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Abstra
t. This paper gives some very elementary proofs of results of Aupetit, Ransford andothers on the variation of the spe
tral radius of a holomorphi
 family of elements in a Ba-na
h algebra. There is also some brief dis
ussion of a notorious unsolved problem in automati

ontinuity theory.1. Introdu
tion. Let A be a 
omplex, unital Bana
h algebra, let U be an open subsetof C and let f : U → A be an A-valued holomorphi
 fun
tion. There is a 
onsiderableliterature 
on
erned with the way in whi
h the spe
trum Sp(f(z)) (and, in parti
ular,the spe
tral radius ρ(f(z))) depends on z (see, e.g. [2℄, [3℄, [7℄, [8℄).In this note, we will give elementary proofs of various results on the variation of thespe
tral radius of f(z). In all that follows, A will be a 
omplex, unital Bana
h algebra(whi
h is not ne
essarily 
ommutative). To avoid 
onfusion with other 
onventions, notethat, for every a ∈ A, we de�ne its spe
tral radius ρ(a) ≡ ρA(a) to be

ρ(a) = sup{|λ| : λ ∈ Sp a},and it is re
alled that
ρ(a) = lim

n→∞
‖an‖1/n = inf

n≥1
‖an‖1/n.From this last `inf' formula, it is immediate that the fun
tion ρ : A → R

+ is upper-semi
ontinuous ; it is very important to realize that ρ is not in general 
ontinuous (seee.g. [2℄, Chap. 1, �5).It is also worth remarking that if, following [4℄ (Chapter 1, �4, Corollary 2), we de�ne
Eun(A) to be the set of all unital, submultipli
ative norms on A that are equivalent to2000 Mathemati
s Subje
t Classi�
ation: Primary 46H40; Se
ondary 31A05, 46H10.The paper is in �nal form and no version of it will be published elsewhere.[9℄ 
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10 G. R. ALLANthe initial norm ‖. ‖, then it is simple to show that
ρ(a) = inf{p(a) : p ∈ Eun(A)}.(This remark gives another proof that the spe
tral radius is upper-semi
ontinuous.)For holomorphi
 f : U → A, we will generally write ρf : U → R+ for the fun
tion

z 7→ ρ(f(z)) (z ∈ U). In [8℄, Vesentini proved that ρf is subharmoni
 on U . This propertywas famously exploited by Aupetit [1℄ in his remarkable proof of Johnson's uniqueness-of-norm theorem. For later referen
e it is re
alled that the Johnson theorem may be statedas follows:Theorem (B. E. Johnson). Let A, B be Bana
h algebras, with B semisimple, and let
T : A → B be an algebra homomrphism su
h that T (A) = B. Then T is 
ontinuous.In [6℄, Ransford gave a still more elementary proof of the Johnson theorem, in whi
hsubharmoni
 fun
tions do not appear expli
itly. The aim of this note is to show that agood deal of the holomorphi
 theory of the spe
tral radius may be obtained, in a veryelementary way, by using a devi
e similar to that of Ransford.The essential step in Ransford's proof was provided by the dedu
tion of a spe
ial 
aseof the 
lassi
al Hadamard three-
ir
les theorem, as follows:Lemma 1 (Ransford). Let A be a unital Bana
h algebra, let R > 1 and let f be a holo-morphi
 A-valued fun
tion on a neighbourhood of the annulus {z ∈ C : R−1 ≤ |z| ≤ R}.Then

(ρf)(1)2 ≤ sup
|z|=R−1

(ρf)(z) sup
|z|=R

(ρf)(z).Remark. Ransford stated his lemma for polynomials with 
oe�
ients from A; the formof the lemma for holomorphi
 A-valued f is no harder to prove, and �ts better with whatfollows.The present note is greatly in�uen
ed by Ransford's proof of Lemma 1; but it is usefulto give a slightly more general version of the result (Theorem 4).2. A maximum prin
iple and its 
onsequen
es. We have re
alled that, for every
a ∈ A, ρ(a) = limn→∞ ‖an‖1/n. It is a very useful triviality that, if we let n run throughpowers of 2, say let gk(a) = ‖a2

k

‖2
−k , then gk is a monotone de
reasing sequen
e with,of 
ourse, gk(a) → ρ(a) as k → ∞. This fa
t will be 
ombined with the following simplevariant of Dini's theorem:Lemma 2 (Dini lemma). Let T be a 
ompa
t Hausdor� spa
e, and let (hn)n≥1 be amonotone de
reasing sequen
e of 
ontinuous fun
tions hn : T → R+; de�ne h(t) =

limn→∞ hn(t) (t ∈ T ). Then supT hn → supT h as t → ∞.Note that, in this lemma, h is not required to be 
ontinuous and, indeed the 
onvergen
eof hn to h need not be uniform. (This point is important sin
e, otherwise, we would havea false dedu
tion of 
ontinuity of the spe
tral radius.)In fa
t Lemma 2 had also been proved by Zemánek in his do
toral thesis [9℄, as a stepin the proof of his well known 
hara
terization of the radi
al of a Bana
h algebra. But,in the published version in [10℄, the lemma does not appear, sin
e a di�erent method



