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1. Introduction. Given a Cy-semigroup (7'(¢)):>0 on a Banach space X we call an orbit
T( )z (x € X) stable if
(1.1) lim ||T'(¢)z|| = 0.

t—oo

If (1.1) holds for every z € X then we call (T'(t));>0 stable. For single bounded
operators, i.e. for discrete operator semigroups, on a Banach space the concept of stability
is defined similarly.

It is the purpose of this survey to present a new and unified look on the theory of
stability of operator semigroups. Our emphasis is put on the ideas, methods and tools,
both for general and concrete semigroups. We give neither a complete overview over
existing results nor a historical account on them.

Since the birth of semigroup theory and general operator theory, the theory of stability
of operator semigroups has attracted a lot of attention due to several reasons.

First, the theory of stability is important since stable Cy-semigroups correspond one-
to-one to asymptotically stable (in the sense of Lyapunov) well-posed abstract linear
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Cauchy problems. The concept of asymptotic stability is fundamental in the theory of
ordinary and partial differential equations. This puts stability theory on the ground of
(real world) applications.

The theory of stability is also ¢mportant since stability plays a central role in the
structural theory of operators; as examples, we mention the classification of contraction
semigroups, invariant subspace theory, similarity and quasisimilarity problems, dilations
and functional calculi; see [SNF70], [Bea88], [Kub97], [Atz84], [Kér94], [AE9S], [ARSO04a],
[ARS04b], [AMO04].

Second, the theory of stability is 7ich in what concerns the methods and ideas, and
this shall be a main point of this survey. The recent advances deeply interact with modern
topics from complex function theory, harmonic analysis, the geometry of Banach spaces,
and spectral theory. These interactions lead sometimes to unexpected byproducts: new
structure theorems for the invariant subspaces of a Bergman shift [ARS04a|, [ARS04b],
new maximum principles for harmonic functions [BCTO05] or new tauberian theorems
[Kor02], [ABHNO1], [Chi98], [BNRI8b|. This point shows that the theory deserves atten-
tion not only from the applied point of view.

Third, the theory of stability is interesting since it has uncovered intimate relations
between seemingly unrelated areas and highlighted existing links between different math-
ematical subjects; see also above.

Finally, the theory of stability is challenging. Despite the definite progress which
has been made since the breakthrough papers [AB88| and [LV8§|, in our opinion the
major advances in the theory of stability and the understanding of their place among
other mathematical theories (complex function theory, operator theory, partial differential
equations) still await their development.

During the last decade, the two surveys [Bat94]|, [Va97] and the two monographs
[Nee96], [ABHNO1] on the subject have appeared. However, these mainly discuss spectral
conditions for stability (see Sections 4 and 5) while we in addition concentrate on con-
ditions involving the boundary behaviour of the resolvent of the generator (Sections 6, 8
and 9). Moreover, we discuss special but important classes of semigroups such as positive
semigroups (Section 7), semigroups on Hilbert spaces (Section 8), semigroups on Banach
spaces with Fourier type (Section 9), and evolution semigroups (Section 10). We hope that
those who already benefited from reading the above mentioned accounts will find quite a
few new attractions in this survey. In addition to new aspects in the theory we sometimes
give new proofs, interpretations and examples regarding older results. Certainly, all the
priorities we set and all the comments reflect our personal point of view. Due to our
background most of the results in the survey are formulated for Cy-semigroups. But with
a few exceptions, there are always discrete counterparts. We believe that there should be
no difficulty in finding the corresponding statements for discrete semigroups.

Also in order to limit the size of the survey, omissions of several topics were un-
avoidable. In particular, we do not discuss other types of asymptotic behaviour (e.g.
asymptotic almost periodicity) which are from the point of view of applications and
techniques of proofs strongly connected to stability. We also do not discuss individual
stability and applications of the stability theory to PDEs or to abstract operator theory.



STABILITY OF OPERATOR SEMIGROUPS 73

We have omitted the stability theory of Markov operators (with applications to PDEs),
the Katznelson-Tzafriri theory for positive operators (including the 0 — 2 law), and non-
linear aspects of stability. We hope to discuss these topics in the future also in connection
with the theory presented here.

2. Tools for stability. We need to define or to introduce some concepts or tools which
are frequently used in the study of stability of operator semigroups and which will appear
throughout this survey.

2.1. Basic notation. Throughout, X will be a (complex) Banach space and £(X) the
space of bounded operators on X. A Cyp-semigroup on X is denoted by 7 or (T'(t))+>0, and
A is its generator. If T € L£(X), then (T™),>¢ is the corresponding discrete semigroup.
Sometimes, T will be called the generator of this discrete semigroup.

By X* we denote the dual space of X, and by A*, T'(¢)*, and T™* adjoint operators on
the dual space. Given some operator A, we let o(A4), 0(A), 0,(A) and o.,(A) denote the
resolvent set, the spectrum, the point spectrum, and the approximative point spectrum,
respectively. For every A € o(A), we let R(\, A) := (A — A)~! be the resolvent of A. The
kernel and the range of an operator A will be denoted by Ker A and Rg A, respectively.

2.2. Laplace, Fourier and Carleman transform. For every weakly measurable (weak™*
measurable, if X is a dual space) function f : R, — X of exponential growth we define
the Laplace transform f by

) = / TNy dt

for all A € C for which the integral above exists in the weak sense (resp. weak* sense).
The Laplace transform f is analytic in some right half plane of C.

If f is bounded, then f is at least analytic in the open right half plane C, := {\ €
C : ReX > 0}. It is well known that if A generates a Cy-semigroup (T'(t));>0, then
T(AN)x = R(\, A)z, i.e. the resolvent is the Laplace transform of the semigroup.

For a function f € L>°(R; X) (or any vector-valued tempered distribution) we denote
by Ff the distributional Fourier transform, i.e. F f is the element of the space §'(R; X) :=
L(S(R), X) of all vector-valued Schwartz distributions which is given by

(Ffoo):=(f,Fe), ¢ecSR).

Note that for Schwartz test functions or L' functions ¢, we define the Fourier transform

Fo by
Fo(B) ::/Re*“’tga(t) dt, BeR.

For every weakly measurable (weak* measurable, if X is a dual space) function f :
R — X of subexponential growth (i.e. sup,cp e =] f(£)|| < oo for every w > 0) we define
the Carleman transform f by

. fo e M f(t) Re X > 0,
FO) = { »
L tf()dt, Re \ < 0.
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The Carleman transform f is analytic in C\iR. The set of singular points of f on iR
will be called the Carleman spectrum of f. There will be no ambiguity in the notation
of the Laplace and the Carleman transform. For the theory of Laplace and Carleman
transforms we refer to [ABHNO1] and [Prii93], for that of Fourier transforms to [Sch57,
Sch58].

2.3. Fractional powers of sectorial operators. We call a closed, densely defined operator
A sectorial if there exists 6 € (0, 7) such that the spectrum of A is contained in the closure
of the sector Yy := {A € C: |arg \| < 6} and such that AR(\, A) is uniformly bounded
outside every larger sector Yy.. For every sectorial operator A and every holomorphic
function f : ¥y — C satisfying |f(N)| < M|%|5 (s > 0) one can define a closed
operator f(A) by the formula

F(A) = (f") (AU +A)72)7F,
where p(\) = ﬁ and k € N is chosen large enough so that the integral

P A) = 2 [ FO)E RO, Az da

21 Jos,,

converges absolutely. Using this functional calculus, one obtains for f(A) = A7 the frac-
tional power A7 (y € R), and it is clear that AYAY = AY™Y when suitably interpreted;
see [McI86], [Haa06]|. This definition of fractional powers is consistent with the classical
definitions from [Bal60], [Kom66], or [MS01, Definition 3.1.1].

If A generates a bounded Cj-semigroup, then for every 8 € R the operator i3 — A
is sectorial, and therefore the fractional powers (i3 — A)7 are well defined. Note that
Rg (i — A)Y D Rg (i3 — A)” whenever v > . This inclusion is strict in general.

If A € C4 and v > 0, then, by [MS01, Lemma 6.1.5], we also have the representation

1 o0
—/ e MO () dt, Red >0,z € X,
r'(v) Jo

By this representation, (Re\)YR(\, A)Y is a fractional Abel mean of the semigroup

R\ A)x =

(e=ImMT (1)) for fixed ImA (see also the mean ergodic theorem below).
Fractional powers will play a crucial role in relating stability conditions for semigroups
on Banach spaces to the Fourier type of these spaces; see Sections 8 and 9 below.

2.4. Ergodic theory. Given f € L*°(R,; X), we call (\7/T'(¥)) fooo e M LF() dt, A >0,
the (fractional) Abel mean of order v > 0. It is well known (see [ABHNO1, Chapter 4])
that if lim; o f(t) = foo exists, then the Abel means of any order converge to the same
limit fo as A tends to 0+.

Consequently, if a Cy-semigroup is stable, then the Abel means converge to zero. Since
the Laplace transform of the semigroup is the resolvent of the generator, the convergence
of Abel means can be expressed in terms of properties of the resolvent or of spectral
properties of the generator. This gives simple necessary stability conditions and shows
close ties between stability and mean ergodicity of semigroups.

These necessary stability conditions are expressed in the following mean ergodic the-
orem which deals also with fractional Abel means. The general case (v # 1) has been
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proved in [Kom69, Proposition 2.3, Theorem 2.4], [Wes98, Theorem 2.4]. For the classical
case v = 1, see for example [Yos78, Section VIII.4] or [ABHNO1, Corollary 4.3.2].

THEOREM 2.1 (Mean Ergodic Theorem). Let A be the generator of a bounded Cy-semi-
group on a Banach space X, and let v > 0. Then:

(1) The following assertions are equivalent.
(1) imx_o ATR(X, A)Y =: P emists strongly.
(ii) X =Ker A® Rg A.
If (i) and (ii) hold, then P is the projection onto Ker A along Rg A.
If X is reflezive, then (1) and (ii) are always true.
(2) limy—o R(\, A)x =: y exists if and only if x € Rg(—A)7, and in this case y €
D((—A)")NRg(A) and z = (—A)"y.

A semigroup (T'(t)):>0 satisfying either of the equivalent conditions (1)(i) or (1)(ii)
will be called mean ergodic. We note that the relations between fractional powers of
(bounded) operators and ergodic properties of their corresponding discrete semigroups
were recently thoroughly investigated in [DLO1].

Since a semigroup (T'(t));>o is stable if and only if (e?**T'());> is stable for all 3 € R,
the mean ergodic theorem (or a simple direct reasoning) implies the following.

COROLLARY 2.2. Let A be the generator of a stable Cy-semigroup on X. Then Rg (if—A)
is dense in X for every B € R or, equivalently, o,(A*) NiR is empty.

Note that for bounded Cy-semigroups, ,(A) NiR C 0,(A*) NiR [AB88, Lemma 2.3],
and the two sets are equal if X is reflexive.

