PERSPECTIVES IN OPERATOR THEORY
BANACH CENTER PUBLICATIONS, VOLUME 75
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2007

SOME SIMPLE PROOFS IN HOLOMORPHIC
SPECTRAL THEORY

GRAHAM R. ALLAN

Department of Pure Mathematics and Mathematical Statistics
Centre for Mathematical Sciences, University of Cambridge
Wilberforce Road, Cambridge CB3 0WB, U.K.
E-mail: g.r.allan@dpmms.cam.ac.uk

Abstract. This paper gives some very elementary proofs of results of Aupetit, Ransford and
others on the variation of the spectral radius of a holomorphic family of elements in a Ba-
nach algebra. There is also some brief discussion of a notorious unsolved problem in automatic
continuity theory.

1. Introduction. Let A be a complex, unital Banach algebra, let U be an open subset
of C and let f : U — A be an A-valued holomorphic function. There is a considerable
literature concerned with the way in which the spectrum Sp(f(z)) (and, in particular,
the spectral radius p(f(z))) depends on z (see, e.g. [2], [3], [7], [8]).

In this note, we will give elementary proofs of various results on the variation of the
spectral radius of f(z). In all that follows, A will be a complex, unital Banach algebra
(which is not necessarily commutative). To avoid confusion with other conventions, note
that, for every a € A, we define its spectral radius p(a) = pa(a) to be

p(a) =sup{|A[ : A € Spa},

and it is recalled that

pla) = lim [l = inf fla
From this last ‘inf’ formula, it is immediate that the function p : A — R* is upper-
semicontinuous; it is very important to realize that p is not in general continuous (see
e.g. [2], Chap. 1, §5).

It is also worth remarking that if, following [4] (Chapter 1, §4, Corollary 2), we define
Eun(A) to be the set of all unital, submultiplicative norms on A that are equivalent to
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the initial norm ||. ||, then it is simple to show that
p(a) = inf{p(a) : p € Eun(A4)}.
(This remark gives another proof that the spectral radius is upper-semicontinuous.)
For holomorphic f : U — A, we will generally write pf : U — RT for the function
z+— p(f(2)) (z € U). In [8], Vesentini proved that pf is subharmonic on U. This property
was famously exploited by Aupetit [1] in his remarkable proof of Johnson’s uniqueness-of-

norm theorem. For later reference it is recalled that the Johnson theorem may be stated
as follows:

THEOREM (B. E. Johnson). Let A, B be Banach algebras, with B semisimple, and let
T : A — B be an algebra homomrphism such that T(A) = B. Then T is continuous.

In [6], Ransford gave a still more elementary proof of the Johnson theorem, in which
subharmonic functions do not appear explicitly. The aim of this note is to show that a
good deal of the holomorphic theory of the spectral radius may be obtained, in a very
elementary way, by using a device similar to that of Ransford.

The essential step in Ransford’s proof was provided by the deduction of a special case
of the classical Hadamard three-circles theorem, as follows:

LEMMA 1 (Ransford). Let A be a unital Banach algebra, let R > 1 and let f be a holo-
morphic A-valued function on a neighbourhood of the annulus {z € C: R~ < |z| < R}.
Then

(pf)(1)*> < sup (pf)(z) sup (pf)(2).

|z|=R~! lz|=R
REMARK. Ransford stated his lemma for polynomials with coefficients from A; the form
of the lemma for holomorphic A-valued f is no harder to prove, and fits better with what
follows.
The present note is greatly influenced by Ransford’s proof of Lemma 1; but it is useful
to give a slightly more general version of the result (Theorem 4).

2. A maximum principle and its consequences. We have recalled that, for every
a € A, p(a) =lim, . ||a™||*/". Tt is a very useful triviality that, if we let n run through
powers of 2, say let gx(a) = ||a2k||27k, then gi is a monotone decreasing sequence with,
of course, gi(a) — p(a) as k — oo. This fact will be combined with the following simple

variant of Dini’s theorem:

LEMMA 2 (Dini lemma). Let T be a compact Hausdorff space, and let (hy)n>1 be a
monotone decreasing sequence of continuous functions hy, : T — RT; define h(t) =
lim,, o0 i (t) (t € T). Then supp hy, — supp h as t — oo.

