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1. Introduction. A common point in two theories, fixed point theory and the theory of

selections, is the consecutive procedure of constructing the resulting answer. In both cases

one first tries to find an approximative answer, i.e., an ε-fixed point or an ε-selection.

The next step deals with an improvement of the accuracy ε. And the final step usually

relates to passing to the limit as ε→ 0+.

In the present note, special attention is paid to a purely analytic expression for the

consecutive improvement procedure (see Section 2, below). The applications to selection

theory for non-convex-valued mappings, to fixed point theory and to minimax theory, are

presented in Sections 3, 4, and 5, respectively.

The geometric progression with functional quotient α : (0,∞)→ (0,∞) is defined by

setting

α0(t) = t, α1(t) = α(t) · t, αn+1(t) = α(αn(t)) · αn(t) for n ∈ N.

For a constant mapping α(·) ≡ q, we obtain the usual geometric progression.

Definition 1. A mapping α : (0,∞)→ (0, 1) is said to be G-summable (or geometrically

summable) at a point t > 0 if the series
∑∞
n=0 αn(t) is convergent.

So, the key question in the present note concerns analytical conditions which guarantee

the G-summability of the quotient α : (0,∞)→ (0, 1) in a neighborhood of zero. Clearly,

if the function α1(t) = α(t) · t is decreasing in some neighborhood of zero, then it suffices

to verify the G-summability of α : (0,∞)→ (0, 1) at a single point t > 0.
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2. Let us consider the following constraints on α : (0,∞)→ (0, 1) introduced by Reich [9]:

(R) ∀t > 0 lim sup
s→t+

α(s) < 1,

(R♯) ∀t ≥ 0 lim sup
s→t+

α(s) < 1.

Lemma 2. Property (R♯) implies G-summability.

Proof. From αn+1(t) = α(αn(t)) · αn(t) and α : (0,∞)→ (0, 1) we see that for any fixed

positive t the decreasing sequence {αn(t)}∞n=1 tends to some l ≥ 0. Passing to the limit

in αn+1(t) = α(αn(t)) ·αn(t) one can check that l = 0, thanks to the property (R). Then

the property (R♯) implies that α(αn(t)) ≤ q for some 0 < q < 1 and for all sufficiently

large n. Hence
∑∞
n=N αn(t) ≤ αN (t) ·∑∞

k=0 q
k <∞.

In view of Lemma 2, in what follows we consider the functions α : (0,∞) → (0, 1)

possessing property (R), but with lims→0+ α(s) = 1. In other words, it can be assumed

that α(0) = 1.

Lemma 3. If α′(0) exists and differs from −∞, then α(·) is not G-summable in any

neighborhood of zero.

Proof. Let α(t) > 1 − Ct for some C > 0 and for all sufficiently small t > 0. We take a

t < 2C−1 and write αi(t) = αi. Then

1

αi+1
− 1

αi
=
αi − αi+1

αi · αi+1
=

1− α(αi)

αi+1
<
Cαi
αi+1

<
C

1− Cαi
< 2C

since α(αi) > 1− Cαi and αi+1 > αi(1− Cαi).
Hence,

1

αn
=

(

1

αn
− 1

αn−1

)

+

(

1

αn−1
− 1

αn−2

)

+ . . .+

(

1

α1
− 1

α0

)

+
1

α0
< An+B

and αn >
1

An+B for some constants A and B.

Below, it will be convenient to introduce the function φ(t) = 1− α(t) and its inverse

function ψ = φ−1. Clearly, here we assume that α(·) is decreasing in some neighborhood

of zero. The proof of the lemma below is a direct generalization of the proof of Lemma 3.

Lemma 4. Let

lim inf
s→0+

{

1

φ(t · (1− φ(t))
− 1

φ(t)
: 0 < t < s

}

> λ > 0.

Then αn(t) < ψ
(

1
λn+µ(t)

)

for all sufficiently small t > 0 and for some constants µ = µ(t).

Sketch of proof. As in Lemma 3 let αi(t) = αi. Then αi+1 = α(αi) · αi = αi(1 − φ(αi))

and
1

φ(αi+1)
− 1

φ(αi)
=

1

φ
(

αi · (1− φ(αi))
) − 1

φ(αi)
> λ

for all sufficiently small t > 0. Hence 1
φ(αn) > λn+ µ, or αn < ψ

(

1
λn+µ

)

.

