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1. Introdu
tion. Given a C0-semigroup (T (t))t≥0 on a Bana
h spa
e X we 
all an orbit
T (·)x (x ∈ X) stable if(1.1) lim

t→∞
‖T (t)x‖ = 0.If (1.1) holds for every x ∈ X then we 
all (T (t))t≥0 stable. For single boundedoperators, i.e. for dis
rete operator semigroups, on a Bana
h spa
e the 
on
ept of stabilityis de�ned similarly.It is the purpose of this survey to present a new and uni�ed look on the theory ofstability of operator semigroups. Our emphasis is put on the ideas, methods and tools,both for general and 
on
rete semigroups. We give neither a 
omplete overview overexisting results nor a histori
al a

ount on them.Sin
e the birth of semigroup theory and general operator theory, the theory of stabilityof operator semigroups has attra
ted a lot of attention due to several reasons.First, the theory of stability is important sin
e stable C0-semigroups 
orrespond one-to-one to asymptoti
ally stable (in the sense of Lyapunov) well-posed abstra
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72 R. CHILL AND Yu. TOMILOVCau
hy problems. The 
on
ept of asymptoti
 stability is fundamental in the theory ofordinary and partial di�erential equations. This puts stability theory on the ground of(real world) appli
ations.The theory of stability is also important sin
e stability plays a 
entral role in thestru
tural theory of operators; as examples, we mention the 
lassi�
ation of 
ontra
tionsemigroups, invariant subspa
e theory, similarity and quasisimilarity problems, dilationsand fun
tional 
al
uli; see [SNF70℄, [Bea88℄, [Kub97℄, [Atz84℄, [Kér94℄, [AE98℄, [ARS04a℄,[ARS04b℄, [AM04℄.Se
ond, the theory of stability is ri
h in what 
on
erns the methods and ideas, andthis shall be a main point of this survey. The re
ent advan
es deeply intera
t with moderntopi
s from 
omplex fun
tion theory, harmoni
 analysis, the geometry of Bana
h spa
es,and spe
tral theory. These intera
tions lead sometimes to unexpe
ted byprodu
ts: newstru
ture theorems for the invariant subspa
es of a Bergman shift [ARS04a℄, [ARS04b℄,new maximum prin
iples for harmoni
 fun
tions [BCT05℄ or new tauberian theorems[Kor02℄, [ABHN01℄, [Chi98℄, [BNR98b℄. This point shows that the theory deserves atten-tion not only from the applied point of view.Third, the theory of stability is interesting sin
e it has un
overed intimate relationsbetween seemingly unrelated areas and highlighted existing links between di�erent math-emati
al subje
ts; see also above.Finally, the theory of stability is 
hallenging. Despite the de�nite progress whi
hhas been made sin
e the breakthrough papers [AB88℄ and [LV88℄, in our opinion themajor advan
es in the theory of stability and the understanding of their pla
e amongother mathemati
al theories (
omplex fun
tion theory, operator theory, partial di�erentialequations) still await their development.During the last de
ade, the two surveys [Bat94℄, [V�u97℄ and the two monographs[Nee96℄, [ABHN01℄ on the subje
t have appeared. However, these mainly dis
uss spe
tral
onditions for stability (see Se
tions 4 and 5) while we in addition 
on
entrate on 
on-ditions involving the boundary behaviour of the resolvent of the generator (Se
tions 6, 8and 9). Moreover, we dis
uss spe
ial but important 
lasses of semigroups su
h as positivesemigroups (Se
tion 7), semigroups on Hilbert spa
es (Se
tion 8), semigroups on Bana
hspa
es with Fourier type (Se
tion 9), and evolution semigroups (Se
tion 10). We hope thatthose who already bene�ted from reading the above mentioned a

ounts will �nd quite afew new attra
tions in this survey. In addition to new aspe
ts in the theory we sometimesgive new proofs, interpretations and examples regarding older results. Certainly, all thepriorities we set and all the 
omments re�e
t our personal point of view. Due to ourba
kground most of the results in the survey are formulated for C0-semigroups. But witha few ex
eptions, there are always dis
rete 
ounterparts. We believe that there should beno di�
ulty in �nding the 
orresponding statements for dis
rete semigroups.Also in order to limit the size of the survey, omissions of several topi
s were un-avoidable. In parti
ular, we do not dis
uss other types of asymptoti
 behaviour (e.g.asymptoti
 almost periodi
ity) whi
h are from the point of view of appli
ations andte
hniques of proofs strongly 
onne
ted to stability. We also do not dis
uss individualstability and appli
ations of the stability theory to PDEs or to abstra
t operator theory.



STABILITY OF OPERATOR SEMIGROUPS 73We have omitted the stability theory of Markov operators (with appli
ations to PDEs),the Katznelson-Tzafriri theory for positive operators (in
luding the 0 − 2 law), and non-linear aspe
ts of stability. We hope to dis
uss these topi
s in the future also in 
onne
tionwith the theory presented here.2. Tools for stability. We need to de�ne or to introdu
e some 
on
epts or tools whi
hare frequently used in the study of stability of operator semigroups and whi
h will appearthroughout this survey.2.1. Basi
 notation. Throughout, X will be a (
omplex) Bana
h spa
e and L(X) thespa
e of bounded operators onX. A C0-semigroup onX is denoted by T or (T (t))t≥0, and
A is its generator. If T ∈ L(X), then (Tn)n≥0 is the 
orresponding dis
rete semigroup.Sometimes, T will be 
alled the generator of this dis
rete semigroup.By X∗ we denote the dual spa
e of X, and by A∗, T (t)∗, and T ∗ adjoint operators onthe dual spa
e. Given some operator A, we let ̺(A), σ(A), σp(A) and σap(A) denote theresolvent set, the spe
trum, the point spe
trum, and the approximative point spe
trum,respe
tively. For every λ ∈ ̺(A), we let R(λ,A) := (λ−A)−1 be the resolvent of A. Thekernel and the range of an operator A will be denoted by KerA and RgA, respe
tively.2.2. Lapla
e, Fourier and Carleman transform. For every weakly measurable (weak*measurable, if X is a dual spa
e) fun
tion f : R+ → X of exponential growth we de�nethe Lapla
e transform f̂ by

f̂(λ) :=

∫ ∞

0

e−λtf(t) dtfor all λ ∈ C for whi
h the integral above exists in the weak sense (resp. weak* sense).The Lapla
e transform f̂ is analyti
 in some right half plane of C.If f is bounded, then f̂ is at least analyti
 in the open right half plane C+ := {λ ∈
C : Reλ > 0}. It is well known that if A generates a C0-semigroup (T (t))t≥0, then
T̂ (λ)x = R(λ,A)x, i.e. the resolvent is the Lapla
e transform of the semigroup.For a fun
tion f ∈ L∞(R;X) (or any ve
tor-valued tempered distribution) we denoteby Ff the distributional Fourier transform, i.e. Ff is the element of the spa
e S ′(R;X) :=

L(S(R), X) of all ve
tor-valued S
hwartz distributions whi
h is given by
〈Ff, ϕ〉 := 〈f,Fϕ〉, ϕ ∈ S(R).Note that for S
hwartz test fun
tions or L1 fun
tions ϕ, we de�ne the Fourier transform

Fϕ by
Fϕ(β) :=

∫

R

e−iβtϕ(t) dt, β ∈ R.For every weakly measurable (weak* measurable, if X is a dual spa
e) fun
tion f :

R → X of subexponential growth (i.e. supt∈R e
−ω|t|‖f(t)‖ <∞ for every ω > 0) we de�nethe Carleman transform f̂ by

f̂(λ) :=

{
∫ ∞

0
e−λtf(t) dt, Reλ > 0,

−
∫ 0

−∞
e−λtf(t) dt, Reλ < 0.



74 R. CHILL AND Yu. TOMILOVThe Carleman transform f̂ is analyti
 in C\iR. The set of singular points of f̂ on iRwill be 
alled the Carleman spe
trum of f. There will be no ambiguity in the notationof the Lapla
e and the Carleman transform. For the theory of Lapla
e and Carlemantransforms we refer to [ABHN01℄ and [Prü93℄, for that of Fourier transforms to [S
h57,S
h58℄.2.3. Fra
tional powers of se
torial operators. We 
all a 
losed, densely de�ned operator
A se
torial if there exists θ ∈ (0, π) su
h that the spe
trum of A is 
ontained in the 
losureof the se
tor Σθ := {λ ∈ C : | argλ| < θ} and su
h that λR(λ,A) is uniformly boundedoutside every larger se
tor Σθ′ . For every se
torial operator A and every holomorphi
fun
tion f : Σθ′ → C satisfying |f(λ)| ≤ M | 1+λ2

λ
|s (s > 0) one 
an de�ne a 
losedoperator f(A) by the formula

f(A) := (fϕk)(A)(A(I +A)−2)−k,where ϕ(λ) = λ
(1+λ)2 and k ∈ N is 
hosen large enough so that the integral

(fϕk)(A) :=
1

2πi

∫

∂Σθ′

f(λ)ϕk(λ)R(λ,A)x dλ
onverges absolutely. Using this fun
tional 
al
ulus, one obtains for f(λ) = λγ the fra
-tional power Aγ (γ ∈ R), and it is 
lear that AγAν = Aγ+ν when suitably interpreted;see [M
I86℄, [Haa06℄. This de�nition of fra
tional powers is 
onsistent with the 
lassi
alde�nitions from [Bal60℄, [Kom66℄, or [MS01, De�nition 3.1.1℄.If A generates a bounded C0-semigroup, then for every β ∈ R the operator iβ − Ais se
torial, and therefore the fra
tional powers (iβ − A)γ are well de�ned. Note that
Rg (iβ −A)γ ⊃ Rg (iβ −A)ν whenever ν > γ. This in
lusion is stri
t in general.If λ ∈ C+ and γ > 0, then, by [MS01, Lemma 6.1.5℄, we also have the representation

R(λ,A)γx =
1

Γ(γ)

∫ ∞

0

e−λttγ−1T (t)x dt, Reλ > 0, x ∈ X,By this representation, (Reλ)γR(λ,A)γ is a fra
tional Abel mean of the semigroup
(e−iImλtT (t))t≥0 for �xed Imλ (see also the mean ergodi
 theorem below).Fra
tional powers will play a 
ru
ial role in relating stability 
onditions for semigroupson Bana
h spa
es to the Fourier type of these spa
es; see Se
tions 8 and 9 below.2.4. Ergodi
 theory. Given f ∈L∞(R+;X), we 
all (λγ/Γ(γ))

∫ ∞

0
e−λttγ−1f(t) dt, λ> 0,the (fra
tional) Abel mean of order γ > 0. It is well known (see [ABHN01, Chapter 4℄)that if limt→∞ f(t) = f∞ exists, then the Abel means of any order 
onverge to the samelimit f∞ as λ tends to 0+.Consequently, if a C0-semigroup is stable, then the Abel means 
onverge to zero. Sin
ethe Lapla
e transform of the semigroup is the resolvent of the generator, the 
onvergen
eof Abel means 
an be expressed in terms of properties of the resolvent or of spe
tralproperties of the generator. This gives simple ne
essary stability 
onditions and shows
lose ties between stability and mean ergodi
ity of semigroups.These ne
essary stability 
onditions are expressed in the following mean ergodi
 the-orem whi
h deals also with fra
tional Abel means. The general 
ase (γ 6= 1) has been



STABILITY OF OPERATOR SEMIGROUPS 75proved in [Kom69, Proposition 2.3, Theorem 2.4℄, [Wes98, Theorem 2.4℄. For the 
lassi
al
ase γ = 1, see for example [Yos78, Se
tion VIII.4℄ or [ABHN01, Corollary 4.3.2℄.Theorem 2.1 (Mean Ergodi
 Theorem). Let A be the generator of a bounded C0-semi-group on a Bana
h spa
e X, and let γ > 0. Then:
(1) The following assertions are equivalent.(i) limλ→0 λ

γR(λ,A)γ =: P exists strongly.(ii) X = KerA⊕ RgA.If (i) and (ii) hold, then P is the proje
tion onto KerA along RgA.If X is re�exive, then (i) and (ii) are always true.
(2) limλ→0R(λ,A)γx =: y exists if and only if x ∈ Rg (−A)γ, and in this 
ase y ∈

D((−A)γ) ∩ Rg (A) and x = (−A)γy.A semigroup (T (t))t≥0 satisfying either of the equivalent 
onditions (1)(i) or (1)(ii)will be 
alled mean ergodi
. We note that the relations between fra
tional powers of(bounded) operators and ergodi
 properties of their 
orresponding dis
rete semigroupswere re
ently thoroughly investigated in [DL01℄.Sin
e a semigroup (T (t))t≥0 is stable if and only if (eiβtT (t))t≥0 is stable for all β ∈ R,the mean ergodi
 theorem (or a simple dire
t reasoning) implies the following.Corollary 2.2. Let A be the generator of a stable C0-semigroup on X. Then Rg (iβ−A)is dense in X for every β ∈ R or, equivalently, σp(A
∗) ∩ iR is empty.Note that for bounded C0-semigroups, σp(A)∩ iR ⊂ σp(A

