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Abstract. We develop a difference equations analogue of recent results by F. Gesztesy, K. A. Ma-

karov, and the second author relating the Evans function and Fredholm determinants of operators

with semi-separable kernels.

1. Introduction. The purpose of this paper is to provide a difference equations version

of some of the most recent results in [GM, GML, GML1] relating the Evans function and

Fredholm determinants of operators with semi-separable kernels. Although our general

strategy is close to that in [GM, GML] for the differential equations case, and for simplicity

we consider less general assumptions than in [GML], the arguments and the results in the

difference equations setting have some important differences. For a related work we cite

[GGK, GKvS] and [BCK, KK]. For a detailed historical account and the bibliography we

refer to [GML].

We consider an unperturbed difference equation xj+1 = Ajxj and its perturbation

in the form xj+1 = A×
j xj , j ∈ Z, where A×

j = Aj + BjCj . Here and below, Aj , Bj ,

and Cj are (d × d) matrices with complex entries, and x = (xj)j∈Z is a sequence of

vectors xj ∈ Cd. Throughout, we assume that the matrices Aj and A×
j are invertible and

that the unperturbed equation has an exponential dichotomy over Z with the (unstable)

dichotomy projection P . Let U = (Uj)j∈Z denote the fundamental matrix solution of the

unperturbed equation normalized by U0 = I, the identity matrix.
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In the first part of the paper, following [GM], we give formulas for the (modified)

Fredholm determinants of the difference operator T = (Tjk)j,k∈Z on ℓ2(Z; Cd) whose

kernel is given by the formulas

(1.1) Tjk = CjUj(I − P )U−1
k+1Bk for j > k and Tjk = −CjUjPU−1

k+1Bk for j ≤ k.

Note that the kernel of every difference operator with a semi-separable kernel admits a

representation (1.1), see formulas (3.9) - (3.10) below. The choice of kernel (1.1) is related

to the following elementary observation. Given the matrix sequence A = (Aj)j∈Z ∈

ℓ∞(Z; Cd×d), define on ℓ2(Z; Cd) an operator, GA, by (GAx)j = xj+1 − Ajxj so that

the inhomogeneous equations xj+1 = Ajxj + yj , j ∈ Z, becomes GAx = y. Due to the

exponential dichotomy [CL], the operator GA is invertible in ℓ2(Z, Cd), and by a direct

computation, its inverse is a difference operator, K = (Kjk)j,k∈Z, with kernel defined by

(1.2) Kjk = Uj(I − P )U−1
k+1 for j > k and Kjk = −UjPU−1

k+1 for j ≤ k.

If A× = (A×
j )j∈Z then the operator GA× = GA − diag(BjCj)j∈Z can be represented

as GA× = GA(I − K diag(Bj)j∈Z diag(Cj)j∈Z), and GA× is invertible if and only if the

operator I−T is invertible; the kernel of T = diag(Cj)j∈ZK diag(Bj)j∈Z is given by (1.1).

In the second part of the paper, following [GML, GML1], we construct appropriate

matrix solutions of the perturbed difference equation whose determinant, E , is called the

Evans determinant. If the sequence A× = A×(z) depends on a spectral parameter z ∈ C,

then the corresponding function E = E(z) becomes the Evans function, a Wronskian type

object widely used to detect unstable modes for operators obtained by linearizing nonlin-

ear equations along special particular solutions such as travelling waves, see [AGJ] and

recent reviews [JK, S] and the bibliographies therein. We stress that the Evans determi-

nant, as defined in the current paper, is uniquely determined by the sequences A× and A.

Moreover (and this is the central result of this paper), we derive a formula relating E and

the Fredholm determinant of I−T (for results in this spirit in the case of the Schrödinger

differential operator see [KS, p. 861] and [KS1]). Finally, for the discrete Schrödinger op-

erator, we show that the Evans function coincides with the Jost function, the classical

object familiar from scattering theory, see e.g. [CS, Chap. XVII], [FT, Sec. III.2], [GH,

Sec. 6], [T, Chap. 10], and [To, Chap. 3].

2. Notation and preliminaries. The set of (d × d) matrices with complex entries is

denoted by Cd×d. Where possible, we abbreviate ℓ2 = ℓ2(Z; Cd) or ℓ2 = ℓ2(Z; Cd×d). We

use boldface to denote sequences of vectors or matrices, e.g. x = (xj)j∈Z, xj ∈ Cd, or

a = (aj)j∈Z, aj ∈ Cd×d. We denote by σ(·) the spectrum of an operator, and by I (or

sometimes Id×d) the identity operator. For a projection P on C
d with dim ImP = d1

we often identify Id1×d1
and P on ImP . The restriction of an operator A on a subspace

(·) is denoted by A|(·). If A satisfies A = AP then we denote ‖A‖• = inf{‖Ax‖ : x =

Px, ‖x‖ = 1}.