Applying the Lagrange theorem one can easily show that the hypothesis of Lemma 4

holds for functions with lim inft→0+
tφ′(t)
φ(t) > 0 and with decreasing derivative φ′. In fact,
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for some ct ∈ (t− tφ(t), t) we have

1

φ(t · (1− φ(t))
− 1

φ(t)
=
φ(t)− φ(t− tφ(t))

φ(t) · φ(t− tφ(t))
=

tφ(t)φ′(ct)

φ(t) · φ(t− tφ(t))
>
tφ′(t)

φ(t)

because φ(t− tφ(t)) < φ(t) and φ′(ct) > φ′(t).

Note that such restrictions trivially hold for φ(t) = Ctp, 0 < p < 1. The estimate for

the rate of convergence of iterations of such functions is a well known fact. It appeared in

several articles [2, 5, 17]. Here we present the theorem for iterations of functions without

any power-law majorants.

Theorem 5. Let f : (0,∞) → (0,∞) be an arbitrary function with the following prop-

erties as τ →∞:

f(∞) =∞, (1)

f(τ ) = o(τ ), (2)

−1 < f ′(τ ) ≤ const., (3)
∫ ∞

τ

ds

ef(s)
<∞. (4)

Let

ψ(t) = t1+f(− ln t)/(− ln t) (5)

for all sufficiently small t > 0. Then the function ψ(·) is invertible in a neighborhood

of zero, the function α = 1 − ψ−1 admits no power-law majorants of the type 1 − Ctp,
p ∈ (0, 1), and the function α = 1− ψ−1 is geometrically summable.

Proof.

ψ(t) = eln t(1+f(− ln t)/(− ln t)) = e−g(τ), τ = − ln t, g(τ ) = τ + f(τ ).

Assumption (3) implies that the function g(·) is increasing at infinity, and, hence, it has

an inverse function, say h(·). Then, for φ = ψ−1, we have φ(t) = e−h(τ), t = − ln t.

Indeed,

φ(ψ(t)) = e−h(− ln(ψ(t))) = e−h(g(τ)) = eln t = t.

If, to the contrary, the inequality α(t) = 1 − φ(t) < 1 − Ctp, 0 < p < 1, holds in a

neighborhood of zero, then φ(t) > Ctp, and ψ(t) < C1t
1/p. Thus, in view of (5) and (2)

we see that

1← ψ(t)

t
< C1t

1/p−1 → 0, t→ 0,

which is a contradiction.

Now, let us verify theG-summability of α = 1−ψ−1. Since the derivative of g(·) admits

a finite and positive majorant, the derivative of the inverse function h(·) has a positive

infimum at infinity. Since φ(t) = e−h(τ), τ = − ln t, we see that tφ′(t)
φ(t) = t ·

(

−h(− ln t)
)′

=

h′(τ ) ≥ λ > 0.

So, Lemma 4 gives the upper estimates αn(t) < ψ
(

1
λn+µ(t)

)

. The series
∞
∑

n=0
ψ

(

1
λn+µ(t)

)

is convergent or divergent simultaneously with the series
∞
∑

n=0
ψ

(

1
n

)

by the comparison
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test and the fact that ψ(t)
t → 1 as t → 0. Remembering that τ = − ln t = − ln(n−1) =

lnn, and in view of (5), we see that ψ
(

1
n

)

= 1
n1+f(τ)/τ . Therefore

∞
∑

n=0
ψ

(

1
n

)

< ∞ iff
∫

dx
x1+f(ln x)/ ln x <∞ by the integral test for convergence.

After the substitution z = lnx, we obtain the integral
∫

dz
ef(z) , which is finite precisely

by assumption (4).

The set of all functions with properties (1)–(4) in Theorem 5 forms an infinite-

dimensional convex subset, which includes such examples as f(τ ) = C ln τ , C > 1, and

f(τ ) = Cτp(ln τ )q, 0 < p < 1, q ≥ 0, C > 0. A direct calculation of the functions

ψ, φ, and α is a non-trivial problem. It is rather simple for f(τ ) = 2C
√
τ . In this case,

α(t) = 1− e−(
√
C2−ln t−C)2 .