2.5. Edge-of-the wedge theorems. It has been shown recently in several articles how cri-
teria for the analytic extendability of analytic functions across a linear boundary can be
applied in order to obtain stability. Such criteria are provided by so-called edge-of-the-
wedge theorems. In the classical edge-of-the-wedge theorem the equality of distributional
boundary values of analytic functions defined on the two sides of a linear boundary suf-
fices for obtaining analytic extendability. However, for the study of stability, more subtle
edge-of-the-wedge theorems dealing only with pointwise boundary values are needed.
First theorems of this kind have been proved in [Wol47, Theorem D] and [Card4]; see
also [Tom01, Theorem 4.4] for a corrected version of [Wol47, Theorem D] with a different
proof. These results were extended in [CT04, Theorem 3.1] and finally improved to the
following version from [BCTO05, Theorem 5.4]. Tt is of independent interest for complex
function theory.
In order to formulate the theorem, we define the rectangle

(2.1) R:={2€C:-1<Rez<1, -1<Imz<1},

and for 6 € (0, 5) we let

Yp:={zeC:0<argz<m—0}.

THEOREM 2.3 (Edge-of-the-wedge). Let f : R\R — C be analytic, and define F : R\R —
C oy F(z) = f(2) — f(2) (z € R\R). Assume that
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(1) there exists a constant m > 0 such that

sup |f(a+i8)| = 08, =0,

ae(—1,1

(2) there exist a measurable function G : R\R — Ry and a continuous function

H : R\R — R such that |F| < G- H,

(2.2) sup ||G(-+iB)|1 < o0,
Be(0,1)
and there exists 0y € (0, %) such that
(2.3) lim  H(z)=0 forevery a € (=1,1).
z€a+Sg

Then the function f admits an analytic extension to R.

2.6. Two examples. Throughout this survey most of the statements will be illustrated
on the following two basic examples of stable semigroups. The examples were used for
the study of stability in [BNR98a], [dLVWO02] and [CT03|. Choosing appropriate weights
allows one to check for optimality of the theorems presented below.

EXAMPLE 2.4. In the first example, choose w : R} — (0,00) a continuous and nonincre-
asing function such that

(i) limg— 4o w(t) =0, and
(ii) the function 1/w is of subexponential growth on R .

Let X, = LP(R4y;w(t)dt) (1 < p < o0), and consider the right-shift Cyp-semigroup
(S(t))t>0 defined by

s—t),s>t>0,
(2.4) (S@)f)(s) == {f( : feXp

0, 0<s<t,
An easy calculation shows that the semigroup (S(¢)):>0 is stable.

EXAMPLE 2.5. In the second example, choose the weight w : Ry — (0,00) as in Exam-
ple 2.4 and extend it by w(0) on R_. Let X, := LP(R;w(t)dt) (1 < p < 00). We define
the right-shift Cop-group (S(t))ier on Xp:

(2.5) (SEf)(s):=f(s—1), s,teR, feX,.

As in Example 2.4, the operators S(¢) are contractive for every ¢t € Ry, and the semigroup
(S(t))e>0 is stable. Note that the group (S(¢))ier is of subexponential growth. If 1/w
is polynomially bounded, then (S(t));cg will also be polynomially bounded, and the
generator D is then a generalised scalar in view of the estimate |R(X\, D)|| < C/|Re A\|™
for some m € N and A € C\ iR.

3. Orbits and stability. In general, we are interested in conditions on the generator
A which imply stability of the corresponding semigroup. This interest is motivated by
the applications to Cauchy problems in which the generator A is given but in general
not the semigroup. Nevertheless, there are some other important and equally interesting



STABILITY OF OPERATOR SEMIGROUPS 7

stability conditions in terms of the semigroup itself. This section is devoted to present
these (nonspectral and nonalgebraic) stability conditions.

3.1. Limit isometric group. A bounded semigroup (7'(¢))¢>o is stable if and only if the
algebraic factor space X/Xj is trivial, where X := {z € X : T(-)x is stable}. This very
obvious remark provides a way of proving stability which has indeed often been used
in the literature. The idea behind it, i.e. factoring out a good part of a given set and
showing that the factor is zero, is in fact a frequent idea in mathematics. In the special
case here, this idea leads to the so-called limit isometric group, an efficient device for
proving stability of operator semigroups.

The origin of this operator-theoretical construction can be traced back to Dixmier
[Dix50], Sz.-Nagy [SN47| and Sz.-Nagy & Foiag [SNF70]; see also [Gha75]. It has been
modified by Sklyar & Shirman [SS82], and it was extended and refined by many authors
since then. The following formulation is due to Bercovici [Ber93, Theorem 2 and p. 64]
although it was surely known before to other researchers in the domain.

THEOREM 3.1. Let (T'(t))i>0 be a bounded Cy-semigroup on a Banach (resp. Hilbert)
space X. Then there exist a Banach (resp. Hilbert) space Y, an isometric (resp. unitary)

Co-group (S(t))ter on'Y and a bounded linear operator m: X — 'Y such that
(i) S@t)m =#T(t),t > 0;
(ii) 7(z) = 0 if and only if lim; o ||T(t)z| = 0;
(iil) YV = U5 S(=)7(X).
The group (S(t))ter is unique up to similarity.

In the literature devoted to stability, Theorem 3.1 was used mostly in the Banach space
context and in a version when (S());>0 is just an isometric semigroup. The important fact
that (S(¢)):>0 can always be chosen as a group (with some additional spectral properties)
was observed in [BG94, Proposition 2.1]. Tt follows from Douglas’ extension theorem
[Dou69, Theorem 1].

If A is the generator of (T'(t));>0 and B the generator of (S(t)):cr then one can show
that o(B) C o(A) NiR, so that information about the boundary spectrum of A yields
information about the spectrum of B. This spectral inclusion allows one to apply the
well-developed local spectral theory for isometries in order to prove that Y is trivial, i.e.
that the semigroup (7'(t)):>0 is stable. The latest developments of this idea can be found
in [BNR98a|, [BNRI8b]|, [Bat96].

The above spectral approach can be put in a more general framework. A method of
local resolvent estimates of B in terms of those of A and their application to stability
was recently developed in [Tom01]. It is most efficient when X is a Hilbert space.

3.2. Complete trajectories. Besides the approach via limit isometric groups or semi-
groups, there is another but very similar approach to proving stability of a given semi-
group. This approach even allows us to study stability of operator families more general
than semigroups, e.g. evolution families.

We call a function F': R — X a complete trajectory for a Cy-semigroup (T'(t))¢>o if
for all t > 0 and all s € R: F(t + s) = T(t)F(s). The following theorem characterises
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stability in terms of nonexistence of bounded, nontrivial complete trajectories for the
adjoint semigroup. A proof can be found in [Lin71, Theorem 4.3] or [Der76, Théoréme 2]
for the discrete case, and in [BBG96, Theorem 3.1] or [V1i93] for the continuous case. A
similar result is even true for bounded evolution families (see [BCT02] or Theorem 10.1
below).

THEOREM 3.2. For a bounded Cy-semigroup (T'(t))i>0 on a Banach space X the following
statements are equivalent:

(1) The semigroup (T'(t))i>o is stable,
(ii) The adjoint semigroup (T'(t)*);>0 does not admit a bounded, nontrivial complete
trajectory.

(iii) If B* denotes the unit ball in X*, then (5, T(t)*B* = {0}.

The following statement is analogous to Theorem 3.2 and characterises convergent
semigroups in terms of mean ergodicity and complete trajectories.

THEOREM 3.3. For a bounded Cy-semigroup (T'(t))i>0 on a Banach space X the following
statements are equivalent:

(1) (T'(t))e>0 is convergent,
(i1) (T(t))e>0 is mean ergodic, and the only bounded, nontrivial complete trajectories
for the adjoint semigroup (T'(t)*)i>0 are constants.
(iii) (T'(t))e>0 is mean ergodic, and (5, T'(t)*B* = Ker A*.

The proof of Theorem 3.3 is a simple adaptation of the proof of Theorem 3.2 from
[Lin71, Theorem 4.3|. Clearly, if X is reflexive then the assumption of mean ergodicity
can be omitted from (ii) and (iii). A statement related to Theorem 3.3 was proved in
[Rub77, Theorem 10].

REMARK 3.4. Note that stable semigroups may have nontrivial bounded complete trajec-
tories, and that non-stable semigroups may have no such trajectories. One may take for
ezamples the (stable) left-shift semigroup on L?(Ry) and its (nonstable) adjoint right-shift
semigroup. Thus the use of the adjoint semigroup in Theorem 3.2 is essential.

We collect some basic properties of bounded complete trajectories for (T'(¢)*);>0 in
the following proposition.

PROPOSITION 3.5. Let (T(t))i>0 be a bounded Cy-semigroup on a Banach space X with
generator A, let F' be a bounded complete trajectory for (T(t)*)i>o0, and let F' be its
Carleman transform. Then:

(i) For every A € C, and every p € C\iR, the following identity holds:

(3.1) F(u) = RO\ A")F(0) + (A — )R\, A") F(p).
(ii) If oc(F) is the Carleman spectrum of F, then

(3.2) oc(F) C —ioc(A)NR.
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The proof of the property (i) can be found in [BCT02, Lemma 6.1]|, while the property
(ii) follows directly from an argument given in [BCT02, p. 133]; see also [V193, Proposi-
tion 3.7] where (ii) was proved in a particular case.

The Carleman transform of a bounded complete trajectory for the adjoint semigroup
and the Carleman spectrum play the roles of the resolvent and the spectrum of the
generator of the limit isometric group associated with a bounded semigroup. The fact
that also the Carleman spectrum of the complete trajectory cannot be larger than the
boundary spectrum of the generator (compare with the corresponding property of the
limit isometric group) becomes especially useful when dealing with spectral stability
criteria. Observe that the inclusion (3.2) is strict, in general.

Since the Carleman spectrum of a bounded nonzero function is nonempty, the equiva-
lence (i)« (ii) of Theorem 3.2 allows one to prove stability by function-theoretic methods.
That is, a semigroup is stable if and only if for every bounded complete trajectory F of
the adjoint semigroup the Carleman transform F extends to an entire function (which is
eventually zero). This observation links the study of stability with the theory of analytic
continuation of functions across a linear boundary, and lies at the heart of many results
presented here.

3.3. Decay rates of orbits. In general, the structure of the orbits of a stable semigroup
can be very complicated. For example, the orbits may decay arbitrarily slowly, [Miil88].

THEOREM 3.6 (Miiller). Let (T™),>0 be a stable semigroup on a Banach space X such
that o(T)N'T # (0. Then, for every positive sequence (an)nen € co there exists an x € X
such that |T"z|| > a, for every n > 0.

For variants of this statement for weak orbits and with large sets of slowly decaying
orbits see [Miil01], [Miil03]. For a continuous version of Theorem 3.6, i.e. a version for
stable but not exponentially stable Cp-semigroups, see [Nee96, Lemma 3.1.7].

3.4. Supercyclicity. We call a vector z € X supercyclic for an operator T € L(X) if the
set {¢T"x :n > 0,c € C} is dense in X. An operator T is, by definition, supercyclic if it
has at least one supercyclic vector.

Note that T is supercyclic if and only if AT is supercyclic for every A € C\ {0}. The
following surprising theorem has been proved in [AB97, Theorem 2.3].

THEOREM 3.7 (Ansari-Bourdon). If T is power bounded and supercyclic, then (T™),>¢
1s stable.

