namely: there

exist a ∈ [0, 1[ such that

δ(T (x), T (y)) ≤ a · δ(x, T (x)) for each (x, y) ∈ Graf(T ),

since d(x, y) ≤ δ(x, T (x)) and δ(y, T (y)) ≤ δ(T (x), T (y)).

Next, we present a strict fixed point theorem.

Theorem 3.4. Let (X, d) be a complete metric space, and T : X → Pb(X) be a set-valued

operator. Suppose that

there exist a, b ∈ R+ with a+ b < 1 such that for each x ∈ X

there exists y ∈ T (x) with δ(y, T (y)) ≤ a · d(x, y) + b · δ(x, T (x)). (3.2)

If the map f : X → R+, defined by f(x) := δ(x, T (x)), is lower semicontinuous, then

SFix(T ) 6= ∅.
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Proof. From (3.2), for each x ∈ X there is a y ∈ T (x) such that δ(y, T (y)) ≤ (a+ b) ×

δ(x, T (x)). Then, for each x0 ∈ X we can construct inductively a sequence (xn)n∈N

of successive approximations for T starting from x0, having the property δ(xn, T (xn)) ≤

(a+b)n ·δ(x0, T (x0)). Hence, we will obtain d(xn, xn+1) ≤ δ(xn, T (xn))→ 0 as n→ +∞.

As a consequence, the sequence (xn)n∈N is Cauchy. Denote by x
∗ ∈ X the limit of this

sequence.

If we denote f(xn) := δ(xn, T (xn)), then using the lower semicontinuity of f we can

write:

0 ≤ f(x∗) ≤ lim inf
n→+∞

f(xn) = 0.

So, f(x∗) = 0 and the conclusion {x∗} = T (x∗) follows.

Remark 3.5. If, instead of the lower semicontinuity of f , we suppose that Graf(T ) is

closed, then, since (xn)n∈N is a sequence of successive approximations for T , we immedi-

ately get that x∗ ∈ T (x∗). So, the conclusion of the above result is Fix(T ) 6= ∅. It is an

open question if the above fixed point is a strict fixed point for T .

Remark 3.6. In Theorem 3.4 condition (3.2) can be replaced with a more general one:

there exists a ∈ [0, 1[ such that for each x ∈ X there exists y ∈ T (x) with δ(y, T (y)) ≤

a · δ(x, T (x)), since again d(x, y) ≤ δ(x, T (x)).

Remark 3.7. An open problem is to construct a fixed point theory for set-valued

Y -contractions in K-metric spaces (see [27]).

4. Set-valued contractions outside a bounded set. Let X be a Banach space and

T : X → Pb(X). By definition (see [10], [7]), the operator T is called quasi-bounded if

there exist m,M > 0 such that

‖y‖ ≤ m · ‖x‖+M for each (x, y) ∈ Graf(T ). (4.1)

The number

|T | := inf{m > 0 : there exists M > 0 such that relation (4.1) holds},

is called the quasi-norm of T .

Let us denote by αK the Kuratowski measure of noncompactness on X and let

ϕ : R+ → R+ be a comparison function (i.e. ϕ is non-decreasing and (ϕn(t))n∈N goes

to 0, for each t ≥ 0 as n→ +∞). An operator T : X → Pb(X) is said to be an (αK , ϕ)-

contraction if T is a bounded operator, ϕ is a comparison function and αK(T (A)) ≤

ϕ(αK(A)) for each A ∈ Pb(X) ∩ I(T ).

The first main result of this section is

Theorem 4.1. Let X be a Banach space, Z ∈ Pb(X) and T : X → Pcp,cv(X). Suppose

that the following assertions hold :

(i) T is u.s.c. and compact (i.e. T sends bounded sets into relatively compact sets);

(ii) there exists a ∈ ]0, 1[ such that

H(T (x1), T (x2)) ≤ a · ‖x1 − x2‖ for each (x1, x2) ∈ (X \ Z)× (X \ Z).