Note that, in this lemma, h is not required to be continuous and, indeed the convergence
of h,, to h need not be uniform. (This point is important since, otherwise, we would have
a false deduction of continuity of the spectral radius.)

In fact Lemma 2 had also been proved by Zemanek in his doctoral thesis [9], as a step
in the proof of his well known characterization of the radical of a Banach algebra. But,
in the published version in [10], the lemma does not appear, since a different method
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of proof was used. The use of the Dini lemma in [9] was essentially the same as in the
proof of the following Lemma 3. We remark that (very elementary) classical function
theory enters the present account entirely via that lemma. As throughout the paper, A
is a complex, unital Banach algebra.

LEMMA 3 (Weak maximum principle for the spectral radius). Let open U C C and let
f:U — A be holomorphic. Then for every compact K C U and every zy € K,

(pf)(z0) < sup (pf)(2).
z€OK

Proof. For every holomorphic g : U — A, we may use the Hahn-Banach theorem to find

x € A* with [|x|| =1 and x(g(20)) = [lg(20)-
Then y o g: U — C is holomorphic so that, by the classical maximum principle,

lg(20)[l = [(x9)(20)| < sup [(xg)(2)| < sup |lg(2)]|.
z€0K z€OK

Apply the outer inequality to g = 2" (k=1,2,...), take 2¥th roots and then let & — oo.
Using the Dini lemma we deduce that

(pf)(2z0) < sup (pf)(2).
z€O0K

The key step for all the other results in this paper, is the following form of three-circles
theorem (Lemma 1 being essentially the case |z|2 = R1Ry). The proof adapts one of the
standard proofs of the Hadamard three-circles theorem.

THEOREM 4 (Spectral three-circles theorem). Let 0 < Ry < Rg, let U be an open neigh-
bourhood of the annulus A(R1,Re) = {2z € C: Ry < |z| < R2} and let f : U — A be holo-
morphic. For j =1,2 let M; = supy.|_g, (pf)(2). Then, for every z with Ri < [2| < Ra,

(pf)(2) < M{M; ™",
where t € (0,1) is the unique number with |z| = RiRéft.

Proof. Write r = |z|. For integers p,q with ¢ > 1, we apply Lemma 3 to the function
|2|Pp(f(2))? = p(2P f(2)?) on A(Ry, R2) and then take gth roots, obtaining

rP/9(pf)(z) < max(RY/* My, R/ My). (%)

Let « be the real number such that R§M; = R$ Ms, and then apply () to a sequence of
integer pairs (py, ¢, ) with p, /g, — «. Then we deduce

r*(pf)(2) < Ry My = R5 Ms. ()

But logr = tlog Ry + (1 — t)log Re and alog Ry + log M1 = «alog Ry + log M, so we
easily deduce from (xx) that log(pf)(z) < tlog M7 + (1 — t)log M3, which is equivalent
to the stated result.

The first application is a Liouville theorem: we write the proof to show that, for this
result, Lemma 1 is sufficient.

COROLLARY 5. Let A be a complex unital Banach algebra, and let f : C — A be an
A-valued entire function. Suppose that pf is bounded on C; then pf is constant.
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Proof. Let M = sup,c(pf)(2); we may clearly suppose that M > 0. Suppose, towards a
contradiction, that pf is not constant; then m = inf.cc(pf)(2) < M and we may choose
€ > 0 with m + ¢ < M. Choose zy € C with (pf)(z0) < m+ ¢€; by considering f(z + zo) if
necessary, we may assume that zy = 0. By the upper-semicontinuity of pf at 0, there is
some 0 > 0 such that (pf)(z) < m + € whenever |z| <¢.

