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Abstract. Let X, Y be Banach spaces, S : X → Y and R : Y → X be bounded operators. We

investigate common spectral properties of RS and SR. We then apply the result obtained to

extensions, Aluthge transforms and upper triangular operator matrices.

1. Introduction. Let X and Y be Banach spaces and let L(X, Y ) denote the space of

all bounded linear operators from X to Y . For a bounded linear operator T ∈ L(X) =:

L(X, X), let σ(T ) denote the spectrum, R(T ) its range space and let N(T ) denote the

null space.

A complex number λ is said to be in the local resolvent set ρT (x) of T at x ∈ X if

there exists an analytic X-valued function f on some open neighbourhood U of λ such

that (T − µ)f(µ) = x for all µ ∈ U.

The local spectrum of T at x is then the set σT (x) = C \ ρT (x). It is immediate that

σT (x) is a closed subset of σ(T ). However, the local spectrum can be the empty set. This

fact is related to the single valued extension property. To be precise, let D(λ, r) be the

open disc centered at λ ∈ C and with radius r > 0, the corresponding closed disc will

be denoted by D(λ, r). We will say that T has the single valued extension property (or

SV EP ) at λ ∈ C if there exists r > 0 such that for every open subset U ⊂ D(λ, r), the

constant function f ≡ 0 is the only analytic solution of the equation (T − µ)f(µ) = 0.

We set S(T ), for the open set where T fails to have the SV EP . An operator T is said to

have the SV EP precisely when S(T ) = ∅. SV EP may also be characterized using local
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spectra in the following sense: T has the SV EP if and only if σT (x) 6= ∅ for every x 6= 0.

See [14, 22].

It is known that for every bounded operator T ∈ L(X) we have

σ(T ) =
⋃

x∈X

σT (x) ∪ S(T ).

Thus if T has the SV EP , we get σ(T ) =
⋃

x∈X σT (x).

Another important property in local spectral theory is Bishop’s property (β). The

operator T satisfies Bishop’s property (β) at λ ∈ C if there exists r > 0 such that for

every open subset U ⊂ D(λ, r) and for any sequence (fn)n of analytic X-valued functions

on U with (T − µ)fn(µ) → 0 as n → ∞ uniformly on compact subsets of U , we have

fn(µ) → 0 as n → ∞ uniformly on compact subsets of U . We denote by σβ(T ) the set

where T fails to satisfy (β) and we say that T satisfies Bishop’s property (β) if σβ(T ) = ∅.

For more details, see [22].

The operator T is said to have the decomposition property (δ) if for every finite open

cover {U1, . . . , Un} of C,

(1) XT (Ū1) + · · · + XT (Ūn) = X,

where XT (F ) is the glocal analytic spectral subspace associated with F and defined to

be as the set of all elements x ∈ X such that the equation (T − λ)x(λ) = x has a global

analytic solution on C \ F .

The properties (β) and (δ) are dual to each other in the sense that T has (δ) if and

only if T ∗ satisfies (β) and T has (β) if and only if T ∗ satisfies (δ). A weaker version of

property (δ) is (δw) introduced in [30] as follows:

An operator T has the weak decomposition property (δw) if for every finite open cover

{U1, . . . , Un} of C we have

(2) XT (Ū1) + · · · + XT (Ūn) is dense in X.

A bounded linear operator T on a Banach space X is said to be decomposable provided

that for every finite open cover {U1, . . . , Un} of C, there exist X1, . . . , Xn closed T -

invariant subspaces of X such that

(3) σ(T |Xi) ⊆ Ui for i = 1, . . . , n and X1 + · · · + Xn = X.

The class of decomposable operators includes all normal operators and more generally

all spectral operators. Operators with totally disconnected spectrum are decomposable

by the Riesz functional calculus. In particular, compact and algebraic operators are de-

composable.

It is also known that (β) characterizes operators with decomposable extensions and

in particular operators with (β) are provided by isometries and subnormal operators [2].

The property (β) is hence conserved by restrictions while (δ) is transferred to quotient

operators. We refer to [1, 2, 22] for a complete study and further properties and results.

In this paper, our aim is to show that if S : X → Y and R : Y → X are bounded

linear operators then SR and RS share many of their local spectral properties. That is,

SR belongs to any of the previous classes if and only if RS does.
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The results obtained here apply to upper block operator matrices. To be more precise,

for A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y, X), let MC be the upper triangular 2× 2 matrix

[ A C
0 B ]. Then for which C do we have Σ(MC) = Σ(A)∪Σ(B), where Σ runs over different

spectra?