Then Fix(T ) 6= ∅.
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Proof. From (ii) the operator T is quasi-bounded with the quasi-norm |T | = a < 1.

For, consider first x ∈ Z. Then ‖T (x)‖ := sup
y∈T (x)

‖y‖ ≤ ‖T (Z)‖ < +∞. If x ∈ X \ Z

then consider an arbitrary but fixed x0 ∈ X \ Z. We have ‖T (x)‖ = H(T (x), {0}) ≤

H(T (x), T (x0)) +H(T (x0), {0}) ≤ a · ‖x− x0‖+ ‖T (x0)‖ ≤ a · ‖x‖+ a · ‖x0‖+ ‖T (x0)‖.

Hence, for all x ∈ X we get ‖T (x)‖ ≤ a · ‖x‖ + max(a · ‖x0‖ + ‖T (x0)‖, ‖T (Z)‖). From

Lemma 2.1 in [10] (p. 59) there exists R > 0 such that T (B̃(0, R)) ⊂ B̃(0, R)). If we take

into account that T (B̃(0, R)) is an invariant subset for T , the proof follows now from the

Bohnenblust–Karlin fixed point theorem (see [20] and the references therein).

A more general result of this type is

Theorem 4.2. Let X be a Banach space, Z ∈ Pb(X) and T : X → Pcp,cv(X). Suppose

that the following assertions hold :

(i) T is an u.s.c. (αK , ϕ)-contraction;

(ii) there exists a ∈ ]0, 1[ such that

H(T (x1), T (x2)) ≤ a · ‖x1 − x2‖ for each (x1, x2) ∈ (X \ Z)× (X \ Z).

Then Fix(T ) 6= ∅.

Proof. The proof runs in a similar way to the above one, with the only difference that,

instead of the Bohnenblust–Karlin fixed point theorem, we use Theorem 4.7 in [20].

In terms of the fixed point structures we can prove the following abstract result.

Theorem 4.3. Let (X,S(X),M0) be a f.p.s. on a Banach space X, T : X ⊸ X and

Z ∈ Pb(X). We suppose that

(i) B̃(0, R)) ∈ S(X) for each R > 0;

(ii) T ∈M0(Y ) for each Y ∈ S(X);

(iii) there exists a ∈ ]0, 1[ such that

H(T (x1), T (x2)) ≤ a · ‖x1 − x2‖ for each (x1, x2) ∈ (X \ Z)× (X \ Z).

Then Fix(T ) 6= ∅.

The above considerations give rise to the following open question:

Problem 4.4. Which generalized set-valued contractions T : X → Pb,cl,cv(X) are quasi-

bounded with the quasi-norm |T | < 1 ?

For the single-valued case see [24] (p. 20) and the references therein (M. C. Anisiu

(1983), F. Aldea (2002)).

5. Cyclic representation of an invariant subset with respect to a set-valued

operator. Let us observe first that the results in Kirk, Srinivasan, Veeramani [9] and

I. A. Rus [23] give rise to the following concept:

Definition 5.1. Let X be a nonempty set and T : X → P (X) a set-valued operator. By

definition, X =
m⋃
i=1

Xi (whereXi ⊂ X for each i ∈ {1, 2, . . . ,m}) is a cyclic representation

of X with respect to T if T (X1) ⊂ X2, . . . , T (Xm−1) ⊂ Xm, T (Xm) ⊂ X1.
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Example 5.2. Let X be a nonempty set and T : X → P (X) a set-valued operator.

We suppose that there exist A ⊂ X and n0 ∈ N
∗ such that Tn0(A) ⊂ A. Then B :=

n0−1⋃
i=1

T i(A) is a cyclic representation of B with respect to T . Moreover B ∈ I(T ).

Remark 5.3. If X :=
m⋃
i=1

Xi is a cyclic representation of X with respect to T : X →

P (X), then Xi (i ∈ {1, 2, . . . ,m}) are invariant subsets for T
m.