∗)∩ iR [AB88, Lemma 2.3℄,and the two sets are equal if X is re�exive.2.5. Edge-of-the wedge theorems. It has been shown re
ently in several arti
les how 
ri-teria for the analyti
 extendability of analyti
 fun
tions a
ross a linear boundary 
an beapplied in order to obtain stability. Su
h 
riteria are provided by so-
alled edge-of-the-wedge theorems. In the 
lassi
al edge-of-the-wedge theorem the equality of distributionalboundary values of analyti
 fun
tions de�ned on the two sides of a linear boundary suf-�
es for obtaining analyti
 extendability. However, for the study of stability, more subtleedge-of-the-wedge theorems dealing only with pointwise boundary values are needed.First theorems of this kind have been proved in [Wol47, Theorem D℄ and [Car44℄; seealso [Tom01, Theorem 4.4℄ for a 
orre
ted version of [Wol47, Theorem D℄ with a di�erentproof. These results were extended in [CT04, Theorem 3.1℄ and �nally improved to thefollowing version from [BCT05, Theorem 5.4℄. It is of independent interest for 
omplexfun
tion theory.In order to formulate the theorem, we de�ne the re
tangle(2.1) R := {z ∈ C : −1 ≤ Re z ≤ 1, −1 ≤ Im z ≤ 1},and for θ ∈ (0, π
2 ) we let

Σθ := {z ∈ C : θ < arg z < π − θ}.Theorem 2.3 (Edge-of-the-wedge). Let f : R\R → C be analyti
, and de�ne F : R\R →
C by F (z) = f(z) − f(z̄) (z ∈ R\R). Assume that
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(1) there exists a 
onstant m ≥ 0 su
h that
sup

α∈(−1,1)

|f(α+ iβ)| = O(|β|−m), β → 0,

(2) there exist a measurable fun
tion G : R\R → R+ and a 
ontinuous fun
tion
H : R\R → R+ su
h that |F | ≤ G ·H,(2.2) sup

β∈(0,1)

‖G(· + iβ)‖L1 <∞,and there exists θ0 ∈ (0, π
2 ) su
h that(2.3) lim

z→α

z∈α+Σθ0

H(z) = 0 for every α ∈ (−1, 1).Then the fun
tion f admits an analyti
 extension to R.2.6. Two examples. Throughout this survey most of the statements will be illustratedon the following two basi
 examples of stable semigroups. The examples were used forthe study of stability in [BNR98a℄, [dLVW02℄ and [CT03℄. Choosing appropriate weightsallows one to 
he
k for optimality of the theorems presented below.Example 2.4. In the �rst example, 
hoose ω : R+ → (0,∞) a 
ontinuous and nonin
re-asing fun
tion su
h that(i) limt→+∞ ω(t) = 0, and(ii) the fun
tion 1/ω is of subexponential growth on R+.Let Xp = Lp(R+;ω(t)dt) (1 ≤ p < ∞), and 
onsider the right-shift C0-semigroup
(S(t))t≥0 de�ned by(2.4) (S(t)f)(s) :=

{

f(s− t), s ≥ t ≥ 0,

0, 0 ≤ s < t,
f ∈ Xp.An easy 
al
ulation shows that the semigroup (S(t))t≥0 is stable.Example 2.5. In the se
ond example, 
hoose the weight ω : R+ → (0,∞) as in Exam-ple 2.4 and extend it by ω(0) on R−. Let Xp := Lp(R;ω(t)dt) (1 ≤ p < ∞). We de�nethe right-shift C0-group (S(t))t∈R on Xp:(2.5) (S(t)f)(s) := f(s− t), s, t ∈ R, f ∈ Xp.As in Example 2.4, the operators S(t) are 
ontra
tive for every t ∈ R+, and the semigroup

(S(t))t≥0 is stable. Note that the group (S(t))t∈R is of subexponential growth. If 1/ωis polynomially bounded, then (S(t))t∈R will also be polynomially bounded, and thegenerator D is then a generalised s
alar in view of the estimate ‖R(λ,D)‖ ≤ C/|Reλ|mfor some m ∈ N and λ ∈ C \ iR.3. Orbits and stability. In general, we are interested in 
onditions on the generator
A whi
h imply stability of the 
orresponding semigroup. This interest is motivated bythe appli
ations to Cau
hy problems in whi
h the generator A is given but in generalnot the semigroup. Nevertheless, there are some other important and equally interesting



STABILITY OF OPERATOR SEMIGROUPS 77stability 
onditions in terms of the semigroup itself. This se
tion is devoted to presentthese (nonspe
tral and nonalgebrai
) stability 
onditions.3.1. Limit isometri
 group. A bounded semigroup (T (t))t≥0 is stable if and only if thealgebrai
 fa
tor spa
e X/X0 is trivial, where X0 := {x ∈ X : T (·)x is stable}. This veryobvious remark provides a way of proving stability whi
h has indeed often been usedin the literature. The idea behind it, i.e. fa
toring out a good part of a given set andshowing that the fa
tor is zero, is in fa
t a frequent idea in mathemati
s. In the spe
ial
ase here, this idea leads to the so-
alled limit isometri
 group, an e�
ient devi
e forproving stability of operator semigroups.The origin of this operator-theoreti
al 
onstru
tion 
an be tra
ed ba
k to Dixmier[Dix50℄, Sz.-Nagy [SN47℄ and Sz.-Nagy & Foia³ [SNF70℄; see also [Gha75℄. It has beenmodi�ed by Sklyar & Shirman [SS82℄, and it was extended and re�ned by many authorssin
e then. The following formulation is due to Ber
ovi
i [Ber93, Theorem 2 and p. 64℄although it was surely known before to other resear
hers in the domain.Theorem 3.1. Let (T (t))t≥0 be a bounded C0-semigroup on a Bana
h (resp. Hilbert)spa
e X. Then there exist a Bana
h (resp. Hilbert) spa
e Y, an isometri
 (resp. unitary)

C0-group (S(t))t∈R on Y and a bounded linear operator π : X → Y su
h that(i) S(t)π = πT (t), t ≥ 0;(ii) π(x) = 0 if and only if limt→∞ ‖T (t)x‖ = 0;(iii) Y =
⋃

t≥0 S(−t)π(X).The group (S(t))t∈R is unique up to similarity.In the literature devoted to stability, Theorem 3.1 was used mostly in the Bana
h spa
e
ontext and in a version when (S(t))t≥0 is just an isometri
 semigroup. The important fa
tthat (S(t))t≥0 
an always be 
hosen as a group (with some additional spe
tral properties)was observed in [BG94, Proposition 2.1℄. It follows from Douglas' extension theorem[Dou69, Theorem 1℄.If A is the generator of (T (t))t≥0 and B the generator of (S(t))t∈R then one 
an showthat σ(B) ⊂ σ(A) ∩ iR, so that information about the boundary spe
trum of A yieldsinformation about the spe
trum of B. This spe
tral in
lusion allows one to apply thewell-developed lo
al spe
tral theory for isometries in order to prove that Y is trivial, i.e.that the semigroup (T (t))t≥0 is stable. The latest developments of this idea 
an be foundin [BNR98a℄, [BNR98b℄, [Bat96℄.The above spe
tral approa
h 
an be put in a more general framework. A method oflo
al resolvent estimates of B in terms of those of A and their appli
ation to stabilitywas re
ently developed in [Tom01℄. It is most e�
ient when X is a Hilbert spa
e.3.2. Complete traje
tories. Besides the approa
h via limit isometri
 groups or semi-groups, there is another but very similar approa
h to proving stability of a given semi-group. This approa
h even allows us to study stability of operator families more generalthan semigroups, e.g. evolution families.We 
all a fun
tion F : R → X a 
omplete traje
tory for a C0-semigroup (T (t))t≥0 iffor all t ≥ 0 and all s ∈ R: F (t + s) = T (t)F (s). The following theorem 
hara
terises



78 R. CHILL AND Yu. TOMILOVstability in terms of nonexisten
e of bounded, nontrivial 
omplete traje
tories for theadjoint semigroup. A proof 
an be found in [Lin71, Theorem 4.3℄ or [Der76, Théorème 2℄for the dis
rete 
ase, and in [BBG96, Theorem 3.1℄ or [V�u93℄ for the 
ontinuous 
ase. Asimilar result is even true for bounded evolution families (see [BCT02℄ or Theorem 10.1below).Theorem 3.2. For a bounded C0-semigroup (T (t))t≥0 on a Bana
h spa
e X the followingstatements are equivalent:(i) The semigroup (T (t))t≥0 is stable,(ii) The adjoint semigroup (T (t)∗)t≥0 does not admit a bounded, nontrivial 
ompletetraje
tory.(iii) If B∗ denotes the unit ball in X∗, then ⋂

t≥0 T (t)∗B∗ = {0}.The following statement is analogous to Theorem 3.2 and 
hara
terises 
onvergentsemigroups in terms of mean ergodi
ity and 
omplete traje
tories.Theorem 3.3. For a bounded C0-semigroup (T (t))t≥0 on a Bana
h spa
e X the followingstatements are equivalent:(i) (T (t))t≥0 is 
onvergent,(ii) (T (t))t≥0 is mean ergodi
, and the only bounded, nontrivial 
omplete traje
toriesfor the adjoint semigroup (T (t)∗)t≥0 are 
onstants.(iii) (T (t))t≥0 is mean ergodi
, and ⋂

t≥0 T (t)∗B∗ = KerA∗.The proof of Theorem 3.3 is a simple adaptation of the proof of Theorem 3.2 from[Lin71, Theorem 4.3℄. Clearly, if X is re�exive then the assumption of mean ergodi
ity
an be omitted from (ii) and (iii). A statement related to Theorem 3.3 was proved in[Rub77, Theorem 10℄.Remark 3.4. Note that stable semigroups may have nontrivial bounded 
omplete traje
-tories, and that non-stable semigroups may have no su
h traje
tories. One may take forexamples the (stable) left-shift semigroup on L2(R+) and its (nonstable) adjoint right-shiftsemigroup. Thus the use of the adjoint semigroup in Theorem 3.2 is essential.We 
olle
t some basi
 properties of bounded 
omplete traje
tories for (T (t)∗)t≥0 inthe following proposition.Proposition 3.5. Let (T (t))t≥0 be a bounded C0-semigroup on a Bana
h spa
e X withgenerator A, let F be a bounded 
omplete traje
tory for (T (t)∗)t≥0, and let F̂ be itsCarleman transform. Then:(i) For every λ ∈ C+ and every µ ∈ C\iR, the following identity holds:(3.1) F̂ (µ) = R(λ,A∗)F (0) + (λ− µ)R(λ,A∗)F̂ (µ).(ii) If σC(F ) is the Carleman spe
trum of F, then(3.2) σC(F ) ⊂ −iσ(A) ∩ R.



STABILITY OF OPERATOR SEMIGROUPS 79The proof of the property (i) 
an be found in [BCT02, Lemma 6.1℄, while the property(ii) follows dire
tly from an argument given in [BCT02, p. 133℄; see also [V�u93, Proposi-tion 3.7℄ where (ii) was proved in a parti
ular 
ase.The Carleman transform of a bounded 
omplete traje
tory for the adjoint semigroupand the Carleman spe
trum play the roles of the resolvent and the spe
trum of thegenerator of the limit isometri
 group asso
iated with a bounded semigroup. The fa
tthat also the Carleman spe
trum of the 
omplete traje
tory 
annot be larger than theboundary spe
trum of the generator (
ompare with the 
orresponding property of thelimit isometri
 group) be
omes espe
ially useful when dealing with spe
tral stability
riteria. Observe that the in
lusion (3.2) is stri
t, in general.Sin
e the Carleman spe
trum of a bounded nonzero fun
tion is nonempty, the equiva-len
e (i)⇔(ii) of Theorem 3.2 allows one to prove stability by fun
tion-theoreti
 methods.That is, a semigroup is stable if and only if for every bounded 
omplete traje
tory F ofthe adjoint semigroup the Carleman transform F̂ extends to an entire fun
tion (whi
h iseventually zero). This observation links the study of stability with the theory of analyti

ontinuation of fun
tions a
ross a linear boundary, and lies at the heart of many resultspresented here.3.3. De
ay rates of orbits. In general, the stru
ture of the orbits of a stable semigroup
an be very 
ompli
ated. For example, the orbits may de
ay arbitrarily slowly, [Mül88℄.Theorem 3.6 (Müller). Let (Tn)n≥0 be a stable semigroup on a Bana
h spa
e X su
hthat σ(T ) ∩ T 6= ∅. Then, for every positive sequen
e (an)n∈N ∈ c0 there exists an x ∈ Xsu
h that ‖Tnx‖ ≥ an for every n ≥ 0.For variants of this statement for weak orbits and with large sets of slowly de
ayingorbits see [Mül01℄, [Mül03℄. For a 
ontinuous version of Theorem 3.6, i.e. a version forstable but not exponentially stable C0-semigroups, see [Nee96, Lemma 3.1.7℄.3.4. Super
y
li
ity. We 
all a ve
tor x ∈ X super
y
li
 for an operator T ∈ L(X) if theset {cTnx : n ≥ 0, c ∈ C} is dense in X. An operator T is, by de�nition, super
y
li
 if ithas at least one super
y
li
 ve
tor.Note that T is super
y
li
 if and only if λT is super
y
li
 for every λ ∈ C \ {0}. Thefollowing surprising theorem has been proved in [AB97, Theorem 2.3℄.Theorem 3.7 (Ansari-Bourdon). If T is power bounded and super
y
li
, then (Tn)n≥0is stable.Super
y
li
ity of bounded semigroups seems to be a mu
h stronger property thanstability. It was shown re
ently in [GM04℄ and [LSPL03℄ that the Volterra operator
(V f)(t) =