HOLOMORPHIC SPECTRAL THEORY 11of proof was used. The use of the Dini lemma in [9℄ was essentially the same as in theproof of the following Lemma 3. We remark that (very elementary) 
lassi
al fun
tiontheory enters the present a

ount entirely via that lemma. As throughout the paper, Ais a 
omplex, unital Bana
h algebra.Lemma 3 (Weak maximum prin
iple for the spe
tral radius). Let open U ⊆ C and let
f : U → A be holomorphi
. Then for every 
ompa
t K ⊂ U and every z0 ∈ K,

(ρf)(z0) ≤ sup
z∈∂K

(ρf)(z).Proof. For every holomorphi
 g : U → A, we may use the Hahn-Bana
h theorem to �nd
χ ∈ A∗ with ‖χ‖ = 1 and χ(g(z0)) = ‖g(z0)‖.Then χ ◦ g : U → C is holomorphi
 so that, by the 
lassi
al maximum prin
iple,

‖g(z0)‖ = |(χg)(z0)| ≤ sup
z∈∂K

|(χg)(z)| ≤ sup
z∈∂K

‖g(z)‖.Apply the outer inequality to g = f2
k (k = 1, 2, . . . ), take 2kth roots and then let k → ∞.Using the Dini lemma we dedu
e that

(ρf)(z0) ≤ sup
z∈∂K

(ρf)(z).The key step for all the other results in this paper, is the following form of three-
ir
lestheorem (Lemma 1 being essentially the 
ase |z|2 = R1R2). The proof adapts one of thestandard proofs of the Hadamard three-
ir
les theorem.Theorem 4 (Spe
tral three-
ir
les theorem). Let 0 < R1 < R2, let U be an open neigh-bourhood of the annulus ∆(R1, R2) ≡ {z ∈ C : R1 ≤ |z| ≤ R2} and let f : U → A be holo-morphi
. For j = 1, 2 let Mj = sup|z|=Rj
(ρf)(z). Then, for every z with R1 < |z| < R2,

(ρf)(z) ≤ M t
1M

1−t
2 ,where t ∈ (0, 1) is the unique number with |z| = Rt
1R

1−t
2 .Proof. Write r = |z|. For integers p, q with q ≥ 1, we apply Lemma 3 to the fun
tion

|z|pρ(f(z))q = ρ(zpf(z)q) on ∆(R1, R2) and then take qth roots, obtaining
rp/q(ρf)(z) ≤ max(R

p/q
1 M1, R

p/q
2 M2). (∗)Let α be the real number su
h that Rα

1 M1 = Rα
2 M2, and then apply (∗) to a sequen
e ofinteger pairs (pn, qn) with pn/qn → α. Then we dedu
e

rα(ρf)(z) ≤ Rα
1 M1 = Rα

2 M2. (∗∗)But log r = t log R1 + (1 − t) log R2 and α log R1 + log M1 = α log R2 + log M2, so weeasily dedu
e from (∗∗) that log(ρf)(z) ≤ t log M1 + (1 − t) log M2 , whi
h is equivalentto the stated result.The �rst appli
ation is a Liouville theorem: we write the proof to show that, for thisresult, Lemma 1 is su�
ient.Corollary 5. Let A be a 
omplex unital Bana
h algebra, and let f : C → A be an
A-valued entire fun
tion. Suppose that ρf is bounded on C; then ρf is 
onstant.



12 G. R. ALLANProof. Let M = supz∈C(ρf)(z); we may 
learly suppose that M > 0. Suppose, towards a
ontradi
tion, that ρf is not 
onstant; then m ≡ infz∈C(ρf)(z) < M and we may 
hoose
ǫ > 0 with m + ǫ < M . Choose z0 ∈ C with (ρf)(z0) < m + ǫ; by 
onsidering f(z + z0) ifne
essary, we may assume that z0 = 0. By the upper-semi
ontinuity of ρf at 0, there issome δ > 0 su
h that (ρf)(z) < m + ǫ whenever |z| ≤ δ.Let 0 6= a ∈ C and 
hoose R > 1 for whi
h |a|/R < min(|a|, δ) ≤ |a| < R/|a| . Then,by applying Theorem 4 (or just Lemma 1) to the annulus 
entered at 0, with radii |a|/Rand R/|a| we have