Supercyclicity of bounded semigroups seems to be a much stronger property than
stability. It was shown recently in [GMO04] and [LSPLO03] that the Volterra operator
(VH) = fot f(t)dt is not supercyclic on L?(0,1). At the same time, o(V) = {0},
and so the powers of V tend to zero exponentially. In general, supercyclicity imposes
strong restrictions on the spectral and geometric properties of an operator. In particular,
normal operators cannot be supercyclic, and also the point spectrum of the adjoint of a
supercyclic operator may contain at most one point.

A variant of Theorem 3.7 in the context of Cjy-semigroups was recently obtained in
[Kér05]: if (T'(t))¢>0 is bounded and admits a supercyclic vector (i.e. a vector z € X
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such that {¢T'(t)z : t > 0,c € C} is dense in X), then (T(¢))¢>0 is stable under the
additional assumption that RgT'(t) = X, t > 0. The question whether this assumption
can be removed remains open.

3.5. Real integrability conditions. The Datko-Pazy theorem characterising exponential
stability of semigroups ([Dat72]) admits the following version for stability of individual
orbits. Note that there is no growth restriction on the semigroup. The result is an im-
mediate consequence of the inequality [|T(t + s)z|| < C||T'(¢t)z]|, s € [0, 1], following from
the semigroup property.

THEOREM 3.8 (Datko, Pazy). Let (T'(t));>0 be a Co-semigroup, and let x € X. If
(3.3) / |T(&)x||Pdt < oo  for some p € [1,00)
0

then the orbit T'(-)x is stable.

By considering the semigroup from Example 2.4 with an appropriate weight w one
can see that there are stable semigroups for which (3.3) does not hold for any z € X. For
more general conditions of type (3.3) see [Nee02].

The following integrability condition, however, characterises stable orbits of bounded
semigroups.

ProOPOSITION 3.9. If (T'(t))i>0 is a bounded Cy-semigroup on a Banach space X and
p € [1,00) , then T(-)x is stable if and only if

(3.4) Ty O
S

t—oo t

ds=0 for every a > 0.

While the forward implication follows from [Dra70, Theorem B]|, the backward im-
plication is a simple consequence of the semigroup property as in the above Datko-Pazy
result. Proposition 3.9 was stated in [CT03, p. 509] with the difference that only the ex-
istence of the limit in (3.4) for every a > 0 was required; but then the statement becomes
false unless the limit is independent of a > 0.

Finally we give a real integrability condition pertaining to improper integrability of
semigroup orbits.

PROPOSITION 3.10. Let (T'(t))t>0 be a bounded Cy-semigroup on a Banach space X, and
let v € X. If

(3.5) / T(t)xdt ewists
0
then T'(-)x is stable.

Proof. Observe that for every s > 0 and every z € X

(n—i—l)s
/ Hzxdt = Z/ Hzxdt = ZT / (t)x dt.
0 ns

Hence, [; T(t)azdt € Xo :={y € X : T(-)y is stable} for every s > 0, and since Xj is a
closed subspace we obtain that x = hmsﬂoJr fo Hzdt€ Xo. m
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The converse implications in Theorem 3.8 and Proposition 3.10 clearly do not hold;
consider the left shift semigroup on Cy(R;) for a counterexample.

4. Countable spectrum conditions and stability. In this section we turn to spec-
tral conditions for stability. They are the easiest to check and thus perhaps the most
interesting for applications to Cauchy problems.

By the mean ergodic theorem, it is the boundary spectrum of the generator, i.e. the
spectrum on the imaginary axis (resp. on the unit circle in the discrete case) which
plays a central role when studying stability. The main question in this section is whether
the spectrum alone (nature of the spectrum, size of the spectrum) already determines
stability.

We will see that if A generates a bounded Cy-semigroup and if

e the boundary spectrum o(A) NiR is empty, or
e the boundary spectrum is countable and contains no residual spectrum (Arendt-
Batty-Lyubich-Vu Theorem),

then the semigroup is stable. In many applications, the countable spectrum condition is
satisfied with only one point in the boundary spectrum, e.g. when A generates a bounded
holomorphic or positive eventually norm-continuous semigroup.

4.1. Empty boundary spectrum. We present the special case of empty boundary spectrum
separately. Tt is an immediate consequence of Ingham’s tauberian theorem for which
we present a short and instructive proof. Later we will indicate how this proof can be
adapted in order to prove also the ABLV theorem or the Katznelson-Tzafriri theorem (see
Corollary 4.4 and Theorem 5.2 below), thus unifying the proofs of these major results in
the theory of stability.

THEOREM 4.1 (Ingham). Let f € BUC(Ry; X) (the space of bounded, uniformly con-
tinuous, X -valued functions on Ry ) be such that its Laplace transform f has a locally

integrable extension on the imaginary axts in the sense that (f(a 4+ i-))a~0 converges in

L} (R; X) to some function f(z) Then f € Co(Ry; X).

loc

Proof. Let ¢ € S(R) be such that Fy € D(R). Then, by Plancherel’s theorem,

frolt) = / T et —syds= im [ e f(s)o(t - 5) ds

a—0+ Jq

= lim Af(a+iﬁ)eiﬁtf_lw(ﬁ) dﬂ:éf(iﬁ)eiﬁtf—lw(ﬁ) dg.

a—0+

By the Lemma of Riemann-Lebesgue,

lim fx*(t) =0.

[t]—o0
Choosing an approximate unit of appropriate test functions and using that f is bounded
and uniformly continuous, one obtains the claim. m

Applying Ingham’s theorem to each orbit T'(-)x, the following corollary is immediate.
However, note that this corollary also easily follows from Proposition 3.5 and Theorem 3.2.
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COROLLARY 4.2. If A generates a bounded Cy-semigroup and if the boundary spectrum
o(A) NiR is empty, then the semigroup is stable.

4.2. Countable boundary spectrum. The case of countable boundary spectrum (the
ABLV theorem) can also be proved using a tauberian theorem. The corresponding taube-
rian theorem is a generalisation of Ingham’s theorem. One allows for some singularities of
the Laplace transform f on the imaginary axis, but imposes an additional ergodic condi-
tion on f, and obtains the same conclusion. The following formulation of the theorem can
be first found in [BNR98b|, but the proof we give is taken from [Chi98]. It uses Loomis’
theorem on almost periodic functions; a relatively short proof of Loomis’ theorem can
be found in Katznelson [Kat68, Theorem 5.21]. In more abstract forms, a proof of the
following theorem can also be found in [Bas95]|, [Bas79|, [CP01], [CF02].

THEOREM 4.3. Let f € BUC(R4; X) be such that its Laplace transform f has a con-
tinuous extension to i(R\ E), where E C R is a closed and countable set. If, for every

peE,
(4.1) liI{)lJr afs(a+if3) = 0 uniformly in s € Ry,

where fs(t) = f(s+1), then f € Ch(Ry; X).
Proof. We define the operator

K:L'(R) - BUCR; X)/Co(R; X) = Z, ¢ [+ Co(R; X),
in which we have extended the function f by 0 for negative reals. Similarly as in the
proof of Ingham’s theorem, one shows that for every ¢ € S(R) such that Fo € D(R)
and suppF 1o NE =10, fxp € Co(R; X), i.e. Ko = 0. Hence, for every z* € Z* the
function K*z* € L*°(R) has spectrum contained in —FE, i.e. its Fourier transform has
support contained in —F.

Since E is countable, for every ¢ € L*(R) the function K*z* x4 is almost periodic by
Loomis’ theorem [Kat68]. From the ergodic condition (4.1) one easily deduces that the
Abel means af*z\*(a — i) converge to zero as a« — 0+ for all § € E. By the uniqueness
theorem for almost periodic functions [LZ82, Section 2.3], K*z* = 0 for every z* € Z*.
Hence, K =0, i.e. f* ¢ € Cy(R; X) for every p € L'(R). Choosing an approximate unit
of L' functions and using that f is bounded and uniformly continuous, one obtains the
claim. m

Applying Theorem 4.3 to each orbit T'(-)z and noting that the spectral condition
Rg (i3 — A) = X implies the ergodicity condition (4.1), we obtain as a corollary the ABLV
theorem. This theorem has been proved independently in [AB88| and [LV88]. While in
[LV88]| the ABLV theorem was proved by a pure semigroup method, the article [AB88|
already emphasises the tauberian character. However, the proof of the corresponding
tauberian statement was quite complicated using an argument of transfinite induction.
Tt is remarkable that the ABLV theoem can be also deduced from results in [Bas79] and
[Atz84]. The ABLV theorem is also a corollary to the Katznelson-Tzafriri theorem below
and to a recent stability result involving resolvent conditions (see Theorem 6.2 below).
Besides the present proof based on Theorem 4.3 we will thus indicate two more proofs of
the ABLV theorem.
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COROLLARY 4.4 (ABLV). If A generates a bounded Cy-semigroup on a Banach space X,
if the boundary spectrum o(A) N iR is countable, and if Rg (i — A) is dense in X for
every 0 € R, then the semigroup is stable.

The countable spectrum condition is the best possible condition among the spectral
conditions if no other than spectral assumptions are made. A standard counterexample
is the unitary group U(t)f(s) = e'*f(s) on L?(E;du), where E C iR is closed and
uncountable and y is a nonatomic measure on E.

Note on the other hand that for any given closed set £ C R there exists a stable
semigroup whose generator has boundary spectrum ¢F. One may, for instance, consider
multiplication semigroups on appropriate L? spaces in order to see this. In Examples 2.4
and 2.5, the boundary spectrum is the whole imaginary axis. This shows that spectral
conditions as considered above are on the one hand best possible, but on the other hand
far from characterising stable semigroups.

5. The Katznelson-Tzafriri theorem and stability

5.1. The Katznelson-Tzafriri theorem. Motivated by studies of differences of powers of
positive operators, Katznelson & Tzafriri discovered in [KT86] a new kind of tauberian
theorem for power series. We only formulate the corresponding result in the operator
context.

Denoting by A(T) and A" (T) the spaces of Fourier transforms of sequences in ['(Z)
and [*(N), respectively, we say that a function f € A*(T) is of spectral synthesis with
respect to a closed set E C T, if there exists a sequence (f,,)nen C A(T) such that each
fn vanishes in a neighbourhood of E and lim,,_, f, = f in A(T).

Given f = Fa € A*(T) with a € [*(N) and given a power bounded T' € L(X), we
define f(T):=> " a,T".

THEOREM 5.1 (Katznelson-Tzafriri). Let T € L(X) be a power bounded operator. If
f € AY(T) is of spectral synthesis with respect to the boundary spectrum o(T) N'T then
lim,, o | T f(T)] = 0.

One may interpret the Katznelson-Tzafriri theorem as an individual stability result,
ie. lim, o, T"2z = 0 for every « € Rg f(T') and every appropriate f, and at the same
time it gives a uniform estimate for the convergence to 0. If Rg f(T") is dense in X, then
the Katznelson-Tzafriri theorem even implies stability of (77),,>0.

The remark by J. Bourgain in [KT86] shows that Theorem 5.1 is a characterisation
of f being of spectral synthesis in the following sense: f € AT(T) is of spectral synthesis
with respect to a closed set ¥ C T if and only if for every contraction 7" on an arbitrary
Banach space with o(T") C E we have lim,, o |7 f(T)| = 0.

Under the assumptions of the Katznelson-Tzafriri theorem, o(T)NT C {A € T :
f(X) = 0}, and the latter set is necessarily of measure zero. Thus, the Katznelson-Tzafriri
assumptions impose already strong restrictions on the boundary spectrum of T.