∫ t

0
f(t) dt is not super
y
li
 on L2(0, 1). At the same time, σ(V ) = {0},and so the powers of V tend to zero exponentially. In general, super
y
li
ity imposesstrong restri
tions on the spe
tral and geometri
 properties of an operator. In parti
ular,normal operators 
annot be super
y
li
, and also the point spe
trum of the adjoint of asuper
y
li
 operator may 
ontain at most one point.A variant of Theorem 3.7 in the 
ontext of C0-semigroups was re
ently obtained in[Kér05℄: if (T (t))t≥0 is bounded and admits a super
y
li
 ve
tor (i.e. a ve
tor x ∈ X
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h that {cT (t)x : t ≥ 0, c ∈ C} is dense in X), then (T (t))t≥0 is stable under theadditional assumption that Rg T (t) = X, t ≥ 0. The question whether this assumption
an be removed remains open.3.5. Real integrability 
onditions. The Datko-Pazy theorem 
hara
terising exponentialstability of semigroups ([Dat72℄) admits the following version for stability of individualorbits. Note that there is no growth restri
tion on the semigroup. The result is an im-mediate 
onsequen
e of the inequality ‖T (t+ s)x‖ ≤ C‖T (t)x‖, s ∈ [0, 1], following fromthe semigroup property.Theorem 3.8 (Datko, Pazy). Let (T (t))t≥0 be a C0-semigroup, and let x ∈ X. If(3.3) ∫ ∞

0

‖T (t)x‖p dt <∞ for some p ∈ [1,∞)then the orbit T (·)x is stable.By 
onsidering the semigroup from Example 2.4 with an appropriate weight w one
an see that there are stable semigroups for whi
h (3.3) does not hold for any x ∈ X. Formore general 
onditions of type (3.3) see [Nee02℄.The following integrability 
ondition, however, 
hara
terises stable orbits of boundedsemigroups.Proposition 3.9. If (T (t))t≥0 is a bounded C0-semigroup on a Bana
h spa
e X and
p ∈ [1,∞) , then T (·)x is stable if and only if(3.4) lim

t→∞

∫ at

t

‖T (s)x‖p

s
ds = 0 for every a > 0.While the forward impli
ation follows from [Dra70, Theorem B℄, the ba
kward im-pli
ation is a simple 
onsequen
e of the semigroup property as in the above Datko-Pazyresult. Proposition 3.9 was stated in [CT03, p. 509℄ with the di�eren
e that only the ex-isten
e of the limit in (3.4) for every a > 0 was required; but then the statement be
omesfalse unless the limit is independent of a > 0.Finally we give a real integrability 
ondition pertaining to improper integrability ofsemigroup orbits.Proposition 3.10. Let (T (t))t≥0 be a bounded C0-semigroup on a Bana
h spa
e X, andlet x ∈ X. If(3.5) ∫ ∞

0

T (t)x dt existsthen T (·)x is stable.Proof. Observe that for every s > 0 and every x ∈ X
∫ ∞

0

T (t)x dt =

∞
∑

n=0

∫ (n+1)s

ns

T (t)x dt =

∞
∑

n=0

T (s)n

∫ s

0

T (t)x dt.Hen
e, ∫ s

0
T (t)x dt ∈ X0 := {y ∈ X : T (·)y is stable} for every s > 0, and sin
e X0 is a
losed subspa
e, we obtain that x = lims→0+

1
s

∫ s

0
T (t)x dt ∈ X0.
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onverse impli
ations in Theorem 3.8 and Proposition 3.10 
learly do not hold;
onsider the left shift semigroup on C0(R+) for a 
ounterexample.4. Countable spe
trum 
onditions and stability. In this se
tion we turn to spe
-tral 
onditions for stability. They are the easiest to 
he
k and thus perhaps the mostinteresting for appli
ations to Cau
hy problems.By the mean ergodi
 theorem, it is the boundary spe
trum of the generator, i.e. thespe
trum on the imaginary axis (resp. on the unit 
ir
le in the dis
rete 
ase) whi
hplays a 
entral role when studying stability. The main question in this se
tion is whetherthe spe
trum alone (nature of the spe
trum, size of the spe
trum) already determinesstability.We will see that if A generates a bounded C0-semigroup and if
• the boundary spe
trum σ(A) ∩ iR is empty, or
• the boundary spe
trum is 
ountable and 
ontains no residual spe
trum (Arendt-Batty-Lyubi
h-Vu Theorem),then the semigroup is stable. In many appli
ations, the 
ountable spe
trum 
ondition issatis�ed with only one point in the boundary spe
trum, e.g. when A generates a boundedholomorphi
 or positive eventually norm-
ontinuous semigroup.4.1. Empty boundary spe
trum. We present the spe
ial 
ase of empty boundary spe
trumseparately. It is an immediate 
onsequen
e of Ingham's tauberian theorem for whi
hwe present a short and instru
tive proof. Later we will indi
ate how this proof 
an beadapted in order to prove also the ABLV theorem or the Katznelson-Tzafriri theorem (seeCorollary 4.4 and Theorem 5.2 below), thus unifying the proofs of these major results inthe theory of stability.Theorem 4.1 (Ingham). Let f ∈ BUC(R+;X) (the spa
e of bounded, uniformly 
on-tinuous, X-valued fun
tions on R+) be su
h that its Lapla
e transform f̂ has a lo
allyintegrable extension on the imaginary axis in the sense that (f̂(α+ i·))αց0 
onverges in

L1
loc(R;X) to some fun
tion f̂(i·). Then f ∈ C0(R+;X).Proof. Let ϕ ∈ S(R) be su
h that Fϕ ∈ D(R). Then, by Plan
herel's theorem,

f ∗ ϕ(t) =

∫ ∞

0

f(s)ϕ(t− s) ds = lim
α→0+

∫ ∞

0

e−αsf(s)ϕ(t− s) ds

= lim
α→0+

∫

R

f̂(α+ iβ)eiβtF−1ϕ(β) dβ =

∫

R

f̂(iβ)eiβtF−1ϕ(β) dβ.By the Lemma of Riemann-Lebesgue,
lim

|t|→∞
f ∗ ϕ(t) = 0.Choosing an approximate unit of appropriate test fun
tions and using that f is boundedand uniformly 
ontinuous, one obtains the 
laim.Applying Ingham's theorem to ea
h orbit T (·)x, the following 
orollary is immediate.However, note that this 
orollary also easily follows from Proposition 3.5 and Theorem 3.2.



82 R. CHILL AND Yu. TOMILOVCorollary 4.2. If A generates a bounded C0-semigroup and if the boundary spe
trum
σ(A) ∩ iR is empty, then the semigroup is stable.4.2. Countable boundary spe
trum. The 
ase of 
ountable boundary spe
trum (theABLV theorem) 
an also be proved using a tauberian theorem. The 
orresponding taube-rian theorem is a generalisation of Ingham's theorem. One allows for some singularities ofthe Lapla
e transform f̂ on the imaginary axis, but imposes an additional ergodi
 
ondi-tion on f , and obtains the same 
on
lusion. The following formulation of the theorem 
anbe �rst found in [BNR98b℄, but the proof we give is taken from [Chi98℄. It uses Loomis'theorem on almost periodi
 fun
tions; a relatively short proof of Loomis' theorem 
anbe found in Katznelson [Kat68, Theorem 5.21℄. In more abstra
t forms, a proof of thefollowing theorem 
an also be found in [Bas95℄, [Bas79℄, [CP01℄, [CF02℄.Theorem 4.3. Let f ∈ BUC(R+;X) be su
h that its Lapla
e transform f̂ has a 
on-tinuous extension to i(R \ E), where E ⊂ R is a 
losed and 
ountable set. If, for every
β ∈ E,(4.1) lim

α→0+
αf̂s(α+ iβ) = 0 uniformly in s ∈ R+,where fs(t) = f(s+ t), then f ∈ C0(R+;X).Proof. We de�ne the operator

K : L1(R) → BUC(R;X)/C0(R;X) =: Z, ϕ 7→ f ∗ ϕ+ C0(R;X),in whi
h we have extended the fun
tion f by 0 for negative reals. Similarly as in theproof of Ingham's theorem, one shows that for every ϕ ∈ S(R) su
h that Fϕ ∈ D(R)and suppF−1ϕ ∩ E = ∅, f ∗ ϕ ∈ C0(R;X), i.e. Kϕ = 0. Hen
e, for every z∗ ∈ Z∗ thefun
tion K∗z∗ ∈ L∞(R) has spe
trum 
ontained in −E, i.e. its Fourier transform hassupport 
ontained in −E.Sin
e E is 
ountable, for every ψ ∈ L1(R) the fun
tion K∗z∗ ∗ψ is almost periodi
 byLoomis' theorem [Kat68℄. From the ergodi
 
ondition (4.1) one easily dedu
es that theAbel means αK̂∗z∗(α− iβ) 
onverge to zero as α→ 0+ for all β ∈ E. By the uniquenesstheorem for almost periodi
 fun
tions [LZ82, Se
tion 2.3℄, K∗z∗ = 0 for every z∗ ∈ Z∗.Hen
e, K = 0, i.e. f ∗ ϕ ∈ C0(R;X) for every ϕ ∈ L1(R). Choosing an approximate unitof L1 fun
tions and using that f is bounded and uniformly 
ontinuous, one obtains the
laim.Applying Theorem 4.3 to ea
h orbit T (·)x and noting that the spe
tral 
ondition
Rg (iβ −A) = X implies the ergodi
ity 
ondition (4.1), we obtain as a 
orollary the ABLVtheorem. This theorem has been proved independently in [AB88℄ and [LV88℄. While in[LV88℄ the ABLV theorem was proved by a pure semigroup method, the arti
le [AB88℄already emphasises the tauberian 
hara
ter. However, the proof of the 
orrespondingtauberian statement was quite 
ompli
ated using an argument of trans�nite indu
tion.It is remarkable that the ABLV theoem 
an be also dedu
ed from results in [Bas79℄ and[Atz84℄. The ABLV theorem is also a 
orollary to the Katznelson-Tzafriri theorem belowand to a re
ent stability result involving resolvent 
onditions (see Theorem 6.2 below).Besides the present proof based on Theorem 4.3 we will thus indi
ate two more proofs ofthe ABLV theorem.



STABILITY OF OPERATOR SEMIGROUPS 83Corollary 4.4 (ABLV). If A generates a bounded C0-semigroup on a Bana
h spa
e X,if the boundary spe
trum σ(A) ∩ iR is 
ountable, and if Rg (iβ − A) is dense in X forevery β ∈ R, then the semigroup is stable.The 
ountable spe
trum 
ondition is the best possible 
ondition among the spe
tral
onditions if no other than spe
tral assumptions are made. A standard 
ounterexampleis the unitary group U(t)f(s) = etsf(s) on L2(E; dµ), where E ⊂ iR is 
losed andun
ountable and µ is a nonatomi
 measure on E.Note on the other hand that for any given 
losed set E ⊂ R there exists a stablesemigroup whose generator has boundary spe
trum iE. One may, for instan
e, 
onsidermultipli
ation semigroups on appropriate L2 spa
es in order to see this. In Examples 2.4and 2.5, the boundary spe
trum is the whole imaginary axis. This shows that spe
tral
onditions as 
onsidered above are on the one hand best possible, but on the other handfar from 
hara
terising stable semigroups.5. The Katznelson-Tzafriri theorem and stability5.1. The Katznelson-Tzafriri theorem. Motivated by studies of di�eren
es of powers ofpositive operators, Katznelson & Tzafriri dis
overed in [KT86℄ a new kind of tauberiantheorem for power series. We only formulate the 
orresponding result in the operator
ontext.Denoting by A(T) and A+(T) the spa
es of Fourier transforms of sequen
es in l1(Z)and l1(N), respe
tively, we say that a fun
tion f ∈ A+(T) is of spe
tral synthesis withrespe
t to a 
losed set E ⊂ T, if there exists a sequen
e (fn)n∈N ⊂ A(T) su
h that ea
h
fn vanishes in a neighbourhood of E and limn→∞ fn = f in A(T).Given f = Fa ∈ A+(T) with a ∈ l1(N) and given a power bounded T ∈ L(X), wede�ne f(T ) :=