(ρf)(a)2 ≤ sup
|z|=|a|/R

(ρf)(z) sup
|z|=R/|a|

(ρf)(z) ≤ (m + ǫ)M.Thus (m+ ǫ)M is an upper bound for (ρf)2 on C (trivially at a = 0), so that m+ ǫ > M ,whi
h is a 
ontradi
tion. This proves the theorem.We next show that the three-
ir
les theorem may be used to give a stronger maximumprin
iple than that in Lemma 3.Theorem 6 (Maximum prin
iple for the spe
tral radius). Let D be a 
onne
ted opensubset of C and let f : D → A be holomorphi
. Suppose that there is some z0 ∈ D with
(ρf)(z) ≤ (ρf)(z0) for all z ∈ D. Then ρf is 
onstant on D.Proof. We �rst show that ρf is 
onstant on a neighbourhood of z0.Let R > 0 be su
h that {z : |z−z0| ≤ R} ⊂ D. Let m = inf{(ρf)(z) : |z−z0| < R/2},let ǫ > 0 and 
hoose z1 with |z1−z0| < R/2 and su
h that (ρf)(z1) < m+ǫ. Then use theupper-semi
ontinuity of ρ to 
hoose δ, with 0 < δ < |z1 − z0|, su
h that (ρf)(z) < m + ǫfor all z with |z − z1| ≤ δ.Write M = (ρf)(z0), observe that (ρf)(z) ≤ M for all z with |z − z1| ≤ R/2 andapply Theorem 4 to an annulus 
entered at z1 with radii δ and R/2. Then, for a 
ertain
t ∈ (0, 1),

M = (ρf)(z0) ≤ (m + ǫ)tM1−t,when
e M ≤ m+ǫ for all ǫ > 0. So m = M and thus (ρf)(z) is 
onstant for |z−z0| < R/2.Now de�ne
E = {z ∈ D : (ρf)(z) = (ρf)(z0)} = {z ∈ D : (ρf)(z) ≥ (ρf)(z0)}.By the upper-semi
ontinuity of ρ, E is relatively 
losed in D and, by the argument of thelast paragraph, E is open. Sin
e z0 ∈ E, then E 6= ∅ and so, by the 
onne
tedness of D,

E = D and the theorem is proved.We now again use the three-
ir
les theorem, this time to prove a lemma of Aupetit([3℄, Theorem 5.5.1) whi
h is a key step in his proof of Johnson's theorem.Re
all that, if X, Y are Bana
h spa
es and if T : X → Y is a linear mapping (notne
essarily 
ontinuous), then the separating subspa
e, Σ(T ), of T is the set of all y ∈ Ysu
h that Txn → y for some sequen
e (xn) in X for whi
h xn → 0 as n → ∞. It iselementary that Σ(T ) is a 
losed subspa
e of Y , and that T is 
ontinuous if and only if
Σ(T ) = {0} (whi
h is a formulation of the 
losed graph theorem).If A, B are unital Bana
h algebras and T : A → B is a unital homomorphism with
T (A) = B, then Σ(T ) is a proper 
losed ideal of B.



HOLOMORPHIC SPECTRAL THEORY 13Remark also that, if T : A → B is a unital homomorphism of Bana
h algebras and if
a ∈ A, then 
ertainly SpB(Ta) ⊆ SpA(a), so that ρB(Ta) ≤ ρA(a). Following Aupetit, wegive the following lemma for any linear mapping T : A → B for whi
h ρB(Ta) ≤ ρA(a)(a ∈ A); by the remark just made, this in
ludes the 
ase in whi
h T is a homomorphism.Theorem 7 (Aupetit). Let A, B be unital Bana
h algebras and let T : A → B be a linearmapping su
h that ρB(Ta) ≤ ρA(a) for every a ∈ A. Then, for every a ∈ A and every
b ∈ Σ(T ),

ρB(Ta) ≤ ρB(T (a) + b).Remark. It appears that the more spe
ial three-
ir
les lemma of Ransford (Lemma 1)leads to the weaker inequality: ρB(Ta)2 ≤ ρA(a)ρB(Ta + b); but it should be remarkedthat this inequality is still su�
ient for the dedu
tion of Corollary 8. (That is the versionof the result given in [5℄, Theorem 5.1.9.)Proof of Theorem 7. Let 0 < r < 1 < R and let f : C → B be holomorphi
. By Theorem 4,
(ρBf)(1) ≤ sup

|z|=r

(ρBf)(z)t sup
|z|=R

(ρBf)(z)1−t, (∗)where t = log R/(log R − log r).Let b ∈ Σ(T ), let a ∈ A and let ǫ > 0. By an elementary result (referred to in �1) wemay, by 
hoi
e of equivalent norm on B, suppose that ‖Ta+ b‖ < ρB(Ta+ b)+ ǫ. Choosea sequen
e (an) in A with an → 0 in A and Tan → b in B.For ea
h n = 1, 2, . . . , apply (∗) to fn(z) = T (a + an)− zTan. Then, sin
e ρB(Tx) ≤