The analogue of the Katznelson-Tzafriri theorem for Cy-semigroups was obtained in
[ESZ92] and [Vi92b]. We say that a function f € L'(R.) is of spectral synthesis with
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respect to a closed set E C R if there exists a sequence (f,,)nen C L'(R) such that each
Fourier transform F f,, vanishes on a neighbourhood of E and lim, . f, = f in L*(R).

Given f € L'(R;) and a bounded Cy-semigroup (T'(t))is0, we put f(T) :=
fo ) dt, the integral being strongly defined.

THEOREM 5.2. Let A be the generator of a bounded Cy-semigroup (T'(t))i>0 on a Ba-
nach space X. If f € LY(Ry) is of spectral synthesis with respect to (—io(A)) NR, then
limy o | T() f(T)|| = 0.

The following proof of Theorem 5.2, using only the simple argument from the proof
of Ingham’s theorem (Theorem 4.1) and the definition of spectral synthesis, shows the
tauberian nature of the Katznelson-Tzafriri theorems. From the proof it is straightforward
how to formulate the corresponding tauberian result for bounded functions, but we will
skip this.

First proof of Theorem 5.2. Let f be as in the assumption and choose (f,)neny C LY(R)
as in the definition of spectral synthesis. Convolving f,, with appropriate test functions,
we can without loss of generality assume that Ff, has compact support. Extend the
semigroup by zero on the negative reals. As in the proof of Ingham’s theorem, Parseval’s
identity implies for every n € N and every ¢ > 0

/ T(t4 s)fn(s) ds = lim [ e *CFIT(t 4 5)f,(s) ds
R

a—0+ Jp

:OH0+27T/Ra+Zﬁ, At Ff,(B) dp
- %/RR(M,A)ewt]:fn(ﬁ)dﬁ-

Thus, by the Lemma of Riemann-Lebesgue,
lim / fn($)T(t+s) ds =0.
R

Since

lim fn() t+sdsf/ F($)T(t+s) ds = T(t)f(T)

n—oo

uniformly in ¢ € R+, one obtains the claim. m

One may also prove the Katznelson-Tzafriri theorem by using complete trajectories.
First note the following general convergence property.

LEMMA 5.3. Let (T'(t))1>0 be a bounded Cy-semigroup on a Banach space X, and let
f € LY(Ry). Then lim_,o T(t) f(T) = 0 strongly if and only if
f()

(ﬂT* ) = {o}.

The proof of Lemma 5.3 uses the w*-continuity of f(T)* and repeats the proof of
Theorem 3.2 in [Lin71, Theorem 4.3].

Second proof of Theorem 5.2. Tt suffices to prove that under the assumptions of Theorem
5.2 one has lim; o T'(¢) f(T)) = 0 strongly. This result applied to the semigroup defined
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by T(¢)Y := T(¢)Y on the space of all Y € £(X) such that lim;_,o4 [|[T(#)Y — Y| =0
yields limy_ | T(t) f(T)|| = 0; compare with [Vi92a, p. 79).

Let f be as in the assumption and choose (f,)nen C L'(R) as in the definition of
spectral synthesis. As above in the first proof, we may without loss of generality assume
that Ff,, has compact support.

Let F' be a bounded complete trajectory for (T'(t)*)¢>0. By Proposition 3.2, the Car-
leman spectrum of F is contained in —ig(A) NR. By Parseval’s identity,

F(T)*F(0) = lim [ F(t)f,(t)dt = lim lim [ e M E@)f.(t)dt

n—oo Jp n—oo a—0+ [p

1 . .
=~ lim lim [ (F(a—if) - F(—a—if)Ffa(B)dB =0,
21 n—oo a—0+ Jp
where F' is the Carleman transform of F', and the integrals are understood in the weak*
sense. Since

m T*(t)B* C {F(0) : F bounded, complete trajectory for (I (¢))¢>0},
>0

the claim follows from Lemma 5.3. =

In [ESZ90, p. 284-286] and [ESZ92, p. 215-216] it was shown how the discrete and
the continuous version of the ABLV theorem (Theorem 4.4) can be deduced from the
Katznelson-Tzafriri theorems. Tt follows from the Mittag-Leffler theorem in [Est84] that
under the assumptions of the ABLV theorem ﬂﬁeR Rg (i8 — A) is dense in X. Using this
and the fact that countable closed sets are of spectral synthesis, it follows that under
the assumptions of the ABLV theorem the span of {Rg f(T) : f € L*(R,) is of spectral
synthesis with respect to —io(A) NR} is also dense in X [ESZ92, Theorem 3.7].

5.2. Eaxtensions of the Katznelson-Tzafriri theorem. Let us reconsider now the discrete
Katznelson-Tzafriri theorem and discuss some extensions. First observe that the mapping
f— f(T) is a functional calculus from A" (T) into £(X) for the operator T'. The formu-
lation of the Katznelson-Tzafriri theorem thus suggests that for operators admitting rich
functional calculi more general statements can be obtained.

For example, if T is a contraction on a Hilbert space, and if A(ID) denotes the disc
algebra of all holomorphic functions D — C which are continuous up to the boundary, then
the von Neumann inequality implies that one can define a functional calculus f — f(T)
from A(D) into £(X) for which || f(T)| < ||f|lcc- Using this functional calculus, Esterle,
Strouse and Zouakia proved the following ramification of the Katznelson-Tzafriri theorem
in the Hilbert space setting, [ESZ90, Corollary 2.12].

THEOREM 5.4 (Esterle-Strouse-Zouakia). If T is a contraction on a Hilbert space and
f e AD), then lim, o |T"f(T)|| =0 if and only if f =0 on o(T)NT.

Taking the von Neumann inequality as a starting point, it was proved in [KN97,
Proposition 1.6] that Theorem 5.4 is also true for all polynomially bounded 7.

On the other hand, it is known that contractions on Hilbert spaces even admit an
H> (D) functional calculus. This advantageous point has been exploited by Bercovici
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[Ber90]. Recall that for every f € H>(D) the radial limits f(e?) := lim, ., f(re?) exist
almost everywhere and || f| groemy = || fll oo (1)

THEOREM 5.5 (Bercovici). Let T be a completely nonunitary contraction on a Hilbert
space H, and let f € H>®(D). If lim,_; f(re??) = 0 for every ¢ € o(T) N'T then
lim, oo [T f(T)|| = 0. The converse implication is not true.

Also Allan and Ransford obtained various generalisations of the Katznelson-Tza-
friri theorem, [AR89]. In particular, for several special choices of f in case when f is
not of spectral synthesis with respect to ¢(T) N T they obtained sharp estimates of
limsup,, . [|7"f(T)||. This line of research was continued in [BBG96] where similar
(and stronger) estimates for the strongly continuous case and for general f were ob-
tained assuming, however, countability of the boundary spectrum. Very general forms
of Katznelson-Tzafriri theorems following from tauberian theorems for the vector-valued
Laplace-Stieltjes transform can be found in [Bat90].

5.3. Optimality of the Katznelson-Tzafriri theorem. A natural and interesting question
is whether it is possible to drop the assumption of boundedness of the operator semigroup
in the Katznelson-Tzafriri theorem. Consider the special case of the discrete version of
Katznelson-Tzafriri theorem with f(z) = z— 1. This special case was in fact a motivation
for the paper [KT86] and became most popular later probably because of its simple form.
If o(T) = {1}, the following result was obtained earlier in [Est83], and the general case
can be reduced to this case as noted later in [Vi92al. Observe that one point sets are
sets of spectral synthesis in the algebra A(T).

COROLLARY 5.6 (Katznelson-Tzafriri). LetT € L£(X) be a power bounded operator. Then
lim,, o [| T = T"|| = 0 if and only if o(T)N'T C {1}.

Clearly, if lim,, .o [T+ — T™|| = 0 then necessarily lim, .o =||7"|| = 0 and o(T) N
T c {1}. However, are these two conditions already sufficient? If not, can they be com-
plemented in order to obtain the same or probably a somewhat weaker conclusion?

Allan and Ransford showed that for every o > 0 there exists a Banach space operator
T such that o(T) C T, ||T"|| = O(n®) and |T™(I —T)|| # O(nP) for every 3 < a, [AR89].
Moreover, if T' is power bounded then |71 —T"|| may converge to zero arbitrarily slowly.

Tomilov and Zeméanek provided even stronger examples, [TZ04]. It was proved that
there exists a Hilbert space operator T such that o(T) NT = {1}, lim, . || T7| = 0,
and sup,,> Hn+r1 > oheo T"”‘H < oo (that is, T is Cesaro bounded), but, at the same time,

limy, o0 [|T™(T—1)™|| = oo for every m > 0. Thus, even in a Hilbert space, the additional
assumption of Cesaro boundedness of T" does not help to get a convergence of T™ restricted
to natural subsets of Rg (T — I).

Answering a question of Allan, it was also proved in [TZ04] that if X = L;(0,1) ¢

L1(0,1) and
I1-Vv -V
r=("5" )

where V f(t) := fg f(s)ds is the Volterra operator, then o(T) = {1} and lim, .o < |||
=0, but lim,, o, ||7™(T—1I)|| = co. Therefore, the strongest possible spectral assumption
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o(T) = {1} does not lead, in general, to the convergence of ||T"(T — I)|| to zero. Note,
however, that in this example lim,, .. ||T"(T — I)%|| = 0.

Hence, the Katznelson-Tzafriri theorem is optimal in several senses. The above exam-
ples show also that the corresponding tauberian theorems are optimal. In particular, this
answers an open problem posed by Korevaar in [Kor02, Question 20.3].

REMARK 5.7. There is a continuous version of Corollary 5.6 due to Arendt & Priiss
[AP92, Theorem 3.10]. It says that if (T°(¢)):>0 is a bounded, eventually differentiable
Cy-semigroup, then o(A)NiR C {0} is equivalent to lim; . ||AT'(¢)|| = 0. At the moment,
it is not clear, whether one can find conterexamples to natural extensions of this theorem,
although we strongly suspect that this is possible.

6. Resolvent conditions and stability. The boundary behaviour of the resolvent
of the generator of a bounded Cjy-semigroup near the imaginary axis gives important
information about stability of the semigroup. However, in the previous two sections only
spectral conditions were considered. By the mean ergodic theorem, they reflect some type
of boundary behaviour of the resolvent near the imaginary axis, but they do this in a
very rough way if one is interested in a characterisation of stability or at least more
general sufficient conditions for stability. To see how far the spectral conditions and even
the tauberian theorems are from a characterisation of stability one may consider the
Examples 2.4 and 2.5 with appropriate weights w. For instance, if w(t) = (log(2 + 1))~ 1,
then for every nonzero f € X, and every § € R, the local resolvent R(-,D)f does not
extend continuously near (3. In particular, the boundary spectrum is the whole imaginary
axis, but it is even true that every nonzero orbit S(-)f does not satisfy the conditions
neither of Ingham’s tauberian theorem nor of the tauberian Theorem 4.3. Such examples
show that finer resolvent conditions are needed.