The sets of trace-class and Hilbert-Schmidt operators on a Hilbert space (·) are de-

noted, respectively, by B1 = B1(·) and B2 = B2(·). Recall that ℓ1 ⊂ ℓ2 ⊂ ℓ∞ and

B1(·) ⊂ B2(·). We will use the following properties of the (modified) Fredholm determi-

nants, see, e.g. [GGK, Si] for more information:
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det(I − A) =
∏

λ∈σ(A)

(1 − λ), A ∈ B1,(2.1)

det2(I − A) = det
[
(I − A)eA

]
=

∏

λ∈σ(A)

(1 − λ)eλ, A ∈ B2,(2.2)

det2(I − A) = det(I − A)etrA, A ∈ B1,(2.3)

det2 [(I − A)(I − B)] = det2(I − A) det2(I − B)e−tr(AB), A, B ∈ B2.(2.4)

Given matrix sequences aj = (aj)j∈Z, bj = (bj)j∈Z, and dj = (dj)j∈Z, we define the

upper triangular operator V +
a,b, the lower triangular operator V −

a,b, the diagonal operator

Dd, and the operator Va,b on ℓ2(Z; Cd) as follows:

(V +
a,bx)j =

∞∑

k=j+1

ajbkxk, (V −
a,bx)j =

j−1∑

k=−∞

ajbkxk,(2.5)

(Ddx)j = djxj , (Va,bx)j =

∞∑

k=−∞

ajbkxk, j ∈ Z.(2.6)

We summarize properties of these operators in the following elementary lemmas.

Lemma 2.1. Assume a,b,d ∈ ℓ2(Z; Cd×d). Then:

σ(Dd) = {0} ∪ (∪j∈Zσ(dj));(2.7)

Va,b, V ±
a,b, Dd ∈ B2(ℓ

2(Z; Cd));(2.8)

σ(V +
a,b) = σ(V −

a,b) = {0};(2.9)

det2(I − V +
a,b) = det2(I − V −

a,b) = 1;(2.10)

det2(I − Dd) =
∏

j∈Z

det(Id×d − dj)e
trdj .(2.11)

Lemma 2.2. Assume a,b,d ∈ ℓ1(Z; Cd×d). Then:

V ±
a,b are compact operators on ℓ∞(Z; Cd) and σ(V ±

a,b) = {0};(2.12)

Va,b, V ±
a,b, Dd ∈ B1(ℓ

2(Z; Cd));(2.13)

det(I − V +
a,b) = det(I − V −

a,b) = 1;(2.14)

det(I − Dd) =
∏

j∈Z

det(Id×d − dj).(2.15)

Proof. If d ∈ ℓ2 then ‖dj‖ → 0 as |j| → ∞ and then, for any r > 0, there are only finitely

many dj ’s having λ ∈ σ(dj) with |λ| ≥ r. The formula σ(Dd) = closure(∪j∈Zσ(dj)) now

implies (2.7).

Note that Va,b = Dd + V +
a,b + V −

a,b with d = (ajbj)j∈Z and V −
a,b = (V +

b∗,a∗)∗ with

a∗ = (a∗
j )j∈Z and b∗ = (b∗j )j∈Z. Since a ∈ ℓ∞ and thus (ajbj)j∈Z is in ℓ2, resp. ℓ1, it is

enough to prove (2.9) and (2.8), resp. (2.13), only for V +
a,b and Dd. Using (2.7), we infer:

‖Dd‖B1(ℓ2) = tr[(D∗
d
Dd)

1
2 ] = tr[D

(d∗d)
1
2
] =

∑
j∈Z

tr(d∗jdj)
1
2 ≤ d

∑
j∈Z

‖dj‖ = d‖d‖ℓ1 ,

‖Dd‖B2(ℓ2) = tr(Dd∗d) =
∑

j∈Z

tr(d∗jdj) ≤ d
∑

j∈Z

‖dj‖
2 = d‖d‖ℓ2 .(2.16)
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Assuming a,b ∈ ℓ1 and writing V +
a,b =

∑∞
k=1 S

−kD(aj−kbj)j∈Z
, where (Sx)j = xj−1 is the

shift operator, we have:

‖V +
a,b‖B1(ℓ2) ≤

∞∑

k=1

‖D(aj−kbj)j∈Z
‖B1(ℓ2) =

∞∑

k=1

∑

j∈Z

‖aj−kbj‖B1(Cd)

≤ d
∑

j∈Z

∞∑

k=1

‖bj‖‖aj−k‖ ≤ d‖a‖ℓ1‖b‖ℓ1 .