It is proved in section 2 that SR has the single valued extension property (resp.

Bishop’s property (β); resp. spectral decomposition property (δ) ) if and only if RS has

the single valued extension property (resp. Bishop’s property (β); resp. spectral decom-

position property (δ)). We also show that RS is subscalar if and only if SR is subscalar.

The latter result extends a previous one in [9] given for injective operators.

We devote section 3 to the connections between local spectra, spectral subspaces and

related properties of RS and SR.

We give in section 4 some applications to Aluthge transforms of operators and to

operator matrices.

2. Local spectral theory for RS and SR. Throughout this section, S : X → Y and

R : Y → X are bounded linear operators and for the obvious symmetry reason, we shall

show, in the proofs, only one way any time we find an equivalence statement.

Proposition 2.1. Let λ ∈ C be a complex number, then RS has the SV EP at λ if and

only if SR has the SV EP at λ. In particular RS has the SV EP if and only if SR has

the SV EP .

Proof. Suppose that RS has the SV EP at λ and let x(µ) be an Y -valued analytic

function in a neighbourhood V (λ) of λ such that

(4) (SR − µ)x(µ) = 0 (µ ∈ V ).

If we take R values in equality (4), we obtain (RS − µ)Rx(µ) = 0. Now, since R

is a bounded linear operator, Rx(µ) is an X-valued analytic function in V (λ). Thus

Rx(µ) = 0 and Equation (4) implies that µx(µ) = 0. So x(µ) = 0 and SR has the SV EP

property at λ.

We extend now [10, Theorem 5] by removing injectivity of R and S.

Proposition 2.2. Let R and S be bounded operators, then

σβ(RS) = σβ(SR).

In particular SR satisfies Bishop’s property (β) (resp. (δ)) if and only if RS satisfies

Bishop’s property (β) (resp. (δ)).

Proof. Let λ ∈ C \σβ(RS) and let (fn)n be a sequence of Y -valued analytic functions

in a neighbourhood of λ such that

(5) lim
n→+∞

(SR − µ)fn(µ) = 0 in O(V (λ), Y ).

By taking R, we obtain

lim
n→+∞

(RS − µ)Rfn(µ) = 0 in O(V (λ), X).

Also Rfn(.) ∈ O(V (λ), X) since R is a bounded linear operator.
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So Rfn(µ) converges to 0 on compact sets and by taking S values, SRfn(µ) converges

to 0 on compact sets.

From Equation (5), we get (µfn(µ))n converges to 0 on compact sets. Now since fn are

analytic, the maximum modulus principle implies that (fn)n converges to 0 on compact

sets. Thus λ ∈ C \ σβ(SR).

Property (δ) is obtained by passing to duals.

Remark 2.1. We notice here that if we set SR = T and RS = Q, then T and Q are

intertwined in the following way, RT = QR and TS = SQ. Hence from [22] it follows

that if R and S are onto, then RS has (δ) if and only if SR has (δ).

Since an operator is decomposable if and only if it has both (β) and (δ), we obtain

Corollary 2.1. RS is decomposable if and only if SR is decomposable.

The class of decomposable operators includes many other interesting classes as nor-

mal operators of spectral operators. Similarly the class of operators with (β) includes

subnormals and hyponormals.

In view of Corollary 2.1, one may expect that RS is normal (subnormal or hyponor-

mal) if and only if SR is. We provide here two examples disproving this fact.

To get an example with SR hyponormal but not RS it suffices to consider any non-

hyponormal operator such that its Aluthge transform is hyponormal. Now as observed is

section 4, properties of Aluthge transforms are derived from the RS - SR phenomena.

To deal with subnormality let H2 be Hilbert space and {en, n ≥ 0} be any orthonormal

basis. We consider S for the weighted shift Sen = (n + 2)en+1 and for R the diagonal

operator Ren = 1
n+1en. Then RSen = en+1 and SRen = n+2

n+1en+1. In particular RS is

subnormal while SR is not hyponormal since the associated weight is not increasing.

It is then natural to ask to which classes proposition 2.2 and corollaries 2.1 can be

extended.