Very recently, two types of such resolvent conditions have turned out to be useful:
pointwise resolvent conditions reflecting the boundary behaviour of the resolvent horizon-
tally near every point of the imaginary axis and (complex) integral resolvent conditions
reflecting the boundary behaviour of integrals of local resolvents along vertical lines near
the imaginary axis. Both types of conditions yield stability of semigroups on general Ba-
nach spaces, but they can become necessary and sufficient in Hilbert spaces or can be
improved substantially in Banach spaces with Fourier type as we will see in Sections 8
and 9 below.

6.1. Pointwise resolvent conditions. The first statement involving pointwise resolvent
conditions shows that rather mild properties of the boundary behaviour of resolvents
may lead to stability of the corresponding semigroup.

THEOREM 6.1 (Pointwise resolvent condition). If A generates a bounded Cy-semigroup
on a Banach space X and if there exists a dense set M C X such that for every x € M
and every § € R

(6.1) 11151+ aR(a+if,A)*z =0,

then the semigroup is stable.
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If B € R and if the condition (6.1) holds for every x € X, then ||aR(a+i3, A)?|| < M
for all & > 0 by the uniform boundedness principle. In this case, ¢3 does not belong to
the spectrum of A since i3 € o(A) implies |a?R(« + i3, A)?|| > 1 for all a > 0. Thus,
the use of a dense set in Theorem 6.1 is essential as soon as the boundary spectrum of
the generator is not empty.

Theorem 6.1 can be proved by using the characterisation of stability in terms of
nonexistence of nontrivial, bounded, complete trajectories for the adjoint semigroup (The-
orem 3.2) and an edge-of-the-wedge theorem from complex function theory from [Tom01];
see [BCTO02, p. 133]. For an alternative approach via the limit isometric group see [Tom01,
Theorem 4.7].

The condition (6.1) holds if for some v € (0,1)

lim o"R(a+iB, A)™x =0,
a—0+
or, by the mean ergodic theorem, if
lim R(a+if, A)x exists.
a—0+

Moreover, by the mean ergodic theorem again, the latter condition follows from z €
Rg (i — A) and Rg (i3 — A) = X. Hence, Theorem 6.1 yields the following corollary,
[BCTO02, Theorem 2.4].

COROLLARY 6.2 (Range condition). If A generates a bounded Cy-semigroup on a Banach
space X and if

(6.2) ﬂ Rg (i — A) is dense in X,
BER

then the semigroup is stable.

The condition (6.2) does not, in general, characterise stability of a bounded Cjy-
semigroup, and even weaker conditions do not; see the comments in Section 9 below.
It is an open problem whether the condition from Theorem 6.1 characterises stability of
bounded Cp-semigroups, or whether on the other hand the conditions (6.1) and (6.2) are
equivalent.

If A satisfies the conditions of the ABLV theorem, then the condition (6.2) is satisfied
by the Mittag-Leffler theorem as we saw in Section 5. Hence, the ABLV theorem is a
corollary to Corollary 6.2.

We point out that spaces like the intersection of ranges in condition (6.2) are not
completely new in operator theory. In fact, these spaces are very similar to so-called
spectral subspaces which were already known in local spectral theory.

Given an operator (a generator) A, we say that a vector x € X has its local spectrum
in a closed set F' C C if the local resolvent R(-, A)x extends analytically outside F. When
A is a normal operator the set of all z € X having their local spectrum in F' C C, i.e. the
spectral subspace corresponding to F), can be described algebraically as ﬂ,\eC\F Rg(A—A),
[LNOO]. This description can be generalised for some classes of operators which are close
to the class of normal operators. For the latest advances in this area see [MMNO4]. Appli-
cations of stability theory to the study of intersections of ranges of semigroup generators
are discussed in [BCT02].
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For stability, i.e. given a generator A of a bounded Cy-semigroup, the spectral sub-
space corresponding to the closed right half place C, could be of interest. Observe that
every vector x belonging to this spectral subspace has local spectrum in the open left
half plane, i.e. the local resolvent extends analytically across the imaginary axis. By
Ingham’s theorem, the orbit T'(-)x is stable for every such x. Hence, if the spectral sub-
space corresponding to the closed right half plane is dense in X, then the semigroup is
stable.

So, it is natural to take intersections of ranges as good substitutes for spectral stability
conditions. By Corollary 6.2, this strategy appears to be fruitful even when the normality
of A is dropped.

6.2. Integral resolvent conditions. We consider two types of integral conditions: condi-
tions on the behaviour of the integral of local resolvents along whole vertical lines near
the imaginary axis (’global integrability criterion’) and conditions on the behaviour of
the integral along bounded intervals of vertical lines near the imaginary axis (’local inte-
grability criterion’).

One can consider other types of integral conditions, e.g. when local resolvents belong
to some Bergman space near the imaginary axis. However, these conditions can be studied
by reduction to the two conditions mentioned above [CT03].

The following two results can be found in [CT03, Theorem 3.1] and in [Tom01, The-
orem 4.1], respectively.

THEOREM 6.3 (Global integrability criterion). If A generates a bounded Cy-semigroup
on a Banach space X, and if for some v > 1 and for every x from a dense subset

of X

(6.3) lim / la” ' R(a+ 48, A)Vz|| dB = 0,
R

a—0+

then the semigroup is stable.

THEOREM 6.4 (Local integrability criterion). Assume that A generates a bounded Cjy-
semigroup on a Banach space X. Assume also that for every B € R there exists an open
neighbourhood U C R of § and a dense set M C X such that

(6.4) lir&_ laR(a+if', A)z|| dB' =0  for every x € M.
o— U
Then the semigroup is stable.

It follows from Young’s inequality, Plancherel’s theorem and Theorem 8.1 that the
condition (6.4) becomes necessary if X is a Hilbert space; see the discussion in [CT03,
p. 506].

It is possible to give an integral stability criterion for individual orbits of not nec-
essarily bounded Cy-semigroups [CT03, Theorem 5.1]. Tt is in some sense intermediate
between the similar stability condition (6.4) in Banach spaces and the integral stability
criterion in Hilbert spaces in Section 8 below.



90 R. CHILL AND Yu. TOMILOV

THEOREM 6.5. Let A be the generator of a Co-semigroup (T(t))t>0 on a Banach space
X. Letp € (1,00) and q := %. Assume that
(6.5) Ct+ C 0(A), and
supa/ |R(cv+ 18, A")z||? df < 00 for every z* € X ™.
a>0 R
If, for some x € X,
(6.6) lim a/ |IR(a + i, A)z||P dB = 0,
a—0+ R
then
lim ||T(¢)z|| = 0.
t—o0

Note that under the conditions of the above theorem, the semigroup (7'(¢))¢>o cannot
grow too fast: by [CT03, Proposition 5.3] it has a sublinear growth if X has a nontrivial
Fourier type.

7. Stability of positive semigroups. If more structure of the semigroup or the under-
lying Banach space is given, then one may expect better stability results. In this section we
start to discuss such types of results, turning our attention first to positive semigroups on
Banach lattices or, more generally, on ordered Banach spaces, [MN91]|, [Nag86], [Sch74].
Note that in general, as far as spectral or resolvent conditions for stability are concerned,
the stability theory of positive semigroups comprises the same difficulties as the theory
of general semigroups on Banach spaces. Examples 2.4 and 2.5 which are positive semi-
groups on LP spaces may serve as a demonstration of this; see also the discussion in
Section 9 below.

Nevertheless, an interplay between positivity of a semigroup and geometric properties
of the underlying Banach lattice leads to some specific stability results.

7.1. Positive semigroups on general Banach lattices. Let X be a (complex) Banach lat-
tice. The positive cone will be denoted by X .

We start by discussing some resolvent (resp. range) conditions for stability of positive
semigroups on general Banach lattices. Recall that a Banach lattice is called a KB space

if every norm bounded increasing sequence converges. A Banach lattice is a KB space if
and only if ¢ ¢ X.

PROPOSITION 7.1. Let (T'(t))1>0 be a bounded positive Cy-semigroup on a Banach lat-
tice X.

(i) If z € X4 and lim, oy aR?(a, A)x = 0, then T(-)x is stable.
(ii) If x € X4 and w —limy_,04+ R(a, A)x exists, then T'(-)x is stable.
(iil) If * € X4, sup,sg |R(e, A)z|| < o0, and if X is a KB space, then T(-)x is
stable.
(iv) If z € X and limy_,0+ R(a, A)xy exist, then T(-)x is stable.

Proof. (i) By positivity, ||aR(a +i8, A)?z|| < |[aR(a, A)?z|| for every a > 0, 3 € R and
every x € X ;. The claim thus follows from Theorem 6.1 applied to the restriction of the
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semigroup (T'(t))s>0 to the closure of the linear span of {T'(t)x : t > 0}, taking the linear
span itself as a dense set; see also [Tom01, Corollary 4.9].

(ii) Since the net (R(a, A)x)onp is increasing and weakly convergent, we obtain
that lim, 04 R(a, A)x exists by Dini’s theorem. By the mean ergodic theorem,
lim, o4 aR(a, A)%2x = 0, so that the assertion follows from (i). But one may also argue
as follows: since x is positive, the existence of lim, 04 R(«, A)z implies that fooo T(s)xds
exists by the tauberian theorem [ABHNO1, Theorem 4.2.16]. Now Proposition 3.10 implies
the claim.

(iii) By the KB property, lim,_o R(«, A)x exists. Then apply (ii).

(iv) follows directly from (ii). =

By positivity, [|[R(A, A)z| < ||[R(ReA, A)z|| for every A € Cy and every z € X, so
that under the conditions of Proposition 7.1 (ii), (iii) or (iv) we have sup,cc, [[R(A, A)z||
< 00. Thus, the conditions of Proposition 7.1 concern, in fact, the boundary behaviour
of the local resolvent R(-, A)z in the whole right half-plane.

A result similar to Proposition 7.1 (ii) can be found in [Neu86, Proposition 3.5] and
[Nag86, C-IV, Proposition 1.9].

COROLLARY 7.2. Let (T'(t))i>0 be a bounded positive Cy-semigroup on a Banach lat-
tice X. If limy—.o4 R(cv, A)x emists for every x € C®(A) :=(,_, D(A™), then (T(t))i>0
is stable.

For the proof it suffices to observe that C*°(A4) N X, is total in X, [Nag86, C-IV,
Remark 1.10]. Corollary 7.2 has been proved in [Neu86, Proposition 3.5] with C*°(A)
replaced by D(A), and in [Nag86, C-TV, Proposition 1.9] with C°°(A) replaced by some
total set D C X .

Note that under the assumptions of Corollary 7.2, much more is true. By the uni-
form boundedness principle (applied in the Fréchet space C*°(A)), there exists n € N
such that sup,.g [|[R(a, A)R(Ao, A)™|| < oo, where X\g > 0 is chosen large enough. Ap-
plying the resolvent identity n times, this implies sup,.q | R(e, A)|| < oo. Hence, by
positivity of (T'(¢));>0, the spectral bound s(A4) < 0. By [EN99, Theorem 6.1.14], the
condition s(A) < 0 actually implies exponential stability of T'()z for every x € D(A),
and it even implies exponential stability of (T'(t));>o itself if X is an LP space, [ABHNO1,
Theorem 5.3.6].

By the mean ergodic theorem, the stability condition from Corollary 7.2 is equivalent
to saying that C°°(A) C Rg A. Clearly, it cannot be replaced by the mere condition that
Rg A is dense in X as the isometric shift semigroup on L?(R) shows. However, in some
cases, the condition Rg A = X characterises stability, [Nag86, C-TV Theorem 1.5].