Assuming a,b ∈ ℓ2 and considering the basis yn,i = (yn,i(j))j∈Z, i = 1, . . . , d, n ∈ Z, in

ℓ2(Z; Cd) given by yn,i(j) = 0 for j 6= n and yn,i(n) = ei, the standard ort in Cd, we

have:

‖V +
a,b‖

2
B2(ℓ2)

= tr[(V +
a,b)∗V +

a,b] =
∑

n∈Z

d∑

i=1

‖V +
a,byn,i‖

2
ℓ2

=
∑

n∈Z

d∑

i=1

∑

j∈Z

∥∥∥aj

∞∑

k=j+1

bkyn,i(k)
∥∥∥

2

=
∑

n∈Z

d∑

i=1

∞∑

j=n−1

‖ajbnei‖
2

≤ d‖a‖2
ℓ2‖b‖

2
ℓ2 .

This proves (2.8) and (2.13). To prove (2.9), observe that σ(V +
a,b) consists of eigenvalues

since the operator V +
a,b is compact by (2.8). Suppose there are λ 6= 0 and 0 6= x ∈

ℓ2(Z; Cd), so that aj

∑∞
k=j+1 bkxk = λxj . Then

(2.17)
∞∑

j=n+1

cjyj = λyn, n ∈ Z,

for yn =
∑∞

j=n+1 bjxj and cj = bjaj . Using Cauchy-Schwarz, we have yk → 0 as k → ∞.

Using (2.17), we have

(2.18) yn =
k∏

j=1

(I + cn+k/λ) yn+k, n ∈ Z, k = 1, 2, . . . .

Since (cj) ∈ ℓ1, the product
∏∞

j=1 (1 + ‖cn+j‖/λ) converges for each n. Using this in (2.18)

and letting k → ∞, we conclude that for each n ∈ Z one has 0 = yn =
∑∞

j=n+1 bjxj =

bn+1xn+1 + yn+1 = bn+1xn+1. Since bnxn = 0, we conclude that λxj = 0 for all j, a

contradiction. Formulas (2.10), (2.11), (2.14), and (2.15) now follow from (2.2) and (2.7).

To prove (2.12), represent V +
a,b = DaV +

1,b where 1 = (I)j∈Z. Since ‖aj‖ → 0 as |j| → ∞

and ‖V +
1,b‖ ≤ ‖b‖ℓ1 , the operator V +

a,b is compact on ℓ∞(Z; Cd). The existence of nonzero

x ∈ ℓ∞ and λ so that V +
a,bx = λx leads to a contradiction, as in (2.17) - (2.18) above,

since ‖yk‖ ≤ ‖x‖ℓ∞
∑∞

j=k+1 ‖bk‖ → 0 as k → ∞ due to b ∈ ℓ1, and c = (ajbj)j∈Z ∈ ℓ1.

Let E denote the (d× d) matrix having 1’s on the diagonal above the main diagonal,

and with zero remaining entries.

Lemma 2.3. If A = λI + E, λ ∈ C, is a (d × d) Jordan block, then ‖Aj‖ ≤ c|j|d|λ|j for

all j ∈ Z and some positive constant c = c(d, λ).

Proof. Since Ed = 0, we have Aj = λj(I +
∑d−1

k=1

(
j
k

)
(E/λ)k) for j > 0. The polynomial

growth with j of the binomial coefficients
(

j
k

)
gives the result. For j > 0, we estimate
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the norm of A−j = λ−j
∑d−1

k1=0

∑d−1
k2=k1

· · ·
∑d−1

kj=kj−1
(−E/λ)kj by c|λ|−jS(0, j), where we

denote for k ∈ [0, d − 1]:

S(k, j) =

d−1∑

k1=k

d−1∑

k2=k1

· · ·
d−1∑

kj=kj−1

1 =

d−1∑

k1=k

S(k1, j − 1).

Using the formula
∑d−k

k1=1 k1(k1 + 1) . . . (k1 + j − 1) = (d − k) . . . (d − k + j)/(j + 1) and

induction, one obtains S(k, j) = (d − k)(d − k + 1) . . . (d − k + j − 1)/j! and the lemma

follows.