∑∞
n=0 anT

n.Theorem 5.1 (Katznelson-Tzafriri). Let T ∈ L(X) be a power bounded operator. If
f ∈ A+(T) is of spe
tral synthesis with respe
t to the boundary spe
trum σ(T ) ∩ T then
limn→∞ ‖Tnf(T )‖ = 0.One may interpret the Katznelson-Tzafriri theorem as an individual stability result,i.e. limn→∞ Tnx = 0 for every x ∈ Rg f(T ) and every appropriate f , and at the sametime it gives a uniform estimate for the 
onvergen
e to 0. If Rg f(T ) is dense in X, thenthe Katznelson-Tzafriri theorem even implies stability of (Tn)n≥0.The remark by J. Bourgain in [KT86℄ shows that Theorem 5.1 is a 
hara
terisationof f being of spe
tral synthesis in the following sense: f ∈ A+(T) is of spe
tral synthesiswith respe
t to a 
losed set E ⊂ T if and only if for every 
ontra
tion T on an arbitraryBana
h spa
e with σ(T ) ⊂ E we have limn→∞ ‖Tnf(T )‖ = 0.Under the assumptions of the Katznelson-Tzafriri theorem, σ(T ) ∩ T ⊂ {λ ∈ T :

f(λ) = 0}, and the latter set is ne
essarily of measure zero. Thus, the Katznelson-Tzafririassumptions impose already strong restri
tions on the boundary spe
trum of T.The analogue of the Katznelson-Tzafriri theorem for C0-semigroups was obtained in[ESZ92℄ and [V�u92b℄. We say that a fun
tion f ∈ L1(R+) is of spe
tral synthesis with
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t to a 
losed set E ⊂ R if there exists a sequen
e (fn)n∈N ⊂ L1(R) su
h that ea
hFourier transform Ffn vanishes on a neighbourhood of E and limn→∞ fn = f in L1(R).Given f ∈ L1(R+) and a bounded C0-semigroup (T (t))t≥0, we put f̂(T ) :=
∫ ∞

0
f(t)T (t) dt, the integral being strongly de�ned.Theorem 5.2. Let A be the generator of a bounded C0-semigroup (T (t))t≥0 on a Ba-na
h spa
e X. If f ∈ L1(R+) is of spe
tral synthesis with respe
t to (−iσ(A)) ∩ R, then

limt→∞ ‖T (t)f̂(T )‖ = 0.The following proof of Theorem 5.2, using only the simple argument from the proofof Ingham's theorem (Theorem 4.1) and the de�nition of spe
tral synthesis, shows thetauberian nature of the Katznelson-Tzafriri theorems. From the proof it is straightforwardhow to formulate the 
orresponding tauberian result for bounded fun
tions, but we willskip this.First proof of Theorem 5.2. Let f be as in the assumption and 
hoose (fn)n∈N ⊂ L1(R)as in the de�nition of spe
tral synthesis. Convolving fn with appropriate test fun
tions,we 
an without loss of generality assume that Ffn has 
ompa
t support. Extend thesemigroup by zero on the negative reals. As in the proof of Ingham's theorem, Parseval'sidentity implies for every n ∈ N and every t ≥ 0
∫

R

T (t+ s)fn(s) ds = lim
α→0+

∫

R

e−α(t+s)T (t+ s)fn(s) ds

= lim
α→0+

1

2π

∫

R

R(α+ iβ, A)eiβtFfn(β) dβ

=
1

2π

∫

R

R(iβ, A)eiβtFfn(β)dβ.Thus, by the Lemma of Riemann-Lebesgue,
lim

t→∞

∫

R

fn(s)T (t+ s) ds = 0.Sin
e
lim

n→∞

∫

R

fn(s)T (t+ s) ds =

∫ ∞

0

f(s)T (t+ s) ds = T (t)f̂(T )uniformly in t ∈ R+, one obtains the 
laim.One may also prove the Katznelson-Tzafriri theorem by using 
omplete traje
tories.First note the following general 
onvergen
e property.Lemma 5.3. Let (T (t))t≥0 be a bounded C0-semigroup on a Bana
h spa
e X, and let
f ∈ L1(R+). Then limt→∞ T (t)f̂(T ) = 0 strongly if and only if

f̂(T )∗
(

⋂

t≥0

T ∗(t)B∗
)

= {0}.The proof of Lemma 5.3 uses the w∗-
ontinuity of f̂(T )∗ and repeats the proof ofTheorem 3.2 in [Lin71, Theorem 4.3℄.Se
ond proof of Theorem 5.2. It su�
es to prove that under the assumptions of Theorem5.2 one has limt→∞ T (t)f̂(T ) = 0 strongly. This result applied to the semigroup de�ned



STABILITY OF OPERATOR SEMIGROUPS 85by T(t)Y := T (t)Y on the spa
e of all Y ∈ L(X) su
h that limt→0+ ‖T (t)Y − Y ‖ = 0yields limt→∞ ‖T (t)f̂(T )‖ = 0; 
ompare with [V�u92a, p. 79℄.Let f be as in the assumption and 
hoose (fn)n∈N ⊂ L1(R) as in the de�nition ofspe
tral synthesis. As above in the �rst proof, we may without loss of generality assumethat Ffn has 
ompa
t support.Let F be a bounded 
omplete traje
tory for (T (t)∗)t≥0. By Proposition 3.2, the Car-leman spe
trum of F is 
ontained in −iσ(A) ∩ R. By Parseval's identity,
f̂(T )∗F (0) = lim

n→∞

∫

R

F (t)fn(t) dt = lim
n→∞

lim
α→0+

∫

R

e−α|t|F (t)fn(t) dt

=
1

2π
lim

n→∞
lim

α→0+

∫

R

(F̂ (α− iβ) − F̂ (−α− iβ))Ffn(β) dβ = 0,where F̂ is the Carleman transform of F , and the integrals are understood in the weak∗sense. Sin
e
⋂

t≥0

T ∗(t)B∗ ⊂ {F (0) : F bounded, 
omplete traje
tory for (T ∗(t))t≥0},the 
laim follows from Lemma 5.3.In [ESZ90, p. 284�286℄ and [ESZ92, p. 215�216℄ it was shown how the dis
rete andthe 
ontinuous version of the ABLV theorem (Theorem 4.4) 
an be dedu
ed from theKatznelson-Tzafriri theorems. It follows from the Mittag-Le�er theorem in [Est84℄ thatunder the assumptions of the ABLV theorem ⋂

β∈R
Rg (iβ−A) is dense in X. Using thisand the fa
t that 
ountable 
losed sets are of spe
tral synthesis, it follows that underthe assumptions of the ABLV theorem the span of {Rg f̂(T ) : f ∈ L1(R+) is of spe
tralsynthesis with respe
t to −iσ(A) ∩ R} is also dense in X [ESZ92, Theorem 3.7℄.5.2. Extensions of the Katznelson-Tzafriri theorem. Let us re
onsider now the dis
reteKatznelson-Tzafriri theorem and dis
uss some extensions. First observe that the mapping

f 7→ f(T ) is a fun
tional 
al
ulus from A+(T) into L(X) for the operator T . The formu-lation of the Katznelson-Tzafriri theorem thus suggests that for operators admitting ri
hfun
tional 
al
uli more general statements 
an be obtained.For example, if T is a 
ontra
tion on a Hilbert spa
e, and if A(D) denotes the dis
algebra of all holomorphi
 fun
tions D → C whi
h are 
ontinuous up to the boundary, thenthe von Neumann inequality implies that one 
an de�ne a fun
tional 
al
ulus f → f(T )from A(D) into L(X) for whi
h ‖f(T )‖ ≤ ‖f‖∞. Using this fun
tional 
al
ulus, Esterle,Strouse and Zouakia proved the following rami�
ation of the Katznelson-Tzafriri theoremin the Hilbert spa
e setting, [ESZ90, Corollary 2.12℄.Theorem 5.4 (Esterle-Strouse-Zouakia). If T is a 
ontra
tion on a Hilbert spa
e and
f ∈ A(D), then limn→∞ ‖Tnf(T )‖ = 0 if and only if f = 0 on σ(T ) ∩ T.Taking the von Neumann inequality as a starting point, it was proved in [KN97,Proposition 1.6℄ that Theorem 5.4 is also true for all polynomially bounded T .On the other hand, it is known that 
ontra
tions on Hilbert spa
es even admit an
H∞(D) fun
tional 
al
ulus. This advantageous point has been exploited by Ber
ovi
i
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all that for every f ∈ H∞(D) the radial limits f(eiθ) := limr→1 f(reiθ) existalmost everywhere and ‖f‖H∞(D) = ‖f‖L∞(T).Theorem 5.5 (Ber
ovi
i). Let T be a 
ompletely nonunitary 
ontra
tion on a Hilbertspa
e H, and let f ∈ H∞(D). If limr→1 f(reiθ) = 0 for every eiθ ∈ σ(T ) ∩ T then
limn→∞ ‖Tnf(T )‖ = 0. The 
onverse impli
ation is not true.Also Allan and Ransford obtained various generalisations of the Katznelson-Tza-friri theorem, [AR89℄. In parti
ular, for several spe
ial 
hoi
es of f in 
ase when f isnot of spe
tral synthesis with respe
t to σ(T ) ∩ T they obtained sharp estimates of
lim supn→∞ ‖Tnf(T )‖. This line of resear
h was 
ontinued in [BBG96℄ where similar(and stronger) estimates for the strongly 
ontinuous 
ase and for general f were ob-tained assuming, however, 
ountability of the boundary spe
trum. Very general formsof Katznelson-Tzafriri theorems following from tauberian theorems for the ve
tor-valuedLapla
e-Stieltjes transform 
an be found in [Bat90℄.5.3. Optimality of the Katznelson-Tzafriri theorem. A natural and interesting questionis whether it is possible to drop the assumption of boundedness of the operator semigroupin the Katznelson-Tzafriri theorem. Consider the spe
ial 
ase of the dis
rete version ofKatznelson-Tzafriri theorem with f(z) = z−1. This spe
ial 
ase was in fa
t a motivationfor the paper [KT86℄ and be
ame most popular later probably be
ause of its simple form.If σ(T ) = {1}, the following result was obtained earlier in [Est83℄, and the general 
ase
an be redu
ed to this 
ase as noted later in [V�u92a℄. Observe that one point sets aresets of spe
tral synthesis in the algebra A(T).Corollary 5.6 (Katznelson-Tzafriri). Let T ∈ L(X) be a power bounded operator. Then
limn→∞ ‖Tn+1 − Tn‖ = 0 if and only if σ(T ) ∩ T ⊂ {1}.Clearly, if limn→∞ ‖Tn+1 − Tn‖ = 0 then ne
essarily limn→∞

1
n
‖Tn‖ = 0 and σ(T )∩

T ⊂ {1}. However, are these two 
onditions already su�
ient? If not, 
an they be 
om-plemented in order to obtain the same or probably a somewhat weaker 
on
lusion?Allan and Ransford showed that for every α > 0 there exists a Bana
h spa
e operator
T su
h that σ(T ) ⊂ T, ‖Tn‖ = O(nα) and ‖Tn(I−T )‖ 6= O(nβ) for every β < α, [AR89℄.Moreover, if T is power bounded then ‖Tn+1−Tn‖may 
onverge to zero arbitrarily slowly.Tomilov and Zemánek provided even stronger examples, [TZ04℄. It was proved thatthere exists a Hilbert spa
e operator T su
h that σ(T ) ∩ T = {1}, limn→∞

1
n
‖Tn‖ = 0,and supn≥0

∥

∥

1
n+1

∑n
k=0 T

k
∥

∥ < ∞ (that is, T is Cesàro bounded), but, at the same time,
limn→∞ ‖Tn(T−I)m‖ = ∞ for everym ≥ 0. Thus, even in a Hilbert spa
e, the additionalassumption of Cesàro boundedness of T does not help to get a 
onvergen
e of Tn restri
tedto natural subsets of Rg (T − I).Answering a question of Allan, it was also proved in [TZ04℄ that if X = L1(0, 1) ⊕
L1(0, 1) and

T =

(

I − V −V
O I − V

)