3. For a nonempty closed subset P ⊂ Y of a Banach space (Y, ‖ · ‖) and for an open ball

D ⊂ Y of radius r with a nonempty intersection P ∩D, we define

δ(P,D) = sup{dist(q, P )/r : q ∈ conv(P ∩D)}.
Clearly, for a convex set P the equality δ(P,D) = 0 holds for each open ball D with

P ∩D 6= ∅. Thus, one can define the value of the function of nonconvexity αP for a set P

at a number r > 0 as αP (r) = sup{δ(P,D)}, where the supremum is taken over the set

of all open balls D of radius r with a nonempty intersection P ∩D. For a closed set P ,

its convexity is equivalent to the identity αP (·) ≡ 0. The more αP differs from zero,

the “less convex” the set P is. Graphs of Lipschitz functions or, graphs of polynomials

with suitable constraints for their coefficients are rather typical examples of sets with

G-summable functions of nonconvexity [14]. Note that in general 0 ≤ αP (r) ≤ 2 and the

deep results of V. Klee imply that Y is an inner product space iff 0 ≤ αP (·) ≤ 1 for each

closed subset P of Y [7].

Recall that lower semicontinuity of a multi-valued mapping F : X → Y between

topological spaces X and Y means that for each x ∈ X and y ∈ F (x), and each open

neighborhood U(y), there exists an open neighborhood V (x) such that F (x′)∩U(y) 6= ∅,
whenever x′ ∈ V (x). Applying the Axiom of Choice to the family of nonempty inter-

sections F (x′) ∩ U(y), x′ ∈ V (x), we see that LSC mappings are exactly those which

admit local (noncontinuous) selections. A single-valued mapping f : X → Y is said to

be a selection of a multi-valued mapping F : X → Y if f(x) ∈ F (x), x ∈ X. For a

metric range space Y and for ε > 0 a single-valued mapping f : X → Y is said to be an

ε-selection of F : X → Y if dist(f(x), F (x)) < ε, x ∈ X. Note that for the class of upper

semicontinuous mappings between metric spaces the term “ε-selection” is frequently used

for mappings f : X → Y whose graphs are ε-close to the graph of F [11].

Theorem 6. Let F : X → Y be a multi-valued lower semicontinuous mapping from

a paracompact space X into a Banach space Y . Let α : (0,∞) → (0, 1) be a common

majorant for all the functions of nonconvexity αF (x), x ∈ X. Let f : X → Y be a

single-valued continuous ε-selection of F . Then there exists a single-valued continuous

α(ε)ε-selection g of F .

Sketch of proof. For each x ∈ X, the open ball D(f(x); ε) intersects the set F (x). The
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continuity of f and the lower semicontinuity of F together imply the lower semicontinuity

of the mappings

x 7→ F (x) ∩D(f(x); ε); x 7→ conv
(

F (x) ∩D(f(x); ε)
)

; x 7→ conv
(

F (x) ∩D(f(x); ε)
)

.

Applying the classical Michael selection theorem to the last multi-valued mapping we find

a single-valued continuous g : X → Y such that g(x) ∈ conv
(

F (x)
⋂

D(f(x); ε)
)

, x ∈ X.

By the definition of the function of nonconvexity αF (x) we see that dist
(

g(x);F (x)
)

≤
αF (x)(ε)ε < α(ε)ε, i.e., g is an a(ε)ε-selection of F .

The direct repeated application of Theorem 6 together with the results of Section 2

gives a selection theorem for non-convex-valued mappings.

Theorem 7 ([14]). Let F : X → Y be a lower semicontinuous mapping from a paracom-

pact space X into a Banach space Y . Let α : (0,∞) → (0, 1) and β : (0,∞) → (0, 1) be

two functions such that α is geometrically summable and αF (x)(t) < β(t) < α(t), x ∈ X,

t > 0. Then F admits a continuous single-valued selection.

Note that, for a constant α(·) ≡ q, Theorem 7 was proved by Michael [7].

4. Let k : (0,∞) → (0, 1). A multi-valued mapping F associating to each point x of

a metric space (X, d) some nonempty subset F (x) ⊂ X, is called a k-contraction if

H(F (x), F (y)) ≤ k(d(x, y)) · d(x, y), x 6= y. This inequality means that, for each ε >

k(d(x, y)) · d(x, y), the sets F (x) and F (y) lie in the ε-neighborhood of each other.

Reich [9, 10] showed that property (R) guarantees the existence of a fixed point for

an arbitrary compact-valued k-contraction F of a complete metric space. He also stated

a (still) open problem concerning the possibility of removing the compactness condition,

[10, 12]. In [1, 8], the positive answer was given when (R♯) is substituted for (R). Repeating

the well-known approximation procedure for fixed points, [3], and applying the results of

Section 2 we obtain

Theorem 8 ([15]). Let k(·) be a function possessing the property (R) and admitting a

geometrically summable majorant. Then each closed-valued k-contraction F of a complete

metric space (X, d) has a fixed point.