Let 0 # a € C and choose R > 1 for which |a|/R < min(|al,d) < |a] < R/|a|. Then,
by applying Theorem 4 (or just Lemma 1) to the annulus centered at 0, with radii |a|/R
and R/|a| we have

PNEPE s (NG s () < (m+ M

Thus (m + €)M is an upper bound for (pf)? on C (trivially at a = 0), so that m+¢ > M,
which is a contradiction. This proves the theorem.

We next show that the three-circles theorem may be used to give a stronger maximum
principle than that in Lemma 3.

THEOREM 6 (Maximum principle for the spectral radius). Let D be a connected open
subset of C and let f : D — A be holomorphic. Suppose that there is some zy € D with
(pf)(z) < (pf)(20) for all z € D. Then pf is constant on D.

Proof. We first show that pf is constant on a neighbourhood of 2.

Let R > 0 be such that {z : |z — 29| < R} C D. Let m = inf{(pf)(2) : |z — 20| < R/2},
let € > 0 and choose z; with |21 — 29| < R/2 and such that (pf)(z1) < m+e. Then use the
upper-semicontinuity of p to choose §, with 0 < 6 < |21 — 20|, such that (pf)(z) < m+e€
for all z with |z — 21| < 4.

Write M = (pf)(20), observe that (pf)(z) < M for all z with |z — 21| < R/2 and
apply Theorem 4 to an annulus centered at z; with radii § and R/2. Then, for a certain
te(0,1),

M = (pf)(20) < (m + €)' M1,

whence M < m+-e for all e > 0. So m = M and thus (pf)(z) is constant for |z—zo| < R/2.
Now define

E={zeD:(pf)(z) = (pf)(20)} ={z € D: (pf)(2) = (pf)(20)}-
By the upper-semicontinuity of p, F is relatively closed in D and, by the argument of the
last paragraph, F is open. Since zg € F, then E #* @& and so, by the connectedness of D,
FE = D and the theorem is proved.

We now again use the three-circles theorem, this time to prove a lemma of Aupetit
([3], Theorem 5.5.1) which is a key step in his proof of Johnson’s theorem.

Recall that, if X,Y are Banach spaces and if T : X — Y is a linear mapping (not
necessarily continuous), then the separating subspace, 3(T), of T is the set of all y € ¥
such that Tz, — y for some sequence (z,) in X for which x,, — 0 as n — oo. It is
elementary that X(7) is a closed subspace of Y, and that T is continuous if and only if
¥(T) = {0} (which is a formulation of the closed graph theorem).

If A, B are unital Banach algebras and T : A — B is a unital homomorphism with
T(A) = B, then X(T) is a proper closed ideal of B.
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Remark also that, if T: A — B is a unital homomorphism of Banach algebras and if
a € A, then certainly Spp(Ta) C Spy(a), so that pp(Ta) < pa(a). Following Aupetit, we
give the following lemma for any linear mapping T : A — B for which pg(Ta) < pa(a)
(a € A); by the remark just made, this includes the case in which T" is a homomorphism.

THEOREM 7 (Aupetit). Let A, B be unital Banach algebras and let T : A — B be a linear
mapping such that pp(Ta) < pa(a) for every a € A. Then, for every a € A and every
beX(T),
pp(Ta) < pp(T(a) +b).

REMARK. It appears that the more special three-circles lemma of Ransford (Lemma 1)
leads to the weaker inequality: pp(Ta)? < pa(a)pp(Ta + b); but it should be remarked
that this inequality is still sufficient for the deduction of Corollary 8. (That is the version
of the result given in [5], Theorem 5.1.9.)

Proof of Theorem 7. Let 0 < r <1 < Randlet f : C — B be holomorphic. By Theorem 4,
(pBf)(1) < sup (pBf)(2)* Is‘upR(pr)(Z)l‘t, (*)
where ¢t = log R/(log R — log ).