,where V f(t) :=
∫ t

0
f(s) ds is the Volterra operator, then σ(T ) = {1} and limn→∞

1
n
‖Tn‖

= 0, but limn→∞ ‖Tn(T−I)‖ = ∞. Therefore, the strongest possible spe
tral assumption
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σ(T ) = {1} does not lead, in general, to the 
onvergen
e of ‖Tn(T − I)‖ to zero. Note,however, that in this example limn→∞ ‖Tn(T − I)5‖ = 0.Hen
e, the Katznelson-Tzafriri theorem is optimal in several senses. The above exam-ples show also that the 
orresponding tauberian theorems are optimal. In parti
ular, thisanswers an open problem posed by Korevaar in [Kor02, Question 20.3℄.Remark 5.7. There is a 
ontinuous version of Corollary 5.6 due to Arendt & Prüss[AP92, Theorem 3.10℄. It says that if (T (t))t≥0 is a bounded, eventually di�erentiable
C0-semigroup, then σ(A)∩iR ⊂ {0} is equivalent to limt→∞ ‖AT (t)‖ = 0. At the moment,it is not 
lear, whether one 
an �nd 
onterexamples to natural extensions of this theorem,although we strongly suspe
t that this is possible.6. Resolvent 
onditions and stability. The boundary behaviour of the resolventof the generator of a bounded C0-semigroup near the imaginary axis gives importantinformation about stability of the semigroup. However, in the previous two se
tions onlyspe
tral 
onditions were 
onsidered. By the mean ergodi
 theorem, they re�e
t some typeof boundary behaviour of the resolvent near the imaginary axis, but they do this in avery rough way if one is interested in a 
hara
terisation of stability or at least moregeneral su�
ient 
onditions for stability. To see how far the spe
tral 
onditions and eventhe tauberian theorems are from a 
hara
terisation of stability one may 
onsider theExamples 2.4 and 2.5 with appropriate weights w. For instan
e, if w(t) = (log(2 + t))−1,then for every nonzero f ∈ Xp and every β ∈ R, the lo
al resolvent R(·, D)f does notextend 
ontinuously near iβ. In parti
ular, the boundary spe
trum is the whole imaginaryaxis, but it is even true that every nonzero orbit S(·)f does not satisfy the 
onditionsneither of Ingham's tauberian theorem nor of the tauberian Theorem 4.3. Su
h examplesshow that �ner resolvent 
onditions are needed.Very re
ently, two types of su
h resolvent 
onditions have turned out to be useful:pointwise resolvent 
onditions re�e
ting the boundary behaviour of the resolvent horizon-tally near every point of the imaginary axis and (
omplex) integral resolvent 
onditionsre�e
ting the boundary behaviour of integrals of lo
al resolvents along verti
al lines nearthe imaginary axis. Both types of 
onditions yield stability of semigroups on general Ba-na
h spa
es, but they 
an be
ome ne
essary and su�
ient in Hilbert spa
es or 
an beimproved substantially in Bana
h spa
es with Fourier type as we will see in Se
tions 8and 9 below.6.1. Pointwise resolvent 
onditions. The �rst statement involving pointwise resolvent
onditions shows that rather mild properties of the boundary behaviour of resolventsmay lead to stability of the 
orresponding semigroup.Theorem 6.1 (Pointwise resolvent 
ondition). If A generates a bounded C0-semigroupon a Bana
h spa
e X and if there exists a dense set M ⊂ X su
h that for every x ∈ Mand every β ∈ R(6.1) lim

α→0+
αR(α+ iβ, A)2x = 0,then the semigroup is stable.
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ondition (6.1) holds for every x ∈ X, then ‖αR(α+ iβ, A)2‖ ≤Mfor all α > 0 by the uniform boundedness prin
iple. In this 
ase, iβ does not belong tothe spe
trum of A sin
e iβ ∈ σ(A) implies ‖α2R(α + iβ, A)2‖ ≥ 1 for all α > 0. Thus,the use of a dense set in Theorem 6.1 is essential as soon as the boundary spe
trum ofthe generator is not empty.Theorem 6.1 
an be proved by using the 
hara
terisation of stability in terms ofnonexisten
e of nontrivial, bounded, 
omplete traje
tories for the adjoint semigroup (The-orem 3.2) and an edge-of-the-wedge theorem from 
omplex fun
tion theory from [Tom01℄;see [BCT02, p. 133℄. For an alternative approa
h via the limit isometri
 group see [Tom01,Theorem 4.7℄.The 
ondition (6.1) holds if for some γ ∈ (0, 1)

lim
α→0+

αγR(α+ iβ, A)1+γx = 0,or, by the mean ergodi
 theorem, if
lim

α→0+
R(α+ iβ, A)x exists.Moreover, by the mean ergodi
 theorem again, the latter 
ondition follows from x ∈

Rg (iβ − A) and Rg (iβ −A) = X. Hen
e, Theorem 6.1 yields the following 
orollary,[BCT02, Theorem 2.4℄.Corollary 6.2 (Range 
ondition). If A generates a bounded C0-semigroup on a Bana
hspa
e X and if(6.2) ⋂

β∈R

Rg (iβ −A) is dense in X,then the semigroup is stable.The 
ondition (6.2) does not, in general, 
hara
terise stability of a bounded C0-semigroup, and even weaker 
onditions do not; see the 
omments in Se
tion 9 below.It is an open problem whether the 
ondition from Theorem 6.1 
hara
terises stability ofbounded C0-semigroups, or whether on the other hand the 
onditions (6.1) and (6.2) areequivalent.If A satis�es the 
onditions of the ABLV theorem, then the 
ondition (6.2) is satis�edby the Mittag-Le�er theorem as we saw in Se
tion 5. Hen
e, the ABLV theorem is a
orollary to Corollary 6.2.We point out that spa
es like the interse
tion of ranges in 
ondition (6.2) are not
ompletely new in operator theory. In fa
t, these spa
es are very similar to so-
alledspe
tral subspa
es whi
h were already known in lo
al spe
tral theory.Given an operator (a generator) A, we say that a ve
tor x ∈ X has its lo
al spe
trumin a 
losed set F ⊂ C if the lo
al resolvent R(·, A)x extends analyti
ally outside F.When
A is a normal operator the set of all x ∈ X having their lo
al spe
trum in F ⊂ C, i.e. thespe
tral subspa
e 
orresponding to F, 
an be des
ribed algebrai
ally as ⋂

λ∈C\F Rg (λ−A),[LN00℄. This des
ription 
an be generalised for some 
lasses of operators whi
h are 
loseto the 
lass of normal operators. For the latest advan
es in this area see [MMN04℄. Appli-
ations of stability theory to the study of interse
tions of ranges of semigroup generatorsare dis
ussed in [BCT02℄.
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tral sub-spa
e 
orresponding to the 
losed right half pla
e C̄+ 
ould be of interest. Observe thatevery ve
tor x belonging to this spe
tral subspa
e has lo
al spe
trum in the open lefthalf plane, i.e. the lo
al resolvent extends analyti
ally a
ross the imaginary axis. ByIngham's theorem, the orbit T (·)x is stable for every su
h x. Hen
e, if the spe
tral sub-spa
e 
orresponding to the 
losed right half plane is dense in X, then the semigroup isstable.So, it is natural to take interse
tions of ranges as good substitutes for spe
tral stability
onditions. By Corollary 6.2, this strategy appears to be fruitful even when the normalityof A is dropped.6.2. Integral resolvent 
onditions. We 
onsider two types of integral 
onditions: 
ondi-tions on the behaviour of the integral of lo
al resolvents along whole verti
al lines nearthe imaginary axis ('global integrability 
riterion') and 
onditions on the behaviour ofthe integral along bounded intervals of verti
al lines near the imaginary axis ('lo
al inte-grability 
riterion').One 
an 
onsider other types of integral 
onditions, e.g. when lo
al resolvents belongto some Bergman spa
e near the imaginary axis. However, these 
onditions 
an be studiedby redu
tion to the two 
onditions mentioned above [CT03℄.The following two results 
an be found in [CT03, Theorem 3.1℄ and in [Tom01, The-orem 4.1℄, respe
tively.Theorem 6.3 (Global integrability 
riterion). If A generates a bounded C0-semigroupon a Bana
h spa
e X, and if for some γ > 1 and for every x from a dense subsetof X(6.3) lim
α→0+

∫

R

‖αγ−1R(α+ iβ, A)γx‖ dβ = 0,then the semigroup is stable.Theorem 6.4 (Lo
al integrability 
riterion). Assume that A generates a bounded C0-semigroup on a Bana
h spa
e X. Assume also that for every β ∈ R there exists an openneighbourhood U ⊂ R of β and a dense set M ⊂ X su
h that(6.4) lim
α→0+

∫

U

‖αR(α+ iβ′, A)2x‖ dβ′ = 0 for every x ∈M.Then the semigroup is stable.It follows from Young's inequality, Plan
herel's theorem and Theorem 8.1 that the
ondition (6.4) be
omes ne
essary if X is a Hilbert spa
e; see the dis
ussion in [CT03,p. 506℄.It is possible to give an integral stability 
riterion for individual orbits of not ne
-essarily bounded C0-semigroups [CT03, Theorem 5.1℄. It is in some sense intermediatebetween the similar stability 
ondition (6.4) in Bana
h spa
es and the integral stability
riterion in Hilbert spa
es in Se
tion 8 below.



90 R. CHILL AND Yu. TOMILOVTheorem 6.5. Let A be the generator of a C0-semigroup (T (t))t≥0 on a Bana
h spa
e
X. Let p ∈ (1,∞) and q := p

p−1 . Assume that
C+ ⊂ ̺(A), and(6.5)
sup
α>0

α

∫

R

‖R(α+ iβ, A∗)x∗‖q dβ <∞ for every x∗ ∈ X∗.If, for some x ∈ X,(6.6) lim
α→0+

α

∫

R

‖R(α+ iβ, A)x‖p dβ = 0,then
lim

t→∞
‖T (t)x‖ = 0.Note that under the 
onditions of the above theorem, the semigroup (T (t))t≥0 
annotgrow too fast: by [CT03, Proposition 5.3℄ it has a sublinear growth if X has a nontrivialFourier type.7. Stability of positive semigroups. If more stru
ture of the semigroup or the under-lying Bana
h spa
e is given, then one may expe
t better stability results. In this se
tion westart to dis
uss su
h types of results, turning our attention �rst to positive semigroups onBana
h latti
es or, more generally, on ordered Bana
h spa
es, [MN91℄, [Nag86℄, [S
h74℄.Note that in general, as far as spe
tral or resolvent 
onditions for stability are 
on
erned,the stability theory of positive semigroups 
omprises the same di�
ulties as the theoryof general semigroups on Bana
h spa
es. Examples 2.4 and 2.5 whi
h are positive semi-groups on Lp spa
es may serve as a demonstration of this; see also the dis
ussion inSe
tion 9 below.Nevertheless, an interplay between positivity of a semigroup and geometri
 propertiesof the underlying Bana
h latti
e leads to some spe
i�
 stability results.7.1. Positive semigroups on general Bana
h latti
es. Let X be a (
omplex) Bana
h lat-ti
e. The positive 
one will be denoted by X+.We start by dis
ussing some resolvent (resp. range) 
onditions for stability of positivesemigroups on general Bana
h latti
es. Re
all that a Bana
h latti
e is 
alled a KB spa
eif every norm bounded in
reasing sequen
e 
onverges. A Bana
h latti
e is a KB spa
e ifand only if c0 6⊂ X.Proposition 7.1. Let (T (t))t≥0 be a bounded positive C0-semigroup on a Bana
h lat-ti
e X.(i) If x ∈ X+ and limα→0+ αR

2(α,A)x = 0, then T (·)x is stable.(ii) If x ∈ X+ and w − limα→0+R(α,A)x exists, then T (·)x is stable.(iii) If x ∈ X+, supα>0 ‖R(α,A)x‖ < ∞, and if X is a KB spa
e, then T (·)x isstable.(iv) If x ∈ X and limα→0+R(α,A)x± exist, then T (·)x is stable.Proof. (i) By positivity, ‖αR(α+ iβ, A)2x‖ ≤ ‖αR(α,A)2x‖ for every α > 0, β ∈ R andevery x ∈ X+. The 
laim thus follows from Theorem 6.1 applied to the restri
tion of the
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losure of the linear span of {T (t)x : t ≥ 0}, taking the linearspan itself as a dense set; see also [Tom01, Corollary 4.9℄.(ii) Sin
e the net (R(α,A)x)αց0 is in
reasing and weakly 
onvergent, we obtainthat limα→0+R(α,A)x exists by Dini's theorem. By the mean ergodi
 theorem,
limα→0+ αR(α,A)2x = 0, so that the assertion follows from (i). But one may also argueas follows: sin
e x is positive, the existen
e of limα→0+R(α,A)x implies that ∫ ∞

0
T (s)x dsexists by the tauberian theorem [ABHN01, Theorem 4.2.16℄. Now Proposition 3.10 impliesthe 
laim.(iii) By the KB property, limα→0R(α,A)x exists. Then apply (ii).(iv) follows dire
tly from (ii).By positivity, ‖R(λ,A)x‖ ≤ ‖R(Reλ,A)x‖ for every λ ∈ C+ and every x ∈ X+, sothat under the 
onditions of Proposition 7.1 (ii), (iii) or (iv) we have supλ∈C+

‖R(λ,A)x‖
< ∞. Thus, the 
onditions of Proposition 7.1 
on
ern, in fa
t, the boundary behaviourof the lo
al resolvent R(·, A)x in the whole right half-plane.A result similar to Proposition 7.1 (ii) 
an be found in [Neu86, Proposition 3.5℄ and[Nag86, C-IV, Proposition 1.9℄.Corollary 7.2. Let (T (t))t≥0 be a bounded positive C0-semigroup on a Bana
h lat-ti
e X. If limα→0+R(α,A)x exists for every x ∈ C∞(A) :=

⋂∞
n=1D(An), then (T (t))t≥0is stable.For the proof it su�
es to observe that C∞(A) ∩ X+ is total in X, [Nag86, C-IV,Remark 1.10℄. Corollary 7.2 has been proved in [Neu86, Proposition 3.5℄ with C∞(A)repla
ed by D(A), and in [Nag86, C-IV, Proposition 1.9℄ with C∞(A) repla
ed by sometotal set D ⊂ X+.Note that under the assumptions of Corollary 7.2, mu
h more is true. By the uni-form boundedness prin
iple (applied in the Fré
het spa
e C∞(A)), there exists n ∈ Nsu
h that supα>0 ‖R(α,A)R(λ0, A)n‖ < ∞, where λ0 > 0 is 
hosen large enough. Ap-plying the resolvent identity n times, this implies supα>0 ‖R(α,A)‖ < ∞. Hen
e, bypositivity of (T (t))t≥0, the spe
tral bound s(A) < 0. By [EN99, Theorem 6.1.14℄, the
ondition s(A) < 0 a
tually implies exponential stability of T (·)x for every x ∈ D(A),and it even implies exponential stability of (T (t))t≥0 itself if X is an Lp spa
e, [ABHN01,Theorem 5.3.6℄.By the mean ergodi
 theorem, the stability 
ondition from Corollary 7.2 is equivalentto saying that C∞(A) ⊂ RgA. Clearly, it 
annot be repla
ed by the mere 
ondition that