THEOREM 7.3 (Positive, norm continuous semigroups). If A generates a positive, even-
tually norm-continuous and bounded Cy-semigroup on a Banach lattice, then the semi-
group is stable if and only if Rg A is dense.

Note that the eventual norm continuity of the semigroup implies o(A4) NiR C {0} by
e.g. [Nag86, C-IIT Proposition 2.9, Corollary 2.13], so that Theorem 7.3 directly follows
from the ABLV theorem.
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Another direction in the research on stability of positive semigroups is based on the
concept of domination. There are three variants of this concept in the literature.

DEFINITION 7.4. Let (T'(t));>0 and (S(t))i>0 be Cp semigroups on a Banach lattice X
with generators A and B, respectively. Assume that (S(¢)):>0 is positive.

(1) We say that (T'(t))t>0 is dominated by (S(t))i>o if |T(t)z| < S(t)|x| for every
z e X.
(ii) We say that A is resolvent dominated by B if |R(\, A)x| < R(A, B)|x| for every
x € X and every A > 0 sufficiently large.
(iii) We say that (T'(t))i>0 is asymptotically dominated by (S(t))i>0 whenever
lim; o0 |(S(t)x — T'(t)x)—|| = 0 for every positive z € X, or, equivalently,
limy_, oo dist(S(t)x — T'(t)x, X1) = 0.

Clearly, (i) implies (ii), and both conditions are equivalent if X is o-order complete,
[Nag86, p. 269]. At the same time, (iii) is strictly weaker than (ii). Indeed, any convergent
(positive) semigroup is asymptotically dominated by the constant semigroup, but clearly
its generator may not be, in general, resolvent dominated by 0, the generator of the
constant semigroup.

It is natural to expect that stability properties of dominated semigroups are inherited
by those of the dominating semigroups. This appears to be true even for asymptotic
domination, [EKRWO01, Theorem 4.5].

THEOREM 7.5. Let X be a Banach lattice with order continuous norm, let (T(t))i>0
and (S(t))e>o0 be positive semigroups on X, and assume that (T'(t));>0 is asymptotically
dominated by (S(t))e>0- If (S(t))e>0 is stable, then (T'(t))i>0 is also stable.

Actually, Theorem 7.5 was proved in [EKRWO01] with stability replaced by conver-
gence. If one replaces stability by convergence in Theorem 7.5, then it is shown in
[EKRWO1, Example 4.7 (a)] that the positivity of both semigroups, i.e. also of the domi-
nated semigroup, is necessary in general. It is not clear whether the positivity of (T'(¢)):>0
is also necessary in Theorem 7.5 as we stated it here.

Inheritance of stability assuming resolvent domination seems to be more difficult
to establish. However, by [RWO00] (see also [RW97]), resolvent domination allows one
to deduce stability of the dominated semigroup from pure spectral conditions on the
generator of the dominating semigroup.

In general, one can also study stability of positive semigroups on ordered Banach
spaces with a normal cone. Typical examples of ordered Banach spaces with a normal
cone which are not Banach lattices are C*-algebras. Stability of positive Cp-semigroups
on C*-algebras with unit admits a simple characterisation, [GN81, Satz 3.2].

THEOREM 7.6 (Groh-Neubrander). Let (T'(t))i>0 be a positive Cy-semigroup on a C*-
algebra A with unit. Then (T(t))i>0 is exponentially stable, i.e. the exponential growth
bound wo(A) < 0, if and only if it is weakly stable, i.e. w — limy_,oo T'(t)x = 0 for every
ze A

The proof of Theorem 7.6 is based on the fact that wo(A) € 0,(A*) if wo(A) > —o0.
The result is not true for C*-algebras without unit as the example of the weakly stable
left-shift semigroup on Cy(R) shows.
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7.2. Positive semigroups on L' or C(K). The L' space (or abstractly any AL space)
is distinguished from other Banach lattices by the fact that the norm is additive on the
positive cone. This helps to estimate integrals of positive functions. So if a Banach lattice
X is an L'-space, then Theorem 7.3 can be strengthened, [Sch74, p. 347], [Nag86, C-IV,
Proposition 1.7].

THEOREM 7.7 (Positive semigroups on L'). If A generates a positive and bounded Cp-
semigroup on an L' space, then the semigroup is stable if and only if Rg A is dense.

Proof. The necessity part follows from the mean ergodic theorem. To prove the other
direction, let f € L' be positive. By the mean ergodic theorem,

0= AEI(I)I+</\R(A5 A)fv 1>L1><Lf>C

oo
= li —At i
AE&A/O e T f, 1) prixre dt

oo
= 1 —At )
Jim A [T ar

Passing to an equivalent norm || - || on L' for which (7'(¢));>0 is contractive, we find that
limy o [|T(t) f|| exists and limx—o4 A [~ e || T(t) f|| dt = 0. By the regularity of the
Abel summation, this implies that T'(:) f is stable for every positive f. Since the cone is
generating, (T'(t))¢>o is stable. m

Concrete situations where Theorem 7.7 can be applied one may find in [ABB92] and
[Bat92]. The interesting relations between domination and stability of Cy-semigroups on
L! spaces are discussed in [Ouh97].

Stability theory of Cy-semigroups on C(K), where K is a compact Hausdorff space,
has also several specific features. Since C'(K) is a (commutative) C*-algebra with unit,
Theorem 7.6 implies that a stable Cy-semigroup on C(K) is necessarily exponentially
stable. However, in this particular situation, more can be said.

The following result is due to Choquet & Foiag [CF75, Théoréme 1, Remarque 5[; see
[MT93, Corollaire 2.4| for a continuous version.

THEOREM 7.8. Let (T'(t))i>0 be a positive Cy-semigroup on C(K), and let f € C(K) be
strictly positive. Then (T'(t))t>0 is exponentially stable if and only if w-lim;_,o T(t)f = 0.

Note that T(t)f = Mf_IS(t)l7 where Mg := fg and the positive Cp-semigroup
(S(t))t>0 is defined by S(t) = MfT(t)Mf_l. Thus it suffices to prove Theorem 7.8 for
f = 1. The statement follows from the special properties of the orbit (T'(t)1);>¢ and the
fact that [|T'(¢)]| = [|T'(¢)1].

As above, Theorem 7.8 fails, if one replaces C(K) by Cy(Q2) for some locally compact
Hausdorff space (2, or if the strict positivity of f is violated [CF75, Remarque 5].

The above theorem shows that it is of interest to study stability properties of (T'(£)):>0
for which the orbit T'(-)1 is not stable, e.g. for Markov semigroups (i.e. T(¢)1 = 1,
t > 0). Note that for individual orbits of such semigroups weak stability and stability
are in general not equivalent; see [Jam70, p. 369] or [CF75, Remarque 5| for illustrative
examples. But these types of stability are equivalent under the additional assumption of
irreducibility of (T'())¢>0-
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Given a Cy-semigroup (T'(t)):>o of contractions on C(K), we call a set E C K invari-
ant if for every x € E and every t > 0 we have supp T'(¢)*6,, C E. The semigroup is called
irreducible on C'(K) if the only invariant subsets are K and the empty set. This definition
of irreducibility is equivalent to the one for positive semigroups on general Banach lattices
(see [Sch74, Nag86] for that definition).

The following statement was proved by Jamison in the context of Markov operators,
[Jam70]. Its generalisation for nonpositive operators was obtained by Sine in [Sin89,
Theorem 2]. We state the continuous version which can be derived from the discrete one
easily.

THEOREM 7.9 (Sine). Let (T'(t))i>0 be an irreducible contraction Cy-semigroup on
C(K), and let f € C(K). Then T()f is stable if and only if w-lim;_.o T(t)f = 0.

The example from [Jam70, p. 369] shows that the condition of irreducibility cannot be
omitted in Theorem 7.9 even if (T'(¢));>0 is a Markov semigroup. Moreover, the statement
fails if C(K) is replaced by Cy(§2). However, weaker notions of irreducibility still allow one
to keep the conclusion of Theorem 7.9; we refer to [Wit88] for details. Concerning stability
and convergence of irreducible semigroups on L; spaces see also [Nag86, p. 346-349].

There is another kind of condition which is suitable for the study of convergence of
Markov operators [Rub77, Theorem 12].

THEOREM 7.10 (Rubinov). Let T be a Markov operator on C(K). Assume that the fized
points of T separate the points of K. Then (T™),>¢ is convergent if and only if it is mean
ergodic.

By means of the abstract Theorem 3.2, various other stability conditions for Markov
operators were obtained in [Lin74]. We will not state them here, since their formulation
would require probabilistic terms going far beyond the scope of the survey. Recently,
the convergence properties of Markov operators were also investigated from a measure-
theoretic point of view in [Fog99].

8. Stability of semigroups on Hilbert spaces. Stability of semigroups on Hilbert
spaces is perhaps the nicest part of the theory of stability. The special geometric properties
of Hilbert spaces, e.g. the validity of Plancherel’s theorem, and of operators on Hilbert
spaces (normal operators, hyponormal operators, contractions on Hilbert spaces) have
lead to a variety of stability results, some of which are even characterising stability in
terms of resolvent conditions.

Moreover, the study of stability of semigroups on Hilbert spaces is of independent
interest in operator theory, e.g. for the invariant subspace problem. However, despite
several partial positive results it is still not known whether a stable T € £(X) with
nonempty boundary spectrum has a nontrivial invariant subspace; see [Miil03], [Miil05].
The invariant subspace problem is also open for the opposite class of power bounded T
for which all orbits are not stable, [Kér89], [KV03] (if, however, T and T* are non-stable,
then it is known that 7' (and T*) has an invariant subspace, [SNF70, Theorem I1.5.4]).

This may serve as an indication that stable operator semigroups are still not fully
understood. Note that stability theory and invariant subspace theory have many methods
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and techniques in common. As illustrative works we mention [Atz84], [Bea88|, [AE9S]|
and [Kér99].

We start with a discussion of resolvent stability conditions. The following statement
is a refinement of the global integrability criterion from Theorem 6.3. Its particular case
with v = 1 has been proved in [Tom01, Theorem 3.1].

THEOREM 8.1 (Global integrability criterion). Let A be the generator of a bounded Cy-
semigroup on a Hilbert space X. Then the semigroup is stable if and only if for some
v > % and every x from a dense subset of X,
(8.1) Jim / a7} R(a + i3, A)a|| dB = 0.
a=0+ Jp

Proof. By changing the norm on X, we may without loss of generality assume that the
semigroup (T'(t));>0 generated by A is a contraction semigroup. Note that X need not
be a Hilbert space for the new norm, but it is isomorphic to a Hilbert space, and the
Fourier transform is still an isomorphism on L?(R; X) by Plancherel’s theorem.

If (T'(t))t>0 is a contraction semigroup, then lim; ., |[|T'(t)x| exists for every x € X.
By an abelian theorem and Plancherel’s theorem,

t—o0

lim ||T(t)z|* = lirrb/ QAT 220t (1) 2|2 dt
a— 0

<Clm [ & 2R(o+iB, A)'z|? dB.
a—0 Jp
This proves the necessity part. The sufficiency part is proved similarly. m

One can use the characterisation of generators of bounded semigroups on Hilbert
spaces due to Gomilko [Gom99, Theorem 1] and Shi & Feng [SF00, Theorem 1.1, Theorem
4.1] in order to drop the boundedness condition on the semigroup in Theorem 8.1 and to
replace it by a pure resolvent condition.