Let b € X(T), let a € A and let € > 0. By an elementary result (referred to in §1) we
may, by choice of equivalent norm on B, suppose that |Ta+b|| < pp(Ta+b)+e. Choose
a sequence (a,) in A with a,, = 0in A and Ta,, — b in B.

For each n =1,2,..., apply (*) to fn(z) = T(a+ ay) — 2Ta,. Then, since pg(Tx) <
pa(z) forall z € A,

pB(Ta) = (ppfn)(1) < sup pp(T(a+ a,) — 2Tay,)t sup pa(a+ a, — za,)' ™"

|z|=r |z|=R
< (IT(a+ an)l| + rlITanl))*(la + anll + Rllan )"
First let n — oo and deduce that
pp(Ta) < ([ Ta+ bl +r[bl)*[lal'~".
Now, for each fixed r > 0, let R — oo and note that then t = log R/(log R — logr) — 1,
so that
pp(Ta) < ||Ta+ bl +r(|b],

for every r > 0. Thus pp(Ta) < ||Ta + b|| < pg(Ta+ b) + €. This holds for every e > 0
so that the result follows.

COROLLARY 8 (Generalized Johnson theorem). Let A, B be Banach algebras and let T :
A — B be a linear mapping with pg(Ta) < pa(a) for all a € A. If T(A) = B then
X(T) C J(B) (the Jacobson radical of B); in particular, if B is semisimple then T is
continuous.

Proof. Let b € ¥(T) and let ¢ be any quasi-nilpotent element of B. Since T(4) = B,
there is an a € A with Ta = ¢ — b. From Theorem 7, pg(c — b) < pp(c) = 0. By a well
known result of Zeméanek [10], b € J(B).

COROLLARY 9. Let A, B be unital Banach algebras and let T : A — B be a linear mapping
such that pg(Ta) < pa(a) for every a € A. Let b € X(T); then for every sequence (by,)
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in T(A) such that b, — b (or even such that, merely, pp(b, —b) — 0), it follows that
p5(bn) — 0.
Finally, we recall the notorious unsolved problem in this area:

Let A, B be Banach algebras, with B semisimple, and let T : A — B be a homomor-

phism with T(A) = B. Is it true that T is necessarily continuous?
REMARKS

1. It is equivalent to drop the requirement that B be semisimple, and then to ask whether
3(T) C J(B).

2. An equivalent formulation is to ask whether Sp(b) = {0} for every b € X(T). It is
known (and quite easy to prove) that Sp(b) is connected, and, of course, 0 € Sp(b).

3. We may divide the problem into two parts:

(i) show that ker T' is closed;
(ii) with the additional hypothesis that ker T is closed, prove that T is continuous.

Then each of these two sub-problems appears to be open.

4. If we just assume (with B semisimple) that T': A — B is linear with pp(Ta) < pa(a)
for every a € A and that T'(A) = B, then it is not the case that T need be continuous
(see e.g. [5], following Theorem 5.1.9; it is easy to see that, in this example, ker T' is not

even closed). But it appears that the question of whether every element of X(7") need be
quasi-nilpotent may still be open in this more general case.

We conclude with a simple result that, just possibly, might have relevance to the
unsolved problem under discussion (see Remark 2 above).

COROLLARY 10. Let A, B be Banach algebras and let T : A — B be a linear mapping
with pp(Ta) < pa(a) for alla € A and T(A) = B. Let b be an element of the separating
subspace X(T). Suppose that, for some open neighbourhood D of 0 in C, there is a holo-
morphic function f : D — B with f(0) = b and such that f(z) € T(A) for all z € U\ {0}.

Then b is quasi-nilpotent.

Proof. Since f(z) — f(0) =bas z — 0 in D, it follows from Corollary 9 that for every
€ > 0 there exists § > 0 such that pp(f(z)) < € for all z € U with 0 < |z| < §. It then
follows from the weak maximum principle (Lemma 3) that pp(b) = 0.
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