RgA is dense in X as the isometri
 shift semigroup on L2(R) shows. However, in some
ases, the 
ondition RgA = X 
hara
terises stability, [Nag86, C-IV Theorem 1.5℄.Theorem 7.3 (Positive, norm 
ontinuous semigroups). If A generates a positive, even-tually norm-
ontinuous and bounded C0-semigroup on a Bana
h latti
e, then the semi-group is stable if and only if RgA is dense.Note that the eventual norm 
ontinuity of the semigroup implies σ(A)∩ iR ⊂ {0} bye.g. [Nag86, C-III Proposition 2.9, Corollary 2.13℄, so that Theorem 7.3 dire
tly followsfrom the ABLV theorem.
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tion in the resear
h on stability of positive semigroups is based on the
on
ept of domination. There are three variants of this 
on
ept in the literature.Definition 7.4. Let (T (t))t≥0 and (S(t))t≥0 be C0 semigroups on a Bana
h latti
e Xwith generators A and B, respe
tively. Assume that (S(t))t≥0 is positive.(i) We say that (T (t))t≥0 is dominated by (S(t))t≥0 if |T (t)x| ≤ S(t)|x| for every
x ∈ X.(ii) We say that A is resolvent dominated by B if |R(λ,A)x| ≤ R(λ,B)|x| for every
x ∈ X and every λ > 0 su�
iently large.(iii) We say that (T (t))t≥0 is asymptoti
ally dominated by (S(t))t≥0 whenever
limt→∞ ‖(S(t)x − T (t)x)−‖ = 0 for every positive x ∈ X, or, equivalently,
limt→∞ dist(S(t)x− T (t)x,X+) = 0.Clearly, (i) implies (ii), and both 
onditions are equivalent if X is σ-order 
omplete,[Nag86, p. 269℄. At the same time, (iii) is stri
tly weaker than (ii). Indeed, any 
onvergent(positive) semigroup is asymptoti
ally dominated by the 
onstant semigroup, but 
learlyits generator may not be, in general, resolvent dominated by 0, the generator of the
onstant semigroup.It is natural to expe
t that stability properties of dominated semigroups are inheritedby those of the dominating semigroups. This appears to be true even for asymptoti
domination, [EKRW01, Theorem 4.5℄.Theorem 7.5. Let X be a Bana
h latti
e with order 
ontinuous norm, let (T (t))t≥0and (S(t))t≥0 be positive semigroups on X, and assume that (T (t))t≥0 is asymptoti
allydominated by (S(t))t≥0. If (S(t))t≥0 is stable, then (T (t))t≥0 is also stable.A
tually, Theorem 7.5 was proved in [EKRW01℄ with stability repla
ed by 
onver-gen
e. If one repla
es stability by 
onvergen
e in Theorem 7.5, then it is shown in[EKRW01, Example 4.7 (a)℄ that the positivity of both semigroups, i.e. also of the domi-nated semigroup, is ne
essary in general. It is not 
lear whether the positivity of (T (t))t≥0is also ne
essary in Theorem 7.5 as we stated it here.Inheritan
e of stability assuming resolvent domination seems to be more di�
ultto establish. However, by [RW00℄ (see also [RW97℄), resolvent domination allows oneto dedu
e stability of the dominated semigroup from pure spe
tral 
onditions on thegenerator of the dominating semigroup.In general, one 
an also study stability of positive semigroups on ordered Bana
hspa
es with a normal 
one. Typi
al examples of ordered Bana
h spa
es with a normal
one whi
h are not Bana
h latti
es are C∗-algebras. Stability of positive C0-semigroupson C∗-algebras with unit admits a simple 
hara
terisation, [GN81, Satz 3.2℄.Theorem 7.6 (Groh-Neubrander). Let (T (t))t≥0 be a positive C0-semigroup on a C∗-algebra A with unit. Then (T (t))t≥0 is exponentially stable, i.e. the exponential growthbound ω0(A) < 0, if and only if it is weakly stable, i.e. w − limt→∞ T (t)x = 0 for every

x ∈ A.The proof of Theorem 7.6 is based on the fa
t that ω0(A) ∈ σp(A
∗) if ω0(A) > −∞.The result is not true for C∗-algebras without unit as the example of the weakly stableleft-shift semigroup on C0(R) shows.



STABILITY OF OPERATOR SEMIGROUPS 937.2. Positive semigroups on L1 or C(K). The L1 spa
e (or abstra
tly any AL spa
e)is distinguished from other Bana
h latti
es by the fa
t that the norm is additive on thepositive 
one. This helps to estimate integrals of positive fun
tions. So if a Bana
h latti
e
X is an L1-spa
e, then Theorem 7.3 
an be strengthened, [S
h74, p. 347℄, [Nag86, C-IV,Proposition 1.7℄.Theorem 7.7 (Positive semigroups on L1). If A generates a positive and bounded C0-semigroup on an L1 spa
e, then the semigroup is stable if and only if RgA is dense.Proof. The ne
essity part follows from the mean ergodi
 theorem. To prove the otherdire
tion, let f ∈ L1 be positive. By the mean ergodi
 theorem,

0 = lim
λ→0+

〈λR(λ,A)f, 1〉L1×L∞

= lim
λ→0+

λ

∫ ∞

0

e−λt〈T (t)f, 1〉L1×L∞ dt

= lim
λ→0+

λ

∫ ∞

0

e−λt‖T (t)f‖L1 dt.Passing to an equivalent norm ‖ · ‖ on L1 for whi
h (T (t))t≥0 is 
ontra
tive, we �nd that
limt→∞ ‖T (t)f‖ exists and limλ→0+ λ

∫ ∞

0
e−λt‖T (t)f‖ dt = 0. By the regularity of theAbel summation, this implies that T (·)f is stable for every positive f . Sin
e the 
one isgenerating, (T (t))t≥0 is stable.Con
rete situations where Theorem 7.7 
an be applied one may �nd in [ABB92℄ and[Bat92℄. The interesting relations between domination and stability of C0-semigroups on

L1 spa
es are dis
ussed in [Ouh97℄.Stability theory of C0-semigroups on C(K), where K is a 
ompa
t Hausdor� spa
e,has also several spe
i�
 features. Sin
e C(K) is a (
ommutative) C∗-algebra with unit,Theorem 7.6 implies that a stable C0-semigroup on C(K) is ne
essarily exponentiallystable. However, in this parti
ular situation, more 
an be said.The following result is due to Choquet & Foia³ [CF75, Théorème 1, Remarque 5℄; see[MT93, Corollaire 2.4℄ for a 
ontinuous version.Theorem 7.8. Let (T (t))t≥0 be a positive C0-semigroup on C(K), and let f ∈ C(K) bestri
tly positive. Then (T (t))t≥0 is exponentially stable if and only if w-limt→∞ T (t)f = 0.Note that T (t)f = M−1
f S(t)1, where Mfg := fg and the positive C0-semigroup

(S(t))t≥0 is de�ned by S(t) = MfT (t)M−1
f . Thus it su�
es to prove Theorem 7.8 for

f = 1. The statement follows from the spe
ial properties of the orbit (T (t)1)t≥0 and thefa
t that ‖T (t)‖ = ‖T (t)1‖.As above, Theorem 7.8 fails, if one repla
es C(K) by C0(Ω) for some lo
ally 
ompa
tHausdor� spa
e Ω, or if the stri
t positivity of f is violated [CF75, Remarque 5℄.The above theorem shows that it is of interest to study stability properties of (T (t))t≥0for whi
h the orbit T (·)1 is not stable, e.g. for Markov semigroups (i.e. T (t)1 = 1,
t ≥ 0). Note that for individual orbits of su
h semigroups weak stability and stabilityare in general not equivalent; see [Jam70, p. 369℄ or [CF75, Remarque 5℄ for illustrativeexamples. But these types of stability are equivalent under the additional assumption ofirredu
ibility of (T (t))t≥0.



94 R. CHILL AND Yu. TOMILOVGiven a C0-semigroup (T (t))t≥0 of 
ontra
tions on C(K), we 
all a set E ⊂ K invari-ant if for every x ∈ E and every t ≥ 0 we have suppT (t)∗δx ⊂ E. The semigroup is 
alledirredu
ible on C(K) if the only invariant subsets are K and the empty set. This de�nitionof irredu
ibility is equivalent to the one for positive semigroups on general Bana
h latti
es(see [S
h74, Nag86℄ for that de�nition).The following statement was proved by Jamison in the 
ontext of Markov operators,[Jam70℄. Its generalisation for nonpositive operators was obtained by Sine in [Sin89,Theorem 2℄. We state the 
ontinuous version whi
h 
an be derived from the dis
rete oneeasily.Theorem 7.9 (Sine). Let (T (t))t≥0 be an irredu
ible 
ontra
tion C0-semigroup on
C(K), and let f ∈ C(K). Then T (·)f is stable if and only if w-limt→∞ T (t)f = 0.The example from [Jam70, p. 369℄ shows that the 
ondition of irredu
ibility 
annot beomitted in Theorem 7.9 even if (T (t))t≥0 is a Markov semigroup. Moreover, the statementfails if C(K) is repla
ed by C0(Ω). However, weaker notions of irredu
ibility still allow oneto keep the 
on
lusion of Theorem 7.9; we refer to [Wit88℄ for details. Con
erning stabilityand 
onvergen
e of irredu
ible semigroups on L1 spa
es see also [Nag86, p. 346�349℄.There is another kind of 
ondition whi
h is suitable for the study of 
onvergen
e ofMarkov operators [Rub77, Theorem 12℄.Theorem 7.10 (Rubinov). Let T be a Markov operator on C(K). Assume that the �xedpoints of T separate the points of K. Then (Tn)n≥0 is 
onvergent if and only if it is meanergodi
.By means of the abstra
t Theorem 3.2, various other stability 
onditions for Markovoperators were obtained in [Lin74℄. We will not state them here, sin
e their formulationwould require probabilisti
 terms going far beyond the s
ope of the survey. Re
ently,the 
onvergen
e properties of Markov operators were also investigated from a measure-theoreti
 point of view in [Fog99℄.8. Stability of semigroups on Hilbert spa
es. Stability of semigroups on Hilbertspa
es is perhaps the ni
est part of the theory of stability. The spe
ial geometri
 propertiesof Hilbert spa
es, e.g. the validity of Plan
herel's theorem, and of operators on Hilbertspa
es (normal operators, hyponormal operators, 
ontra
tions on Hilbert spa
es) havelead to a variety of stability results, some of whi
h are even 
hara
terising stability interms of resolvent 
onditions.Moreover, the study of stability of semigroups on Hilbert spa
es is of independentinterest in operator theory, e.g. for the invariant subspa
e problem. However, despiteseveral partial positive results it is still not known whether a stable T ∈ L(X) withnonempty boundary spe
trum has a nontrivial invariant subspa
e; see [Mül03℄, [Mül05℄.The invariant subspa
e problem is also open for the opposite 
lass of power bounded Tfor whi
h all orbits are not stable, [Kér89℄, [KV03℄ (if, however, T and T ∗ are non-stable,then it is known that T (and T ∗) has an invariant subspa
e, [SNF70, Theorem II.5.4℄).This may serve as an indi
ation that stable operator semigroups are still not fullyunderstood. Note that stability theory and invariant subspa
e theory have many methods
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hniques in 
ommon. As illustrative works we mention [Atz84℄, [Bea88℄, [AE98℄and [Kér99℄.We start with a dis
ussion of resolvent stability 
onditions. The following statementis a re�nement of the global integrability 
riterion from Theorem 6.3. Its parti
ular 
asewith γ = 1 has been proved in [Tom01, Theorem 3.1℄.Theorem 8.1 (Global integrability 
riterion). Let A be the generator of a bounded C0-semigroup on a Hilbert spa
e X. Then the semigroup is stable if and only if for some
γ > 1

2 and every x from a dense subset of X,(8.1) lim
α→0+

∫

R

‖αγ− 1
2R(α+ iβ, A)γx‖2 dβ = 0.Proof. By 
hanging the norm on X, we may without loss of generality assume that thesemigroup (T (t))t≥0 generated by A is a 
ontra
tion semigroup. Note that X need notbe a Hilbert spa
e for the new norm, but it is isomorphi
 to a Hilbert spa
e, and theFourier transform is still an isomorphism on L2(R;X) by Plan
herel's theorem.If (T (t))t≥0 is a 
ontra
tion semigroup, then limt→∞ ‖T (t)x‖ exists for every x ∈ X.By an abelian theorem and Plan
herel's theorem,

lim
t→∞

‖T (t)x‖2 = lim
α→0

∫ ∞

0

α2γ−1t2γ−2e−2αt‖T (t)x‖2 dt

≤ C lim
α→0

∫

R

‖αγ− 1
2R(α+ iβ, A)γx‖2 dβ.This proves the ne
essity part. The su�
ien
y part is proved similarly.One 
an use the 
hara
terisation of generators of bounded semigroups on Hilbertspa
es due to Gomilko [Gom99, Theorem 1℄ and Shi & Feng [SF00, Theorem 1.1, Theorem4.1℄ in order to drop the boundedness 
ondition on the semigroup in Theorem 8.1 and torepla
e it by a pure resolvent 
ondition.Theorem 8.2. Let A be a 
losed, densely de�ned, linear operator on X su
h that C+ ⊂