THEOREM 8.2. Let A be a closed, densely defined, linear operator on X such that C, C
o(A), and let v € (%, 2). Then A generates a stable semigroup if and only if

(8.2) sup [ flad = R+ 15,472 a5 < o,
a>0JR
and for every x € X
(8.3) lim [ @ 2 R(a+ i3, A)z||*> dB = 0.
a—0+ Jp

The conditions (8.2) and (8.3) are clearly necessary by the Plancherel theorem and an
argument similar to that of the proof of Theorem 8.1. For the proof of their sufficiency,
observe that (8.2) and (8.3) imply

supa [ [(R¥(a+i0, A, )] dd < oo, wye X,

a>0 R
by Young’s inequality. Then, by [Gom99] or [SF00], A generates a bounded semigroup,
and we obtain the stability of (T'(¢));>¢ from Theorem 8.1.

Using Theorem 8.2 with v = 1, Guo & Zwart have shown that it provides a geomet-
ric stability criterion for Cy-semigroups with generator A in terms of solvability of the
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Lyapunov equations
(8.4) (A—sD)*Q(s)+Q(s)(A—sI) = —I on D(A) and
(8.5) (A—sDQ(s) + Q(s)(A — sI)* = —I on D(A*¥)

for all s > 0; see [GZ06, Theorem 2.8|. Their result is somewhat parallel to the well known
characterisation of exponential stability of semigroups in terms of Lyapunov equations.

THEOREM 8.3 (Guo-Zwart). Let A be a closed, densely defined, linear operator on a
Hilbert space X. Then the following statements are equivalent.

(i) A generates a stable Cy-semigroup.
(ii) For every s > 0 there exist positive solutions Q(s), Q(s) € L(X) of the Lyapunov
equations (8.4) and (8.5), respectively, such that

(a) sup {[|sQ(s)], sQ(s)ll - s > 0} < co and
(b) lims—0+(sQ(s)x,x) =0 for every x € H.

The pointwise resolvent condition as well as the corresponding range stability con-
dition from Sections 6 and 9 can be improved for semigroups on Hilbert space as the
following statement shows.

THEOREM 8.4 (Pointwise criterion). Let A be the generator of a bounded Cy-semigroup
on a Hilbert space X.

(i) If there exists a dense set M C X such that

(8.6) 1ir([)1+ VaR(a+if,A)z =0 for every x € M and every (3 € R,
then the semigroup is stable.
(i) If
(8.7) m Rg (i8 — A)% 1s dense in X,

BER
then the semigroup is stable.

Theorem 8.4 (i) was obtained in [Tom01, Theorem 3.4] by using the method of limit
isometric groups; we give a different proof in Section 9 below (Theorem 9.1). Theorem
8.4 (ii) is a consequence of part (i) and can be found in [CT03, Proposition 6.1]. Note
that the range condition (8.7) is weaker than the range condition (6.2) from Theorem
6.2; this can be seen by considering Examples 2.4 and 2.5, [CT03|. Also the condition
(8.6) is a priori not stronger than the corresponding Banach space condition (6.1) by the
abstract Hardy-Landau inequality, [Tom01, Remark 4.11]. It is an open problem whether
the stability conditions from Theorem 8.4 (i) or (ii) are also necessary for stability.

Contractions on Hilbert spaces have a rich spectral theory based on unitary dila-
tions and functional model approaches. So the results given above can be improved and
complemented for the class of contraction semigroups.

Recall that if (T'(¢)):>0 is a Cop-semigroup of contractions on a Hilbert space H, then
there is a unitary Cp-group (U(t)):cr on a Hilbert space K D H such that PgU(t) =
T(t),t > 0, where Py is the orthogonal projection onto H. Any such group (U(t))icr is
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called a dilation of (T'(t));>0, and among all dilations there exists a minimal one in the
sense that K = \/, . U(t)H.

Foguel expressed stability and convergence of a Cy-semigroup (T'(¢));>o of contractions
in geometric terms by means of the corresponding minimal unitary dilation (U(t)):cr,
[Fog71, Corollary 1, Theorem 4]. His characterisation of stability and convergence is very
similar to the characterisation in terms of limit isometric groups or complete trajectories.
For a discussion of relations between limit isometric semigroups and minimal unitary

dilations see [Kér89|. Let H, := ntzo Viss U(—=5)H.

THEOREM 8.5. A contraction semigroup on a Hilbert space H 1is stable if and only if
H,, = {0}. Moreover, the semigroup is convergent if and only if the minimal unitary
dilation is constant on H.

In [Put75, Theorem 3| a stability result for cohyponormal operators is proved, i.e. for
operators T on a Hilbert space such that TT*—T*T > 0. Note that a cohyponormal power
bounded operator is necessarily a contraction. A short proof of the following statement
has been given in [Oku77] and [KV94].

THEOREM 8.6 (Putnam). If T is a completely nonunitary cohyponormal contraction,
then (T™)n>0 is stable.

Putnam’s approach to Theorem 8.6 is of interest here since it follows ideas similar to
those behind the pointwise resolvent conditions from this survey. We present a variant
of his approach using a short argument due to Radjabalipour [Rad76]. Observe that for
every z € C

(T —2)(T* —2) > (T — 2)(T* —2) — (T* = 2)(T — 2) > TT* — T*T := D* > 0,

where the last inequality holds by the cohyponormality of T'. By the Douglas majorization
criterion [Dou66], for every z € C there exists a contraction C(z) such that

(8.8) (T — 2)C(2) = D.

The global boundedness of C(-) is used in [Put75] to show that RgD C {z € X :
lim,, oo T2 = 0}. Since T is completely nonunitary, Rg D is dense in X and therefore
(T™)n>0 is stable.

Note that the equation (8.8) alone together with the density of Rg D already suffices
to obtain stability of (T™),>0 by, for example, Corollary 6.2.

If A is the generator of a semigroup of completely nonunitary contractions, then the
condition (8.6) characterises stability, but even a little bit more is true. This characteri-
sation of stability has been proved in [TomO1, p. 75-76], but see also [BL95, Theorem 5]
where the characterisation is proved with a concrete set M. The proof in [Tom01] is based
on Theorem 8.5 together with some additional properties of the orthogonal projection
onto H, found in [Fog71]. It is crucial that the generator of the minimal unitary dilation
of a semigroup of completely nonunitary contractions has absolutely continuous spectral
measure.

THEOREM 8.7. Let A be the generator of a Cy-semigroup of completely nonunitary con-
tractions on a Hilbert space X. Then the following are true:
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(i) The semigroup is stable if and only if there exists a dense set M C X such that
11I£1+ VaR(a+if,A)x =0 for every x € M and almost every 3 € R.
oa—

(i) If there exists a set E C R of measure 0 such that

m Rg (iB — A)% is dense in X,
BER\E
then the semigroup is stable.
(iii) If the boundary spectrum of A has measure 0, then the semigroup is stable.

As in Theorem 8.4, part (ii) is a consequence of part (i) and can be proved along the
lines of [CT03, Corollary 6.1]. The last statement of Theorem 8.7 can already be found in
[SNF70, Proposition 6.7, p. 85]. It can be used to deduce a discrete version of the ABLV
theorem for Hilbert space contractions, [Gil70, Proposition 2|. At the end, we turn to a
variational condition for stability.

THEOREM 8.8. Let A be densely defined, closed linear operator on a Hilbert space X. If
A is normal, and if

(8.9) Re (Az,x) < 0 for all x € D(A),
then A generates a stable Cy-semigroup of contractions.

If A is a multiplication operator on an L? space, then the above theorem is easy to
prove. Thus, the theorem is an immediate consequence of the spectral theorem for (un-
bounded) normal operators on separable Hilbert spaces ([RS80, Theorem VIIL.4, p. 260])
saying that A is unitarily equivalent to a multiplication operator.

The normality assumption on A in Theorem 8.8 can be dropped if one knows that
the semigroup generated by A is asymptotically almost periodic or if A has compact
resolvent. See [ABHNO1, p. 360 361] for the relevant discussion of these two properties
of A.

In Djadenko [Dja80], Theorem 8.8 is stated without the assumption that A is normal,
but then it becomes false as the following example shows.

ExXAMPLE 8.9. Consider the shift semigroup (S(¢));>o from Example 2.4 on the Hilbert
space X = L%(Ry;w(t) dt), but with weight w(t) =1+ e~ ¢t > 0. A simple integration
by parts shows that the generator D = —d/dt of this semigroup satisfies the condition
(8.9). However, for every nonzero f € X one has limsup,_, ||S(¢)f]| > 0.

Other examples of this kind can be found in [BL95]. However, if a closed, densely
defined linear operator A satisfies (8.9), then there is another Hilbert space K containing
X such that A generates a stable semigroup on K, [BL95, Theorem 2].

9. Stability of semigroups on Banach spaces with Fourier type. In many of the
stability results up to now, especially those based on spectral conditions or resolvent
conditions, the Fourier transform has played a central role in the proofs. For example, in
the proofs of the tauberian theorems which we have presented (Ingham’s theorem and
its variants) Parseval’s identity and the Lemma of Riemann-Lebesgue were the core. In
some of the stability results for semigroups on Hilbert spaces, the validity of Plancherel’s



STABILITY OF OPERATOR SEMIGROUPS 99

theorem for Hilbert space valued L? functions was essential, and since, by Plancherel, the
Fourier transform is an isomorphism on L?, we even obtained some characterisations of
stability in terms of resolvent conditions. Heuristically, the reason why all these arguments
work is that the Fourier transform of bounded semigroup orbits is the distributional
boundary value of the corresponding local resolvents on the imaginary axis or the unit
circle, respectively.

It is thus not surprising that in Banach spaces in which the Fourier transform preserves
good geometric properties we are able to obtain better stability results, at least better
than the pointwise and the integral stability results from Section 6. Among such Banach
spaces are the Banach spaces with nontrivial Fourier type.

We say that a Banach space X has Fourier type p € [1,2] if the Fourier transform
on S(R; X)) (the vector-valued Schwartz space) extends to a bounded linear operator
from LP(R; X) into LY(R; X), i.e. if the Hausdorff-Young inequality holds. By the Lemma
of Riemann-Lebesgue, every Banach space X has the trivial Fourier type p = 1. Thus,
by interpolation, if X has Fourier type p € [1,2], then it has Fourier type p’ for every
p’ € [1,p]. A Banach space has Fourier type p = 2 (i.e. Plancherel’s Theorem holds) if
and only if it is isomorphic to a Hilbert space. By [Bou82|, a Banach space has nontrivial
Fourier type if and only if it is B-conver; see also [Bou82]| for a definition of B-convexity.

If a Banach space X has Fourier type p € [1, 2], then the dual X* has the same Fourier
type p. For all these facts we refer to the recent survey [GKKT9S].

9.1. Pointwise resolvent conditions. The first result is in the spirit of the pointwise re-
solvent conditions from Theorem 6.1 (Banach space case) and Theorem 8.4 (i) (Hilbert
space case), and it has been proved in [BCTO05, Theorem 5.7]. It is an improvement of
[CT04, Theorem 4.2]. Note that Theorem 8.4 (i) is Theorem 9.1 in the case p = 2.