ρA(x) for all x ∈ A,
ρB(Ta) = (ρBfn)(1) ≤ sup

|z|=r

ρB(T (a + an) − zTan)t sup
|z|=R

ρA(a + an − zan)1−t

≤ (‖T (a + an)‖ + r‖Tan‖)
t(‖a + an‖ + R‖an‖)

1−t.First let n → ∞ and dedu
e that
ρB(Ta) ≤ (‖Ta + b‖ + r‖b‖)t‖a‖1−t.Now, for ea
h �xed r > 0, let R → ∞ and note that then t = log R/(log R − log r) → 1,so that

ρB(Ta) ≤ ‖Ta + b‖ + r‖b‖,for every r > 0. Thus ρB(Ta) ≤ ‖Ta + b‖ < ρB(Ta + b) + ǫ. This holds for every ǫ > 0so that the result follows.Corollary 8 (Generalized Johnson theorem). Let A, B be Bana
h algebras and let T :

A → B be a linear mapping with ρB(Ta) ≤ ρA(a) for all a ∈ A. If T (A) = B then
Σ(T ) ⊆ J(B) (the Ja
obson radi
al of B); in parti
ular, if B is semisimple then T is
ontinuous.Proof. Let b ∈ Σ(T ) and let c be any quasi-nilpotent element of B. Sin
e T (A) = B,there is an a ∈ A with Ta = c − b. From Theorem 7, ρB(c − b) ≤ ρB(c) = 0. By a wellknown result of Zemánek [10℄, b ∈ J(B).Corollary 9. Let A, B be unital Bana
h algebras and let T : A → B be a linear mappingsu
h that ρB(Ta) ≤ ρA(a) for every a ∈ A. Let b ∈ Σ(T ); then for every sequen
e (bn)



14 G. R. ALLANin T (A) su
h that bn → b (or even su
h that, merely, ρB(bn − b) → 0), it follows that
ρB(bn) → 0.Finally, we re
all the notorious unsolved problem in this area:Let A, B be Bana
h algebras, with B semisimple, and let T : A → B be a homomor-phism with T (A) = B. Is it true that T is ne
essarily 
ontinuous?Remarks1. It is equivalent to drop the requirement that B be semisimple, and then to ask whether
Σ(T ) ⊆ J(B).2. An equivalent formulation is to ask whether Sp(b) = {0} for every b ∈ Σ(T ). It isknown (and quite easy to prove) that Sp(b) is 
onne
ted, and, of 
ourse, 0 ∈ Sp(b).3. We may divide the problem into two parts:(i) show that kerT is 
losed;(ii) with the additional hypothesis that ker T is 
losed, prove that T is 
ontinuous.Then ea
h of these two sub-problems appears to be open.4. If we just assume (with B semisimple) that T : A → B is linear with ρB(Ta) ≤ ρA(a)for every a ∈ A and that T (A) = B, then it is not the 
ase that T need be 
ontinuous(see e.g. [5℄, following Theorem 5.1.9; it is easy to see that, in this example, ker T is noteven 
losed). But it appears that the question of whether every element of Σ(T ) need bequasi-nilpotent may still be open in this more general 
ase.We 
on
lude with a simple result that, just possibly, might have relevan
e to theunsolved problem under dis
ussion (see Remark 2 above).Corollary 10. Let A, B be Bana
h algebras and let T : A → B be a linear mappingwith ρB(Ta) ≤ ρA(a) for all a ∈ A and T (A) = B. Let b be an element of the separatingsubspa
e Σ(T ). Suppose that, for some open neighbourhood D of 0 in C, there is a holo-morphi
 fun
tion f : D → B with f(0) = b and su
h that f(z) ∈ T (A) for all z ∈ U \{0}.Then b is quasi-nilpotent.Proof. Sin
e f(z) → f(0) = b as z → 0 in D, it follows from Corollary 9 that for every
ǫ > 0 there exists δ > 0 su
h that ρB(f(z)) < ǫ for all z ∈ U with 0 < |z| ≤ δ. It thenfollows from the weak maximum prin
iple (Lemma 3) that ρB(b) = 0.
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