̺(A), and let γ ∈ ( 1
2 , 2). Then A generates a stable semigroup if and only if(8.2) sup

α>0

∫

R

‖α 3
2
−γR(α+ iβ, A∗)2−γx‖2 dβ <∞,and for every x ∈ X(8.3) lim

α→0+

∫

R

‖αγ− 1
2R(α+ iβ, A)γx‖2 dβ = 0.The 
onditions (8.2) and (8.3) are 
learly ne
essary by the Plan
herel theorem and anargument similar to that of the proof of Theorem 8.1. For the proof of their su�
ien
y,observe that (8.2) and (8.3) imply

sup
α>0

α

∫

R

|〈R2(α+ iβ, A)x, y〉| dβ <∞, x, y ∈ X,by Young's inequality. Then, by [Gom99℄ or [SF00℄, A generates a bounded semigroup,and we obtain the stability of (T (t))t≥0 from Theorem 8.1.Using Theorem 8.2 with γ = 1, Guo & Zwart have shown that it provides a geomet-ri
 stability 
riterion for C0-semigroups with generator A in terms of solvability of the
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(A− sI)∗Q(s) +Q(s)(A− sI) = −I on D(A) and(8.4)
(A− sI)Q̃(s) + Q̃(s)(A− sI)∗ = −I on D(A∗)(8.5)for all s > 0; see [GZ06, Theorem 2.8℄. Their result is somewhat parallel to the well known
hara
terisation of exponential stability of semigroups in terms of Lyapunov equations.Theorem 8.3 (Guo-Zwart). Let A be a 
losed, densely de�ned, linear operator on aHilbert spa
e X. Then the following statements are equivalent.(i) A generates a stable C0-semigroup.(ii) For every s > 0 there exist positive solutions Q(s), Q̃(s) ∈ L(X) of the Lyapunovequations (8.4) and (8.5), respe
tively, su
h that(a) sup {‖sQ(s)‖, ‖sQ̃(s)‖ : s > 0} <∞ and(b) lims→0+〈sQ(s)x, x〉 = 0 for every x ∈ H.The pointwise resolvent 
ondition as well as the 
orresponding range stability 
on-dition from Se
tions 6 and 9 
an be improved for semigroups on Hilbert spa
e as thefollowing statement shows.Theorem 8.4 (Pointwise 
riterion). Let A be the generator of a bounded C0-semigroupon a Hilbert spa
e X.(i) If there exists a dense set M ⊂ X su
h that(8.6) lim

α→0+

√
αR(α+ iβ, A)x = 0 for every x ∈M and every β ∈ R,then the semigroup is stable.(ii) If(8.7) ⋂

β∈R

Rg (iβ −A)
1
2 is dense in X,then the semigroup is stable.Theorem 8.4 (i) was obtained in [Tom01, Theorem 3.4℄ by using the method of limitisometri
 groups; we give a di�erent proof in Se
tion 9 below (Theorem 9.1). Theorem8.4 (ii) is a 
onsequen
e of part (i) and 
an be found in [CT03, Proposition 6.1℄. Notethat the range 
ondition (8.7) is weaker than the range 
ondition (6.2) from Theorem6.2; this 
an be seen by 
onsidering Examples 2.4 and 2.5, [CT03℄. Also the 
ondition(8.6) is a priori not stronger than the 
orresponding Bana
h spa
e 
ondition (6.1) by theabstra
t Hardy-Landau inequality, [Tom01, Remark 4.11℄. It is an open problem whetherthe stability 
onditions from Theorem 8.4 (i) or (ii) are also ne
essary for stability.Contra
tions on Hilbert spa
es have a ri
h spe
tral theory based on unitary dila-tions and fun
tional model approa
hes. So the results given above 
an be improved and
omplemented for the 
lass of 
ontra
tion semigroups.Re
all that if (T (t))t≥0 is a C0-semigroup of 
ontra
tions on a Hilbert spa
e H, thenthere is a unitary C0-group (U(t))t∈R on a Hilbert spa
e K ⊃ H su
h that PHU(t) =

T (t), t ≥ 0, where PH is the orthogonal proje
tion onto H. Any su
h group (U(t))t∈R is
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alled a dilation of (T (t))t≥0, and among all dilations there exists a minimal one in thesense that K =
∨

t∈R
U(t)H.Foguel expressed stability and 
onvergen
e of a C0-semigroup (T (t))t≥0 of 
ontra
tionsin geometri
 terms by means of the 
orresponding minimal unitary dilation (U(t))t∈R,[Fog71, Corollary 1, Theorem 4℄. His 
hara
terisation of stability and 
onvergen
e is verysimilar to the 
hara
terisation in terms of limit isometri
 groups or 
omplete traje
tories.For a dis
ussion of relations between limit isometri
 semigroups and minimal unitarydilations see [Kér89℄. Let H∞ :=

⋂

t≥0

∨

t>s U(−s)H.Theorem 8.5. A 
ontra
tion semigroup on a Hilbert spa
e H is stable if and only if
H∞ = {0}. Moreover, the semigroup is 
onvergent if and only if the minimal unitarydilation is 
onstant on H∞.In [Put75, Theorem 3℄ a stability result for 
ohyponormal operators is proved, i.e. foroperators T on a Hilbert spa
e su
h that TT ∗−T ∗T ≥ 0. Note that a 
ohyponormal powerbounded operator is ne
essarily a 
ontra
tion. A short proof of the following statementhas been given in [Oku77℄ and [KV94℄.Theorem 8.6 (Putnam). If T is a 
ompletely nonunitary 
ohyponormal 
ontra
tion,then (Tn)n≥0 is stable.Putnam's approa
h to Theorem 8.6 is of interest here sin
e it follows ideas similar tothose behind the pointwise resolvent 
onditions from this survey. We present a variantof his approa
h using a short argument due to Radjabalipour [Rad76℄. Observe that forevery z ∈ C

(T − z)(T ∗ − z̄) ≥ (T − z)(T ∗ − z̄) − (T ∗ − z̄)(T − z) ≥ TT ∗ − T ∗T := D2 ≥ 0,where the last inequality holds by the 
ohyponormality of T . By the Douglas majorization
riterion [Dou66℄, for every z ∈ C there exists a 
ontra
tion C(z) su
h that(8.8) (T − z)C(z) = D.The global boundedness of C(·) is used in [Put75℄ to show that RgD ⊂ {x ∈ X :

limn→∞ Tnx = 0}. Sin
e T is 
ompletely nonunitary, RgD is dense in X and therefore
(Tn)n≥0 is stable.Note that the equation (8.8) alone together with the density of RgD already su�
esto obtain stability of (Tn)n≥0 by, for example, Corollary 6.2.If A is the generator of a semigroup of 
ompletely nonunitary 
ontra
tions, then the
ondition (8.6) 
hara
terises stability, but even a little bit more is true. This 
hara
teri-sation of stability has been proved in [Tom01, p. 75�76℄, but see also [BL95, Theorem 5℄where the 
hara
terisation is proved with a 
on
rete setM . The proof in [Tom01℄ is basedon Theorem 8.5 together with some additional properties of the orthogonal proje
tiononto H∞ found in [Fog71℄. It is 
ru
ial that the generator of the minimal unitary dilationof a semigroup of 
ompletely nonunitary 
ontra
tions has absolutely 
ontinuous spe
tralmeasure.Theorem 8.7. Let A be the generator of a C0-semigroup of 
ompletely nonunitary 
on-tra
tions on a Hilbert spa
e X. Then the following are true:
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h that
lim

α→0+

√
αR(α+ iβ, A)x = 0 for every x ∈M and almost every β ∈ R.(ii) If there exists a set E ⊂ R of measure 0 su
h that

⋂

β∈R\E

Rg (iβ −A)
1
2 is dense in X,then the semigroup is stable.(iii) If the boundary spe
trum of A has measure 0, then the semigroup is stable.As in Theorem 8.4, part (ii) is a 
onsequen
e of part (i) and 
an be proved along thelines of [CT03, Corollary 6.1℄. The last statement of Theorem 8.7 
an already be found in[SNF70, Proposition 6.7, p. 85℄. It 
an be used to dedu
e a dis
rete version of the ABLVtheorem for Hilbert spa
e 
ontra
tions, [Gil70, Proposition 2℄. At the end, we turn to avariational 
ondition for stability.Theorem 8.8. Let A be densely de�ned, 
losed linear operator on a Hilbert spa
e X. If

A is normal, and if(8.9) Re (Ax, x) < 0 for all x ∈ D(A),then A generates a stable C0-semigroup of 
ontra
tions.If A is a multipli
ation operator on an L2 spa
e, then the above theorem is easy toprove. Thus, the theorem is an immediate 
onsequen
e of the spe
tral theorem for (un-bounded) normal operators on separable Hilbert spa
es ([RS80, Theorem VIII.4, p. 260℄)saying that A is unitarily equivalent to a multipli
ation operator.The normality assumption on A in Theorem 8.8 
an be dropped if one knows thatthe semigroup generated by A is asymptoti
ally almost periodi
 or if A has 
ompa
tresolvent. See [ABHN01, p. 360�361℄ for the relevant dis
ussion of these two propertiesof A.In Dja£enko [Dja80℄, Theorem 8.8 is stated without the assumption that A is normal,but then it be
omes false as the following example shows.Example 8.9. Consider the shift semigroup (S(t))t≥0 from Example 2.4 on the Hilbertspa
e X = L2(R+;w(t) dt), but with weight w(t) = 1 + e−t, t ≥ 0. A simple integrationby parts shows that the generator D = −d/dt of this semigroup satis�es the 
ondition(8.9). However, for every nonzero f ∈ X one has lim supt→∞ ‖S(t)f‖ > 0.Other examples of this kind 
an be found in [BL95℄. However, if a 
losed, denselyde�ned linear operator A satis�es (8.9), then there is another Hilbert spa
e K 
ontaining
X su
h that A generates a stable semigroup on K, [BL95, Theorem 2℄.9. Stability of semigroups on Bana
h spa
es with Fourier type. In many of thestability results up to now, espe
ially those based on spe
tral 
onditions or resolvent
onditions, the Fourier transform has played a 
entral role in the proofs. For example, inthe proofs of the tauberian theorems whi
h we have presented (Ingham's theorem andits variants) Parseval's identity and the Lemma of Riemann-Lebesgue were the 
ore. Insome of the stability results for semigroups on Hilbert spa
es, the validity of Plan
herel's
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e valued L2 fun
tions was essential, and sin
e, by Plan
herel, theFourier transform is an isomorphism on L2, we even obtained some 
hara
terisations ofstability in terms of resolvent 
onditions. Heuristi
ally, the reason why all these argumentswork is that the Fourier transform of bounded semigroup orbits is the distributionalboundary value of the 
orresponding lo
al resolvents on the imaginary axis or the unit
ir
le, respe
tively.It is thus not surprising that in Bana
h spa
es in whi
h the Fourier transform preservesgood geometri
 properties we are able to obtain better stability results, at least betterthan the pointwise and the integral stability results from Se
tion 6. Among su
h Bana
hspa
es are the Bana
h spa
es with nontrivial Fourier type.We say that a Bana
h spa
e X has Fourier type p ∈ [1, 2] if the Fourier transformon S(R;X) (the ve
tor-valued S
hwartz spa
e) extends to a bounded linear operatorfrom Lp(R;X) into Lq(R;X), i.e. if the Hausdor�-Young inequality holds. By the Lemmaof Riemann-Lebesgue, every Bana
h spa
e X has the trivial Fourier type p = 1. Thus,by interpolation, if X has Fourier type p ∈ [1, 2], then it has Fourier type p′ for every
p′ ∈ [1, p]. A Bana
h spa
e has Fourier type p = 2 (i.e. Plan
herel's Theorem holds) ifand only if it is isomorphi
 to a Hilbert spa
e. By [Bou82℄, a Bana
h spa
e has nontrivialFourier type if and only if it is B-
onvex; see also [Bou82℄ for a de�nition of B-
onvexity.If a Bana
h spa
e X has Fourier type p ∈ [1, 2], then the dual X∗ has the same Fouriertype p. For all these fa
ts we refer to the re
ent survey [GKKT98℄.9.1. Pointwise resolvent 
onditions. The �rst result is in the spirit of the pointwise re-solvent 
onditions from Theorem 6.1 (Bana
h spa
e 
ase) and Theorem 8.4 (i) (Hilbertspa
e 
ase), and it has been proved in [BCT05, Theorem 5.7℄. It is an improvement of[CT04, Theorem 4.2℄. Note that Theorem 8.4 (i) is Theorem 9.1 in the 
ase p = 2.Theorem 9.1 (Pointwise resolvent 
ondition). Let A be the generator of a bounded C0-semigroup on a Bana
h spa
e X having Fourier type p ∈ (1, 2]. Let q := p

p−1 be the
onjugate exponent. Assume that there exists a dense set M ⊂ X su
h that for every
β ∈ R and every x ∈M(9.1) lim