As to fixed point theorems for self-mappings of topologically “nice” domains instead

of contractions, the following Glicksberg type theorem is true.

Theorem 9 ([14]). Let K be an ANR compact subset of a Banach space and let K have

the fixed point property with respect to single-valued continuous mappings. Then K has

the fixed point property with respect to the upper semicontinuous multi-valued mappings

whose values have geometrically summable functions of nonconvexity.

5. The John von Neumann–Ky Fan–Sion minimax theorem [16] stated the equality

maxx∈X miny∈Y f(x, y) = miny∈Y maxx∈X f(x, y) for convex subcompacta X and Y of

locally convex topological linear spaces and for a real-valued function f : X × Y → R

which satisfies the following assumptions:

(a) ∀c ∈ R ∀x0 ∈ X the set {y ∈ Y : f(x0, y) ≤ c} is convex and compact;

(b) ∀d ∈ R ∀y0 ∈ Y the set {x ∈ X : f(x, y0) ≥ d} is convex and compact.
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There exist many generalizations of this fundamental theorem. Most of them deal

with various kinds of generalized, topological, or axiomatically defined convexities in

(a) and (b). The key role in all approaches to minimax theorems is played by the so-

called Knaster–Kuratowski–Mazurkiewicz (KKM) principle. Having in mind this princi-

ple, many authors exploited not precisely the convexity assumption, but only the basic

hereditary property that the intersection of convex sets is also convex [4, 6, 18].

For the sets P with a fixed majorant of their functions of nonconvexity an analog of

another principal property, somewhat symmetrical to intersections holds. Namely, that

the unions of directly ordered family of arbitrary convex sets are also convex sets.

Lemma 10 ([13]). Let P1 ⊂ P2 ⊂ . . . ⊂ Pn ⊂ . . . be a sequence of subsets in a Banach

space B such that αPn
(t) < β(t) < α(t), n ∈ N, t > 0. Then the function of nonconvexity

αP of the closure P = Cl
(
⋃

n Pn
)

of their union is pointwise less than α.

In [13], instead of versions of the KKM principle, the selection theory (see Section 3)

was used as a base for obtaining minimax theorems. Such minimax theorems include the

cases in which the finite intersections of sublevel and suplevel sets are nonempty, but

non-connected.

Theorem 11 ([13]). Let f : X × Y → R be a function on the Cartesian product of two

AR-subcompacta in Banach spaces B1 and B2. Let α : (0,∞)→ (0, 1) be a geometrically

summable function. Assume that:

(a′) ∀c ∈ R ∀x0 ∈ X the function of nonconvexity for the set {y ∈ Y : f(x0, y) ≤ c} is

pointwise less than α;

(b′) ∀d ∈ R ∀y0 ∈ Y , the function of nonconvexity of the set {x ∈ X : f(x, y0) ≥ d} is

pointwise less than α.

Then maxX(minY f(x, y)) = minY (maxX f(x, y)).

The author would like to express his gratitude to prof. J. Jachymski for helpful dis-

cussions and to the referee for her/his very useful comments and remarks.
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[13] D. Repovš, P. V. Semenov, A minimax theorem for functions with possibly nonconnected

intersections of sublevel sets, J. Math. Anal. Appl. 314 (2006), 537–545.

[14] P. V. Semenov, Fixed-points theorems under controllable rejection of the convexity of values

of a multi-valued mapping , Mat. Sb. 189:3 (1998), 141–160 (in Russian); English transl.:

Sb. Math. 189 (1998), 461–480.

[15] P. V. Semenov, On fixed points of multi-valued contractions, Funktsional. Anal. i Prilozhen.

36:2 (2002), 89–92 (in Russian); English transl.: Funct. Anal. Appl. 36 (2002), 159–161.

[16] M. Sion, On general minimax theorem, Pacific J. Math. 8 (1958), 171–176.

[17] W. J. Thron, Sequences generated by iterations, Trans. Amer. Math. Soc. 96 (1960), 38–53.

[18] Wu Wen-Tsun, A remark on the fundamental theorem in the theory of games, Sci. Record

(N.S.) 3 (1959), 229–233.