Some other properties are also shared by RS and SR, for example

Proposition 2.3. We have

• RS is nilpotent if and only if SR is,

• RS is quasi-nilpotent if and only if SR is,

• RS is compact if and only if SR is.

Proof. The first two assertions follow from the identity (RS)n = R(SR)n−1S. The third

assertion can be found in [5].

An operator T is said to be generalized scalar if there exists a continuous algebra

homomorphism Φ : E(C) → L(X) with Φ(1) = I and Φ(z) = T . Here E(C) denotes the

algebra of all infinitely differentiable functions on C endowed with the topology of uniform

convergence on compact sets of such functions and their derivatives. Let U be an open

subset of the complex plane and E(U) be the Fréchet algebra of all infinitely differentiable

functions on U endowed with the topology of uniform convergence on compact subsets

of U of all derivatives. The operator T is said to have property (β)ǫ at λ if there exists

U a neighbourhood of λ such that for each open set O ⊂ U and for any sequence (fn)n

of X-valued functions in E(O, X) the convergence of (T − z)fn(z) to zero in E(O, X)
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implies the convergence of fn to zero in E(O, X). Denote by σ(β)ǫ

(T ) the set where T

fails to satisfy (β)ǫ. We will say that T satisfies property (β)ǫ if σ(β)ǫ

(T ) = ∅. It is not

hard to see that λ /∈ σ(β)ǫ

(T ) if and only of there exists U a neighbourhood of λ such that

TU : f → (z 7→ (T − z)f(z)) is one to one with closed range on E(O, X). It is also known

that property (β)ǫ characterizes those operators with some generalized scalar extension.

Such operators are called subscalar. We have

Theorem 2.1.

σ(β)ǫ

(RS) = σ(β)ǫ

(SR)

Obviously operators with property (β)ǫ have Bishop’s property (β). However, a direct

adaptation of the proof of Proposition 2.2 will not work since the maximum modulus

principle is no more valid for infinitely differentiable functions. To avoid this difficulty

the following lemma given in [8] provides an alternative way.

Lemma 2.1. Let O be an open set and (fn)n be a sequence in E(O, X) such that (zfn(z))n

converges to zero in E(O, X). Then (fn)n converges to zero in E(O, X).

Suppose now λ /∈ σ(β)ǫ

(RS) and let O be a neighbourhood of λ such that O ∩

σ(β)ǫ

(RS) = ∅. If (fn)n is a sequence in E(O, X) such that (RS − z)fn(z) converges

to zero in E(O, X), then limn→∞(SR − z)Sfn(z) = 0 and hence limn→∞ Sfn(z) = 0. It

follows that (zfn(z))n converges to zero in E(O, X). By lemma 2.1, (fn)n converges to

zero in E(O, X). Finally λ /∈ σ(β)ǫ

(SR). The reverse implication is obtained by symmetry.

We deduce the following corollary:

Corollary 2.2. RS is subscalar if and only if SR is subscalar.

The previous corollary is given by Lin Chen et al. [9, Theorem A] under the extra as-

sumption that R and S are one to one.

3. Local spectra for RS and SR. In this section we investigate the link between local

spectra of RS and SR. We first give the following proposition from [7]:

Proposition 3.1. Let R and S be as above. For every x ∈ X, we have

i) σSR(Sx) ⊂ σRS(x) ⊂ σSR(Sx) ∪ {0} (resp. σRS(Ry) ⊂ σSR(y) ⊂ σRS(Ry) ∪ {0}

for every y ∈ Y ).

ii) If moreover S is one to one, σRS(x) = σSR(Sx) (resp. if R is one to one σRS(Ry) =

σSR(y) for every y ∈ Y ).

The example below shows that if S is not one to one, it may happen that σRS(x) 6=

σSR(Sx).

Example 3.1. Let S be the shift operator defined on the usual Hardy space and let

R = S∗ be its adjoint operator. Then RS is the identity operator, while SR is the

projection operator on R(S). In particular σRS(x) = {1}, for every nonzero x ∈ H,

σSR(x) = {1} if x ∈ R(S), σSR(x) = {0} if x ∈ N(R) and σSR(x) = {0, 1} otherwise.

The inclusion σRS(Sx) ⊂ σSR(x) is then strict in the last case.