α→0+
‖α 1

qR(α+ iβ, A)x‖ = 0.Then the semigroup is stable.The proof of Theorem 9.1 presented below is very similar to the proof of [BCT02,Theorem 6.3℄.Proof of Theorem 9.1. Denote the semigroup by T . Let F : R → X∗ be a bounded
omplete traje
tory for the adjoint semigroup T ∗, let x ∈ M , and let f := 〈F, x〉. Let F̂and f̂ be the Carleman transforms of F and f , respe
tively.By the resolvent identity (3.1) (Proposition 3.5), for every α > 0 and every β ∈ R,
|f̂(α+ iβ) − f̂(−α+ iβ)| = |2〈α 1

p F̂ (−α+ iβ), α
1
qR(α+ iβ, A)x〉|

≤ G(α+ iβ)H(α+ iβ),where
G(α+ iβ) := ‖2α 1

p F̂ (−α+ iβ)‖
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H(α+ iβ) := ‖α 1

qR(α+ iβ, A)x‖.By the boundedness of F and the Hausdor�-Young inequality,(9.2) sup
α>0

‖G(α+ i·)‖Lq(R) <∞.Moreover, from the assumption (9.1), the resolvent identity and the boundedness ofthe semigroup (T (t))t≥0 we obtain for every θ0 ∈ (0, π
2 ) and every β ∈ I

lim sup
α→0+

|β′−β|≤α tan θ0

H(α+ iβ′)

≤ lim sup
α→0+

|β′−β|≤α tan θ0

‖α 1
q

(

R(α+ iβ′, A) −R(α+ iβ, A)
)

x‖

≤ lim sup
α→0+

|β′−β|≤α tan θ0

‖α tan θ0R(α+ iβ′, A)α
1
qR(α+ iβ, A)x‖

≤ tan θ0 sup
t≥0

‖T (t)‖ lim sup
α→0+

‖α 1
qR(α+ iβ, A)x‖ = 0.It follows from this inequality, the boundedness of F and (9.2) that we 
an apply Theo-rem 2.3 in order to see that the Carleman transform f̂ extends analyti
ally through theimaginary axis to an entire fun
tion.By [Prü93, Proposition 0.5 (i)℄ and the uniqueness of the Fourier transform, f =

〈F, x〉 = 0. Sin
e M is dense in X, this implies F = 0, i.e. there is no nontrivial bounded
omplete traje
tory for T ∗. By Theorem 3.2, the semigroup T is stable.As a 
orollary to Theorem 9.1 one obtains the following, [BCT05, Corollary 5.10℄,[CT04, Corollary 4.6℄.Corollary 9.2 (Range 
ondition). Let A be the generator of a bounded C0-semigroupon a Bana
h spa
e X having Fourier type p ∈ (1, 2]. If(9.3) ⋂

β∈R

Rg (iβ −A)
1
p is dense in X,then the semigroup is stable.9.2. Optimality of pointwise resolvent 
onditions. It has been shown in [CT03, Se
tion 4℄that the Corollaries 6.2 and 9.2 are optimal in the following senses.If one 
onsiders the isometri
 (nonstable) shift group with generator D on X = Lq(R)(1 < q < ∞) or on X = C0(R), then, by [CT03, Proposition 4.10℄, for every 1 < q ≤ ∞and every γ ∈ (0, q−1

q
) the spa
e

⋂

β∈R

Rg (iβ −A)γ is dense in X.If q ≥ 2, then the spa
e X has Fourier type p := q
q−1 . This example shows that one
annot expe
t better exponents (better than the exponent γ = 1

p
) in Corollary 9.2.On the other hand, while the 
onditions (6.2) and (9.3) 
annot not be improved,in the sense that the exponent γ = 1

p

annot be 
hosen smaller, they are in generalalso not ne
essary for stability. If D is the generator of the stable right-shift semigroup
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e Xp = Lp(R+;w(t)dt) (1 ≤ p < ∞) with weight w(t) =

(ln(e+ t))−1, then for every γ ∈ (p−1
p
, 1] and every interval J ⊂ R(9.4) ⋂

β∈J

Rg (iβ −D)γ = {0}.Thus, if p ∈ [1, 2), then Xp has Fourier type p and 1
p
> p−1

p
. By (9.4), the 
ondition (9.3)in Corollary 9.2 is not satis�ed, [CT03, Proposition 4.3℄.Similarly, in Example 2.5, for the same 
hoi
e of the weight w and the parameter p,one has

⋂

β∈J

Rg (iβ −D) is not dense in Xp;see [CT03, Proposition 4.7℄. In this example, D generates even a C0-group of sublineargrowth and is a generalized s
alar.Note that these examples only show that range 
onditions of the types (6.2) and (9.3)are not ne
essary for stability if the Fourier type is smaller than 2. As already mentionedabove, these examples do not seem to provide 
ounterexamples for the possibility thatthe range 
ondition (8.7) is ne
essary for stability of semigroups in Hilbert spa
es.9.3. Integral resolvent 
onditions. The integral resolvent 
onditions from Se
tion 6 
anbe improved in Bana
h spa
es with nontrivial Fourier type [CT03, Theorem 3.1, Theorem3.3℄. The proof of the �rst stability result follows the lines of the proof of the 
orrespond-ing statement in Theorem 8.1, repla
ing Plan
herel's theorem by the Hausdor�-Younginequality or the Lemma of Riemann-Lebesgue. The proof of the se
ond stability resultis very similar to the proof of Theorem 6.4 and is based on Theorem 3.2.Theorem 9.3 (Global integrability 
riterion). Let A be the generator of a bounded C0-semigroup on a Bana
h spa
e X having Fourier type p ∈ [1, 2]. If, for some γ > 1
p
andfor every x from a dense subset of X,(9.5) lim

α→0+

∫

R

‖αγ− 1
pR(α+ iβ, A)γx‖p dβ = 0,then the semigroup is stable.Theorem 9.4 (Lo
al integrability 
riterion). Let A be the generator of a bounded C0-semigroup on a Bana
h spa
e X having Fourier type p ∈ (1, 2]. Let q be the 
onjugateexponent. Assume that for every β ∈ R there exists an open neighbourhood U ⊂ R of βand a dense set M ⊂ X su
h that(9.6) lim

α→0+

∫

U

‖α 1
qR(α+ iβ′, A)x‖p dβ′ = 0 for every x ∈M.Then the semigroup is stable.We remark that there are other geometri
 properties of Bana
h spa
es whi
h 
an alsobe of value for stability theory. The relevan
e of the analyti
 Radon-Nikodym propertywas shown in [Chi98℄ and [HN99℄, and the more general analyti
 Riemann-Lebesgueproperty was introdu
ed and applied to the study of stability in [BC02℄. We refer tothese papers for the 
orresponding de�nitions and pre
ise statements.



102 R. CHILL AND Yu. TOMILOVWe remark at the end of this se
tion that B-
onvex Bana
h spa
es in 
onne
tion withstability of individual orbits of semigroups have also been studied in [HN99℄ and [Wro99℄.10. Stability of evolution semigroups. Parti
ularly interesting for appli
ations arethe so-
alled evolution semigroups. They help to study qualitative properties of evolutionfamilies whi
h are usually asso
iated with nonautonomous abstra
t Cau
hy problems ofthe form(10.1) u′(t) = A(t)u(t), t ≥ s ≥ 0, u(s) = x.We 
all a family (U(t, s))t≥s≥0 ⊂ L(X) an evolution family if U(t, t) = I, U(t, s) =

U(t, r)U(r, s) and if U(·, ·)x is 
ontinuous for all t ≥ r ≥ s ≥ 0 and all x ∈ X.Wellposedness of the problem (10.1) should a
tually be equivalent to the existen
e ofan evolution family the orbits of whi
h are the unique mild solutions of (10.1). However,we emphasise that the notion of mild solutions of the Cau
hy problem (10.1) is notuniquely de�ned in the literature and it is in some 
ases not satisfa
tory. We will not gointo details here and will just assume that an evolution family is given.If su
h an evolution family (U(t, s))t≥s≥0 on a Bana
h spa
e X is exponentiallybounded, then
(Tp(t)f)(s) =

{

U(s, s− t)f(s− t), s ≥ t,

0, s < t,
t, s ≥ 0, f ∈ Ep,de�nes a C0-semigroup on Ep := Lp(R+;X) (1 ≤ p < ∞), and on E∞ := C00(R+;X)(the spa
e of 
ontinuous fun
tions vanishing at 0 and at in�nity). That semigroup is 
alledthe evolution semigroup asso
iated with (U(t, s))t≥s≥0. We denote by Gp its generator.It is known that the evolution semigroups re�e
t qualitative properties of the 
orre-sponding evolution family. For example, exponential stability or exponential di
hotomy ofan evolution family 
an be 
hara
terised in terms of exponential stability or exponentialdi
hotomy of the asso
iated evolution semigroup. Sin
e the spe
tral mapping theoremholds for evolution semigroups, one 
an even 
hara
terise exponential stability or expo-nential di
hotomy of evolution families in terms of the lo
ation of the spe
trum of thegenerator of the asso
iated evolution semigroup. For all these results, we refer to [CL99℄.The fa
t that also mere stability of evolution families 
an be 
hara
terised by stabilityof the asso
iated evolution semigroups has been proved in [BCT02, Theorem 2.2℄. Notethat we say that an evolution family (U(t, s))t≥s≥0 is stable if limt→∞ U(t, s)x = 0 for all

s ∈ R+ and all x ∈ X.In Theorem 10.1 below we 
all a fun
tion F : R− → X∗ a 
omplete traje
tory forthe evolution family (U(−s,−t)∗)s≤t≤0 if U(−s,−t)∗F (s) = F (t) for all s ≤ t ≤ 0. Thisde�nition of a 
omplete traje
tory di�ers from the 
orresponding de�nition in Se
tion 3.2in that F is only de�ned on the half-line R−. However, in the autonomous 
ase, i.e.when U(t, s) = T (t − s) for some C0-semigroup (T (t))t≥0, a 
omplete traje
tory for
(U(−s,−t)∗)s≤t≤0 
an be uniquely extended to a 
omplete traje
tory for (T (t)∗)t≥0 on
R by de�ning F (t) = T (t)∗F (0) for t ≥ 0.Theorem 10.1. Let (U(t, s))t≥s≥0 be a bounded evolution family on a Bana
h spa
e X,and let (Tp(t))t≥0 be the evolution semigroup asso
iated with (U(t, s))t≥s≥0 on Ep
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(1 ≤ p ≤ ∞). Then the following assertions are equivalent:
(1) The evolution family (U(t, s))t≥s≥0 is stable.
(2) If B∗ denotes the unit ball in X∗, then the set(10.2) J∗ :=

⋃

s≥0

⋂

t≥s

U(t, s)∗(B∗)is trivial, i.e. J∗ = {0}.
(3) The evolution family (U(−s,−t)∗)s≤t≤0 does not admit a bounded nontrivial 
ompletetraje
tory.
(4) The semigroup (Tp(t))t≥0 is stable for some 1 ≤ p ≤ ∞.
(5) The semigroup (Tp(t))t≥0 is stable for all 1 ≤ p ≤ ∞.
(6) Rg G1 is dense in L1(R+;X).
(7) The set

F := {f ∈ L1(R+;X) : U ∗ f ∈ L1(R+;X)}is dense in L1(R+;X), where (U ∗ f)(t) :=
∫ t

0
U(t, τ )f(τ ) dτ, t ∈ R+.The equivalen
es (1)⇔(2)⇔(3) generalise Theorem 3.2 to the 
ase of bounded evolu-tion families. The equivalen
e (1)⇔(6) is based on the observation that KerG∗

1 
onsistsof bounded 
omplete traje
tories for (U∗(−s,−t))t≥s. Thus stability of (U(t, s))t≥s≥0 isequivalent to the density of Rg G1. It is not too di�
ult to show that Rg G1 = F and thenthe equivalen
e (6)⇔(7) is 
lear.Note that the equivalen
e (1)⇔(7) looks similar to Datko's 
hara
terisation of expo-nential stability saying that (U(t, s))t≥s≥0 is exponentially stable if and only if the set
F from (7) is equal to L1(R+;X). However, while in Datko's theorem one may repla
e
p = 1 by any 1 ≤ p ≤ ∞, one 
annot do this in Theorem 10.1 (7). For example, if X isre�exive and p ∈ (1,∞), then the set

{f ∈ Lp(R+;X) : U ∗ f ∈ Lp(R+;X)}is always dense in Lp(R+;X), due to the mean ergodi
 theorem.The other equivalent statements are interesting for the study of stability of evolu-tion families in terms of stability of semigroups. We also point out that the equivalen
e(5)⇔(6) looks very similar to the stability 
ondition for positive semigroups on L1 spa
es(Theorem 7.7).
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