THEOREM 9.1 (Pointwise resolvent condition). Let A be the generator of a bounded Cy-
semigroup on a Banach space X having Fourier type p € (1,2]. Let q := ﬁ be the
conjugate exponent. Assume that there exists a dense set M C X such that for every
B €R and every x € M

(9.1) lim |t R(ov + i3, A)z|| = 0.
Then the semigroup is stable.

The proof of Theorem 9.1 presented below is very similar to the proof of [BCT02,
Theorem 6.3].

Proof of Theorem 9.1. Denote the semigroup by 7. Let F : R — X* be a bounded
complete trajectory for the adjoint semigroup 7*, let € M, and let f := (F, x). Let F
and f be the Carleman transforms of F' and f, respectively.

By the resolvent identity (3.1) (Proposition 3.5), for every a > 0 and every /3 € R,

[fa+iB) — f(—a+if)| = |2(a7 F(~a +if),at R(a +if, A)z)]
< G(a+if) H(a +if),

where

Gla+1iB) == ||2a7 F(—a +iB)||
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and
1
H(a+i8) = ||as R(a+ i3, A)z||.
By the boundedness of F' and the Hausdorff-Young inequality,
(9.2) su}()J |G(a+ )| aw) < oo.
a>

Moreover, from the assumption (9.1), the resolvent identity and the boundedness of
the semigroup (7'(t)):;>0 we obtain for every 6y € (0, %) and every 3 € I
limsup H(a+1i3')

a—0+4
18/ —Bl<a tan 6

ot (R(a +iB', A) — R(a+if, A))|

A
5.
]
=1
T

|8 —B|<a tan 6

limsup |l tan 6y R(a+i5',A)o¢%R(a+iﬂ, Azl
157 ] <o van 0

< tan @y sup ||T'(¢)| lim sup ||a%R(a +i3, A)x| = 0.
t>0 a—0+

IN

It follows from this inequality, the boundedness of F' and (9.2) that we can apply Theo-
rem 2.3 in order to see that the Carleman transform f extends analytically through the
imaginary axis to an entire function.

By [Prii93, Proposition 0.5 (i)] and the uniqueness of the Fourier transform, f =
(F,z) = 0. Since M is dense in X, this implies F' = 0, i.e. there is no nontrivial bounded
complete trajectory for 7*. By Theorem 3.2, the semigroup 7 is stable. m

As a corollary to Theorem 9.1 one obtains the following, [BCTO05, Corollary 5.10],
[CT04, Corollary 4.6].

COROLLARY 9.2 (Range condition). Let A be the generator of a bounded Cy-semigroup
on a Banach space X having Fourier type p € (1,2]. If

(9.3) ﬂ Rg (i — A)% is dense in X,
BER

then the semigroup is stable.

9.2. Optimality of pointwise resolvent conditions. It has been shown in [CT03, Section 4]
that the Corollaries 6.2 and 9.2 are optimal in the following senses.

If one considers the isometric (nonstable) shift group with generator D on X = L4(R)
(1 < g < o0)oronX = Cy(R), then, by [CT03, Proposition 4.10], for every 1 < ¢ < oo
and every v € (0, q%l) the space

ﬂ Rg (i3 — A)” is dense in X.
BER
If ¢ > 2, then the space X has Fourier type p := #. This example shows that one
cannot expect better exponents (better than the exponent v = %) in Corollary 9.2.
On the other hand, while the conditions (6.2) and (9.3) cannot not be improved,
in the sense that the exponent v = % cannot be chosen smaller, they are in general

also not necessary for stability. If D is the generator of the stable right-shift semigroup
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from Example 2.4 on the space X, = LP(Ry;w(t)dt) (1 < p < oo) with weight w(t) =
(In(e +t))~1, then for every v € (%, 1] and every interval J C R
(9.4) () Rg (i8 — D)” = {0}

BseJ
Thus, if p € [1,2), then X, has Fourier type p and % > %. By (9.4), the condition (9.3)
in Corollary 9.2 is not satisfied, [CT03, Proposition 4.3].

Similarly, in Example 2.5, for the same choice of the weight w and the parameter p,

one has

ﬂ Rg (i8 — D) is not dense in X,;

BeJ
see [CTO03, Proposition 4.7]. In this example, D generates even a Cyp-group of sublinear
growth and is a generalized scalar.

Note that these examples only show that range conditions of the types (6.2) and (9.3)
are not necessary for stability if the Fourier type is smaller than 2. As already mentioned
above, these examples do not seem to provide counterexamples for the possibility that
the range condition (8.7) is necessary for stability of semigroups in Hilbert spaces.

9.3. Integral resolvent conditions. The integral resolvent conditions from Section 6 can
be improved in Banach spaces with nontrivial Fourier type [CT03, Theorem 3.1, Theorem
3.3]. The proof of the first stability result follows the lines of the proof of the correspond-
ing statement in Theorem 8.1, replacing Plancherel’s theorem by the Hausdorff-Young
inequality or the Lemma of Riemann-Lebesgue. The proof of the second stability result
is very similar to the proof of Theorem 6.4 and is based on Theorem 3.2.

THEOREM 9.3 (Global integrability criterion). Let A be the generator of a bounded Cy-
semigroup on a Banach space X having Fourier type p € [1,2]. If, for some v > % and
for every x from a dense subset of X,

(9.5) lim / |~ 7 R(a + iB, A)'z||P d = 0,
a—0+ Jp

then the semigroup is stable.

THEOREM 9.4 (Local integrability criterion). Let A be the generator of a bounded Cjy-
semigroup on a Banach space X having Fourier type p € (1,2]. Let q be the conjugate
exponent. Assume that for every 8 € R there exists an open neighbourhood U C R of
and a dense set M C X such that

(9.6) lirng/ ot R(a+ i, A)z|[P dB' =0  for every z € M.
oa— U

Then the semigroup is stable.

We remark that there are other geometric properties of Banach spaces which can also
be of value for stability theory. The relevance of the analytic Radon-Nikodym property
was shown in [Chi98] and [HN99|, and the more general analytic Riemann-Lebesgue
property was introduced and applied to the study of stability in [BC02]. We refer to
these papers for the corresponding definitions and precise statements.
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We remark at the end of this section that B-convex Banach spaces in connection with
stability of individual orbits of semigroups have also been studied in [HN99] and [Wro099].

10. Stability of evolution semigroups. Particularly interesting for applications are
the so-called evolution semigroups. They help to study qualitative properties of evolution
families which are usually associated with nonautonomous abstract Cauchy problems of
the form

(10.1) u'(t) = At)u(t), t >s>0, u(s)=ux.

We call a family (U(t,s))i>s>0 C L£(X) an evolution family if U(t,t) = I, U(t,s) =
U(t,r)U(r,s) and if U(+,-)x is continuous for allt > r > s >0 and all z € X.

Wellposedness of the problem (10.1) should actually be equivalent to the existence of
an evolution family the orbits of which are the unique mild solutions of (10.1). However,
we emphasise that the notion of mild solutions of the Cauchy problem (10.1) is not
uniquely defined in the literature and it is in some cases not satisfactory. We will not go
into details here and will just assume that an evolution family is given.

If such an evolution family (U(t,s));>s>0 on a Banach space X is exponentially
bounded, then

U(s,s—t)f(s—1t),s>t,
(Tp(t)f)(s) = { t,s >0, f € Ep,
0, s < t,
defines a Cy-semigroup on E, := LP(Ry; X) (1 < p < 00), and on Ey := Cpo(R; X)
(the space of continuous functions vanishing at 0 and at infinity). That semigroup is called
the evolution semigroup associated with (U(t, s))¢>s>0. We denote by G, its generator.

It is known that the evolution semigroups reflect qualitative properties of the corre-
sponding evolution family. For example, exponential stability or exponential dichotomy of
an evolution family can be characterised in terms of exponential stability or exponential
dichotomy of the associated evolution semigroup. Since the spectral mapping theorem
holds for evolution semigroups, one can even characterise exponential stability or expo-
nential dichotomy of evolution families in terms of the location of the spectrum of the
generator of the associated evolution semigroup. For all these results, we refer to [CL99].

The fact that also mere stability of evolution families can be characterised by stability
of the associated evolution semigroups has been proved in [BCT02, Theorem 2.2]. Note
that we say that an evolution family (U(¢, s))i>s>0 is stable if lim, .o, U(t, s)x = 0 for all
s € R4 and all x € X.

In Theorem 10.1 below we call a function F' : R_. — X* a complete trajectory for
the evolution family (U(—s, —t)*)s<i<o if U(—s, —t)*F(s) = F(t) for all s <t < 0. This
definition of a complete trajectory differs from the corresponding definition in Section 3.2
in that F is only defined on the half-line R_. However, in the autonomous case, i.e.
when U(t,s) = T(t — s) for some Cy-semigroup (7'(t));>0, a complete trajectory for
(U(—s,—t)*)s<t<o can be uniquely extended to a complete trajectory for (T(¢)*);>o on
R by defining F(t) = T'(t)*F(0) for ¢ > 0.

THEOREM 10.1. Let (U(t, s))i>s>0 be a bounded evolution family on a Banach space X,
and let (Tp(t))i>0 be the evolution semigroup associated with (U(t,$))i>s>0 on E,
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1 < p < o0). Then the following assertions are equivalent:

(
(1) The evolution family (U(t,s))i>s>0 is stable.
(2) If B* denotes the unit ball in X*, then the set
(10.2) T = Ut )" (B")

s>0t>s
is trivial, i.e. J* = {0}.
(3) The evolution family (U(—s, —t)*)s<i<o does not admit a bounded nontrivial complete
trajectory.
(4) The semigroup (Tp(t))i>0 is stable for some 1 < p < co.
(5) The semigroup (Tp(t))i>0 is stable for all 1 < p < oco.
(6) Rg Gy is dense in L' (R ; X).
(7) The set

—~~

F={fel'R;X):UxfecL'R:;X)}
is dense in L' (R ; X), where (U * f)(t) := f(f U(t,7)f(r)dr,t € Ry.

The equivalences (1)<(2)<(3) generalise Theorem 3.2 to the case of bounded evolu-
tion families. The equivalence (1)< (6) is based on the observation that Ker G} consists
of bounded complete trajectories for (U*(—s, —t));>s. Thus stability of (U(t,s))i>s>0 is
equivalent to the density of Rg G;. It is not too difficult to show that RgG; = F and then
the equivalence (6)<(7) is clear.

Note that the equivalence (1)<>(7) looks similar to Datko’s characterisation of expo-
nential stability saying that (U(¢,s));>s>0 is exponentially stable if and only if the set
F from (7) is equal to L'(R,; X). However, while in Datko’s theorem one may replace
p=1by any 1 < p < oo, one cannot do this in Theorem 10.1 (7). For example, if X is
reflexive and p € (1,00), then the set

{feLP(Ry; X): U= feLP(Ry; X)}

is always dense in LP(R; X), due to the mean ergodic theorem.

The other equivalent statements are interesting for the study of stability of evolu-
tion families in terms of stability of semigroups. We also point out that the equivalence
(5)<>(6) looks very similar to the stability condition for positive semigroups on L' spaces
(Theorem 7.7).
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