It is known that σ(RS) \ {0} = σ(SR) \ {0} and the previous example shows that

the equality σ(RS) = σ(SR) is not true in general. The latter equality has been proved
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to be true in the case where R (or S) is normal, see [11]. As a immediate application of

Proposition 3.1, we obtain

Corollary 3.1. Let R and S be as above, then σ(RS) = σ(SR) in the following cases:

(1) S and R are injective.

(2) S and S∗ are not injective.

(3) S and R are not injective.

(4) S or R is injective with dense range.

Proof. If S is injective, then

σ(RS) σ(SR)

‖ ‖
⋃

x∈X

σRS(x) ∪ S(RS) =
⋃

x∈X

σSR(Sx) ∪ S(SR) ⊂
⋃

y∈Y

σSR(y) ∪ S(SR)

Now from R injective it follows that σ(SR) ⊂ σ(RS) and hence 1. is proved.

2. and 3. are obtained similarly.

4. As in 1. we have σ(SR) ⊂ σ(RS) and since S is dense range, S∗ is one to one. It

follows that σ(RS) = σ(S∗R∗) ⊂ σ(R∗S∗) = σ(SR).

Remarks. 1) The situation where R or S is normal is derived as follows. Suppose S is

normal, If S is not one to one, then S∗ is also not one to one and we apply (2) in the

previous corollary and 0 ∈ σp(R
∗S∗) ⊂ σ(R∗S∗) = σ(RS). Otherwise, S is injective with

dense range and hence the equality is given by (4).

2) The normality in the previous assumption cannot be relaxed to subnormality as is

shown by the case when S is the usual shift and R = S∗ its adjoint.

Let F be a subset of the complex plane and T ∈ L(X), the local analytic spectral

subspace associated with F is given by XT (F ) = {x ∈ X : σT (x) ⊆ F}. Obviously if T

has the SV EP , then XT (F ) = XT (F ). We have

Corollary 3.2. Let F be a subset of the complex plane. Then

i) S(XRS(F )) ⊂ YSR(F )∩S(X) and S(XRS(F )) ⊂ YSR(F )∩S(X) (resp. R(YSR(F ))

⊂ XRS(F ) ∩ R(Y ) and R(YSR(F )) ⊂ XRS(F ) ∩ R(X)).

ii) If S is one to one, we get

S(XRS(F )) = YSR(F ) ∩ S(X) and S(XRS(F )) = YSR(F ) ∩ S(X).

As a direct consequence of Proposition 3.1, we have

Corollary 3.3. If R and S are dense range, then RS has the decomposition property

(δw) if and only if SR has the decomposition property (δw)

Recall that T is said to have the fat local spectra property if σT (x) = σ(T ) for every

x 6= 0. We have the following result.

Corollary 3.4. If R and S are one to one, then

RS has fat local spectra property if and only if SR has fat local spectra property.
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Let r(.) be the spectral radius function defined on operators. It is obvious that

r(RS) = r(SR) for arbitrary R and S. This turns out to be true for local spectral

radii. For x ∈ X and T ∈ L(X), the local spectral radius at x is defined to be rT (x) =

lim supn→∞ ‖Tnx‖1/n, then we have

Remark. Again if R or S is not one to one, the previous corollary fails. To see this, take

S to be the usual shift on the Hardy space and R = S∗ to be its adjoint.

Proposition 3.2. For every x ∈ X,

rRS(x) = rSR(Sx).

Proof. Derives from the observation

‖(RS)nx‖ ≤ ‖R‖‖(SR)n−1S(x)‖ ≤ ‖R‖‖S‖‖(RS)n−1x‖.

The quasi-nilpotent part of T usually denoted by X0(T ) is the set of all elements

x ∈ X such that rT (x) = 0. The analytic core K(T ) of T is the set of all elements x ∈ H

such that there exists a sequence (un)n∈N ⊂ X and c > 0 for which x = u0, Tun+1 = un

and ‖un‖ ≤ cn. The introduction of X0(T ) and K(T ) goes back to M. Mbekhta in [23],

see also [24] for further details and results. It is not difficult to see that X0(T ) = XT ({0})

and K(T ) = XT (C \ {0}). The operator T is said to have trivial quasi-nilpotent part

(resp. trivial analytic core) if X0(T ) = {0} (resp. K(T ) = {0}).

The following result is immediate from Corollary 3.2:

Corollary 3.5. Under the assumptions of Corollary 3.4, we have

(1) SR has trivial quasi-nilpotent part if and only if RS has trivial quasi-nilpotent part.