The following abstract result is important in our considerations.

Theorem 5.4. Let (X,→) be an L-space, T : X → P (X) a set-valued operator and

X :=
m⋃
i=1

Xi be a cyclic representation of X with respect to T . Suppose that

(i) Xi ∈ Pcl(X) for each i ∈ {1, 2, . . . ,m};

(ii) there exists a convergent sequence (xn)n∈N, where xn ∈ X, xn+1 ∈ T (xn) for each

n ∈ N.

Then
m⋂
i=1

Xi 6= ∅.

Proof. Denote by x∗ the limit of the sequence (xn)n∈N. Because xn ∈
m⋃
i=1

Xi for each

n ∈ N, it follows that infinitely many elements of this sequence lie in each Xi,

i ∈ {1, 2, . . . ,m}. From (i) one sees that x∗ ∈ Xi, i ∈ {1, 2, . . . ,m}. Hence
m⋂
i=1

Xi 6= ∅.

As consequence of the above result we have

Theorem 5.5. Let (X,S(X),M0) be a fixed point structure, where (X,→) is an L-space.

Let Ai ∈ Pcl(X) for each i ∈ {1, 2, . . . ,m}. Define Y :=
m⋃
i=1

Ai and consider T : Y →

P (Y ). Suppose that

(i) Y :=
m⋃
i=1

Ai is a cyclic representation of Y with respect to T ;

(ii) there exists a convergent sequence (xn)n∈N, where xn ∈ X, xn+1 ∈ T (xn) for each

n ∈ N;

(iii) if A :=
m⋂
i=1

Ai 6= ∅ then A ∈ S(X) and T|A ∈M(A).

Then Fix(T ) 6= ∅.

Proof. From (i), (ii) and Theorem 5.4 it follows that A 6= ∅. From the definition of the

fixed point structure and using the assertion (iii) we have Fix(T ) 6= ∅.

Theorem 5.6. Let (X,S(X),M0) be a fixed point structure, where X is a nonempty

set. Let Ai ∈ P (X) for each i ∈ {1, 2, . . . ,m}. Define Y :=
m⋃
i=1

Ai and consider T : Y →

P (Y ). Suppose that

(i) (Ai)i∈{1,2,...,m} is a cyclic representation of Y with respect to T ;

(ii) Ai ∈ S(X) for some i ∈ {1, 2, . . . ,m};

(iii) G1, G2 ∈M
0 implies G1 ◦G2 ∈M

0.
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Then Fix(Tm) 6= ∅.

Proof. Let, for example, Ai ∈ S(X). From Definition 5.1 and (iii) it follows that

Tm ∈M0(Ai). The proof follows now from Remark 5.3.

Some applications of the above results can be obtained by taking in Theorems 5.5

and 5.6 some particular fixed point structures (see I. A. Rus [20]).
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[14] A. Petruşel, I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc.

134 (2006), 411–418.

[15] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some

applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443.

[16] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26–42.

[17] I. A. Rus, The method of successive approximations, Rev. Roumaine Math. Pures Appl.

17 (1972), 1433–1437 (in Russian).

[18] I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math.

Japon. 20 (1975), special issue, 21–24.

[19] I. A. Rus, Normcontraction mappings outside a bounded subset, Itinerant Sem. on Functional

Equations, Approx. and Convexity, 1986, 257–260.



FIXED POINT THEOREMS FOR Y -CONTRACTIONS 237

[20] I. A. Rus, Technique of the fixed point structures for multivalued mappings, Math. Japon.

38 (1993), 289–296.

[21] I. A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj–Napoca 2001.

[22] I. A. Rus, Strict fixed point theory, Fixed Point Theory 4 (2003), 177–183.

[23] I. A. Rus, Cyclic representations and fixed points, Annals of the Tiberiu Popoviciu Seminar,

2005, to appear.
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