(2) SR has trivial analytic core if and only if RS has trivial analytic core.

4. Applications

4.1. Aluthge transforms. Let T ∈ L(H) be a bounded operator on some Hilbert space

H and U |T | be its polar decomposition, where |T | = (T ∗T )
1

2 and U is the appropriate

partial isometry. The Aluthge transform of T is given by T̃ = |T |
1

2 U |T |
1

2 and was first

considered by A. Aluthge to extend some inequalities related to hyponormality. To be

precise:

Recall that an operator A ∈ L(H) is said to be p-hyponormal (p > 0) if (A∗A)p ≥

(AA∗)p (i.e. |A|2p ≥ |A∗|2p) and T is log-hyponormal if log(A∗A) ≥ log(AA∗). A 1-

hyponormal operator is a hyponormal operator and 1
2 -hyponormal operators are called

semi-hyponormal ([3, 29]). The Löwner-Heinz inequality implies that if A is q-hyponormal

then it is p-hyponormal for any 0 < p ≤ q. An invertible operator A is said to be log-

hyponormal ([28]) if log(A∗A) ≥ log(AA∗).

It is known that if T is p-hyponormal (p > 0), then T̃ is p + 1
2 -hyponormal and ˜̃T is

hence hyponormal. If T is log-hyponormal, then ˜̃T is semihyponormal. T is said to be

w-hyponormal ([4]) if |T̃ | ≥ |T | ≥ |T̃ ∗|, so T̃ is semi-hyponormal if T is w-hyponormal.

It is also known ([4]) that p-hyponormal (p > 0) and log-hyponormal operators are

w-hyponormal.
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Since then this concept received a lot of interest by numerous mathematicians. In a

series of papers [18, 19, 20] I. B. Jung, E. Ko and C. Pearcy have investigated common

spectral properties of T̃ and T . It is shown, once again, that T̃ and T share most of their

spectral properties.

Set S = |T |
1

2 and R = U |T |
1

2 . Then clearly RS = T and SR = T̃ . In particular T̃

and T have almost the same local spectral properties.

Proposition 4.1. Let T be a bounded operator on some Hilbert space and let T̃ be its

Aluthge transform. Then T has the SV EP (resp. T has Bishop’s property β, resp. T

has property (δ), resp. T is decomposable, is subscalar) if and only if T̃ has the SV EP ,

(resp. T̃ has Bishop’s property β, resp. T̃ has property (δ), resp. T̃ is decomposable, is

subscalar).

Since T is one to one if and only if T̃ is one to one, we get from Corollary 3.1

Corollary 4.1. σ(T ) = σ(T̃ ).

Consider T ∈ L(H) and let U |T | be its polar decomposition, and for s, t ≥ 0, T (s, t) =

|T |sU |T |t is called the generalized Aluthge transform of T . Remark that T̃ = T ( 1
2 , 1

2 ).

Take R = |T |r and S = |T |sU |T |t−r. Then SR = T (s, t) and RS = T (s + r, t − r).

Thus, we have the following result:

Corollary 4.2. Let T ∈ L(H), s ≥ 0 and 0 < r < t, then T (s, t) has the property

(β) (respectively, (δ) or is subscalar) if and only if T (s + r, t − r) has the property (β)

(respectively, (δ) or is subscalar). In particular, T := T (0, 1) ∈ (β) (respectively, (δ) or

is subscalar) if and only if T (r, 1 − r) (0 < r < 1) has the property (β) (respectively, (δ)

or is subscalar).

The previous result appears in [9] under the restrictive assumption where N(T ) ⊂

N(T ∗).

We also deduce

Corollary 4.3. Let T ∈ L(H) be p-hyponormal, log-hyponormal or w-hyonormal, then

T is subscalar.

4.2. Spectral picture and Weyl’s theorem. Denote by F (resp. SF , LF and RF ) the

family of all Fredholm (resp. semi-Fredholm, left Fredholm and right Fredholm) operators.

The essential spectrum of T is σe(T ) = {λ ∈ C : T − λ /∈ F}. The semi-Fredholm

spectrum σse(T ), the left essential spectrum σle(T ) and the right essential spectrum

σre(T ) are defined similarly. The Weyl spectrum, σw(T ), is the set of all λ ∈ C such that

T − λ is not Fredholm with index zero.

It is well known that the mapping ind : SF → Z ∪ {∞, +∞} is continuous. We shall

call a hole in σe(T ) any bounded component of C\σe(T ) and a pseudo hole a component

of σe(T ) \ σle(T ) or σe(T ) \ σre(T ). The spectral picture SP (T ) of an operator was

introduced by C. Pearcy in [26] as the collection of holes and pseudo holes in σe(T ) and

the associated Fredholm indices. Since for every λ 6= 0, R(RS − λ) is closed if and only

if R(SR − λ) is closed and since obviously dim(N(RS − λ)) = dim(N(SR − λ)), one

concludes easily that RS and SR have the same spectral picture. Thus in section 4.2, T

and T̃ have the same spectral picture as proved in [19].
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For T a bounded operator, we write iso σ(T ) for the set of all isolated points of σ(T ),

and we define

Π00(T ) = {λ ∈ iso σ(T ) : 0 < dim(N(T − λ)) < ∞}.

An operator is said to satisfy Weyl’s theorem if

σw(T ) = σ(T ) \ Π00(T )

From the discussion above, it follows that Π00(RS) \ {0} = Π00(SR) \ {0} and that

σw(RS) \ {0} = σw(SR) \ {0}. Thus

Proposition 4.2. If 0 ∈ Π00(SR) ∩ Π00(RS) or 0 /∈ Π00(SR) ∪ Π00(RS), then RS

satisfies Weyl’s theorem if and only if SR satisfies Weyl’s theorem.

The preceding Proposition and Corollary 3.1 allow us to get

Corollary 4.4. If R and S are injective, then RS satisfies Weyl’s theorem if and only

if SR satisfies Weyl’s theorem.

It is not hard to see that σp(T ) = σp(T̃ ) and hence

Corollary 4.5. Let T be a bounded operator on some Hilbert space and let T̃ be its

Aluthge transform. Then, T satisfies Weyl’s theorem if and only if T̃ satisfies Weyl’s

theorem.

We finally note that the equivalence in Corollary 4.5 does not hold in general. Indeed,

let S be the unilateral shift on the Hardy space and R = S∗ its adjoint operator. Then

RS is the identity operator and hence satisfies clearly Weyl’s theorem, while for SR, we

have

σw(SR) = {0, 1} 6= σ(SR) \ Π00(SR) = {1}.

4.3. Applications to operator matrices. Let A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y, X).

We consider MC as the upper triangular 2 × 2 matrix [ A C
0 B ]. The inclusion σ(MC) ⊂

σ(A)∪ σ(A) is trivial, and the equality fails generally. Numerous papers were devoted to

the last problem, see [6, 12, 17, 13, 31] for example.

An auxiliary problem is: Given A and B, for which operators C do we have

σ(MC) = σ(A) ∪ σ(A)?

For a bounded operator T , let N∞(T ) = ∪n≥1N(Tn) denote the generalized kernel

of T . Let also LT , RT and δT be the left multiplication by T , the right multiplication by

T and the inner derivation associated with T , that is,

LT (X) = TX, RT (X) = XT and δT (X) = TX − XT for any bounded operator X.

We apply the main results of this paper to prove some stability of spectral properties

on upper triangular matrices in the line of [6].

Theorem 4.1. Let A ∈ L(X), B ∈ L(Y ) be given and Σ ∈ {σβ, σβǫ
, σδ, σdec}. Then for

every C ∈ cl[R(δA,B) + N(δA,B) +
⋃

λ∈C
N∞(LA−λ) +

⋃

λ∈C
N∞(RB−λ)], we have

(6) Σ(MC) = Σ(M0).

Theorem 4.2. Let A ∈ L(X), B ∈ L(Y ) be bounded operators and C ∈ cl[R(δA,B) +

N(δA,B) +
⋃

λ∈C
N∞(LA−λ) +

⋃

λ∈C
N∞(RB−λ)]. The following hold:
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(1) If Σ ∈ {σ, σe, σw}, then Σ(MC) = Σ(M0).

(2) If Σ ∈ {σap, σs, σSF }, then Σ∗(MC) = Σ∗(M0) where Σ∗(.) = Σ(.) \ {0}.

(3) If moreover, C ∈ cl[R(δA,B) + N(δA,B) +
⋃

λ,µ∈C
(N∞(LA−λ) ∩N∞(RB−µ))], then

Σ(MC) = Σ(M0) for Σ ∈ {σap, σs, σSF }.

The proof of the previous theorem can be found in [8] and relies heavily on the next

lemma.

Lemma 4.1. Let T be a bounded operator and N a commuting operator with T such that

N2 = 0. Then

Σ(T + N) = Σ(T )

for Σ ∈ {σ, σe, σw, σSF , σap, σs,S, σβ, σβǫ
, σδ, σdec}.

Remark 4.1. 1) It has been shown in [8] that Σ∗(MC) = Σ∗(M0) for a large family of

spectra. We notice that from [6, 31], Σ∗(M0)\Σ∗(MC) cannot be a singleton (for example

if we deal with σ, σe, σw, the difference is an open set). We deduce that for such spectra,

we have Σ(MC) = Σ(M0).

2) In theorem 4.2 (2), it is not generally possible to get Σ(MC) = Σ(M0). The purpose

of the following example is to show this fact.

Example 4.1. Let A = S be the shift operator on the Hardy space H2, B = I − e0 ⊗ e0

and C = e0⊗e0 with e0 is the first element of the canonical orthonormal basis of H2. Then

clearly CB = 0 and σap(M0) = {z ∈ C : |z| = 1} ∪ {0}. Let us prove that 0 /∈ σap(MC).

Suppose that for some (xn, yn), we have limn→∞ MC(xn, yn) = 0. Then
{

limn→∞(Sxn + e0 ⊗ e0(yn)) = 0,

limn→∞(I − e0 ⊗ e0)yn = 0.

Now since R(S) ⊥ Ce0, we deduce that limn→∞(Sxn) = limn→∞(e0 ⊗ e0)yn = 0. Then

limn→∞ yn = limn→∞(e0 ⊗ e0)yn + limn→∞(I − e0 ⊗ e0)yn = 0 and limn→∞ xn =

limn→∞ S∗Sxn = 0.

4.4. Weyl’s theorem for operator matrices. Let A and B be given, in general the fact

that Weyl’s theorem holds for M0(= A⊕B) does not imply that Weyl’s theorem holds for

MC , see for instance [21]. It also may happen that MC satisfies Weyl’s theorem while M0

does not satisfy it. We consider the following example to show the last claim. If A = B∗

is the shift operator and C = I −AB, then MC is unitary without eigenvalues and hence

satisfies Weyl’s theorem. Now σw(M0) = {z : |z| = 1} and σ(M0) \ π00(M0) = D̄. Thus

σw(M0) does not satisfy Weyl’s theorem.

By [7, Proposition 4.4] and Theorem 4.2 we get

Proposition 4.3. Let A, B be given and suppose that 0 ∈ Π00(MC) ∩ Π00(M0) or

0 /∈ Π00(MC) ∪ Π00(M0), for some C ∈ cl[R(δA,B) + N(δA,B) +
⋃

λ∈C
N∞(LA−λ) +

⋃

λ∈C
N∞(RB−λ)]. Then Weyl’s theorem holds for M0 if and only if Weyl’s theorem

holds for MC .

Proof. For the obvious symmetry reason we shall show only one way. In [7, Proposition

4.4], it is shown that if 0 ∈ π00(RS) ∩ π00(SR) or 0 /∈ π00(RS) ∪ π00(SR) then Weyl’s

theorem holds for RS if and only if Weyl’s theorem holds for SR. Now if Weyl’s theorem
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holds for A⊕B, we argue as in Step 1 of the proof of Theorem 4.2 to see that Weyl’s theo-

rem holds for MC2+C1
, when C2+C1 ∈

⋃

λ∈C
N∞(LA−λ)+

⋃

λ∈C
N∞(RB−λ). Now, since

MC3+C2+C1
= MC2+C1

+N , with N =

[

0 C3

0 0

]

nilpotent and NMC2+C1
= MC2+C1

N , for

C3 ∈ N(δA,B), it follows from [25, Theorem 3] that Weyl’s theorem holds for MC3+C2+C1
.

Finally MC4+C3+C2+C1
and MC3+C2+C1

are similar, for C4 ∈ R(δA,B) yields Weyl’s the-

orem for MC .
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[30] E. H. Zerouali and H. Zguitti, On the weak decomposition property (δ), Studia Math. 167

(2005), 17–28.

[31] E. H. Zerouali and H. Zguitti, Perturbation of spectra of operator matrices and local

spectral theory, preprint.