3. Fredholm determinants. Below, we will make use of the following assumptions:

Aj is invertible for each j ∈ Z, and (Aj)j∈Z, (A−1
j )j∈Z ∈ ℓ∞(Z; Cd×d),(3.1)

equation xj+1 = Ajxj , j ∈ Z, has an exponential dichotomy P on Z,(3.2)

(CjUj)j∈Z, (U−1
j+1Bj)j∈Z ∈ ℓ2(Z; Cd×d),(3.3)

A×
j = Aj + BjCj is invertible for each j ∈ Z.(3.4)

Assume (3.1). Then the fundamental matrix solution U = (Uj)j∈Z satisfying Uj+1 =

AjUj , j ∈ Z, and U0 = I is given by the formulas

(3.5) Uj = Aj−1 · . . . · A0, U−j = A−1
−j · . . . · A

−1
−1, j = 1, 2, . . . .

Similarly, assume (3.4). Then any matrix solution (U×
j )j∈Z satisfying U×

j+1 = A×
j U×

j , j ∈

Z, is given by the formulas

(3.6) U×
j = A×

j−1 · . . . · A
×
0 U×

0 , U×
−j = (A×

−j)
−1 · . . . · (A×

−1)
−1U×

0 , j = 1, 2, . . . .

Here, U×
0 is an arbitrary (possibly singular!) matrix. Recall that U has the exponential

dichotomy over Z with the (unstable) projection P provided the following inequalities

hold for some c ≥ 1 and α > 0:

(3.7) ‖Uj(I − P )U−1
k+1‖ ≤ ce−α(j−k) for j > k, ‖UjPU−1

k+1‖ ≤ ce−α(k−j) for j ≤ k.

We let

(3.8) d1 = dim ImP and d2 = dim Im(I − P ) so that d1 + d2 = d.

Under assumptions (3.1) - (3.2) the operator T in (1.1) is well-defined. Using notation

(2.5) - (2.6), it can be written as T = V −
a1,b1

+Dd +V +
a2,b2

, where a1 = (CjUj(I−P ))j∈Z,

b1 = ((I − P )U−1
j+1Bj)j∈Z, d = (−CjUjPU−1

j+1Bj)j∈Z, a2 = (−CjUjP )j∈Z, and b2 =

(PU−1
j+1Bj)j∈Z. If assumption (3.3) holds then a1, b1, a2, b2 ∈ ℓ2 and, using Cauchy-

Schwarz, d ∈ ℓ1 ⊂ ℓ2, so that we have T ∈ B2(ℓ
2) by (2.8), and thus det2(I − T ) is

well-defined. Below, we will sometimes assume that T ∈ B1(ℓ
2) so that det(I − T ) is

well-defined. Note that T ∈ B1(ℓ
2) provided, say, (3.3) is replaced by the assumption

(CjUj)j∈Z, (U−1
j+1Bj)j∈Z ∈ ℓ1(Z; Cd×d). Indeed, under this latter assumption we have

a1,b1,a2,b2,d ∈ ℓ1; thus T ∈ B1(ℓ
2) by (2.13).

We remark that every difference operator T with a semi-separable kernel

Tjk = a2(j)b2(k) for j > k and Tjk = a1(j)b1(k) for j ≤ k,
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with ai = (ai(j))j∈Z ∈ ℓ2(Z; Cd×di) and bi = (bi(j))j∈Z ∈ ℓ2(Z; Cdi×d), i = 1, 2, and

d1 + d2 = d, can be written in the form (1.1) by setting for a fixed α > 0 and all j ∈ Z:

(3.9) P =

[
0 0

0 Id1×d1

]
, Uj =

[
e−αjId2×d2

0

0 eαjId1×d1

]
,

(3.10) Cj =
[
eαja2(j) e−αja1(j)

]
, Bj =

[
e−α(j+1)b2(j) eα(j+1)b1(j)

]⊤
,

where ⊤ means transposition of the (1 × 2) block-row [· ·].

We will use the following representations of the operator T defined in (1.1):

(T x)j =

j−1∑

k=−∞

CjUj(I − P )U−1
k+1Bkxk −

∞∑

k=j

CjUjPU−1
k+1Bkxk

=

j−1∑

k=−∞

CjUjU
−1
k+1Bkxk −

∞∑

k=−∞

CjUjPU−1
k+1Bkxk(3.11)

= −
∞∑

k=j

CjUjU
−1
k+1Bkxk +

∞∑

k=−∞

CjUj(I − P )U−1
k+1Bkxk, j ∈ Z.(3.12)

Accordingly, we define the following operators:

(H−x)j =

j−1∑

k=−∞

CjUjU
−1
k+1Bkxk, (H+x)j = −

∞∑

k=j

CjUjU
−1
k+1Bkxk,(3.13)

(Dx)j = −CjUjU
−1
j+1Bjxj , (H0

+x)j = −
∞∑

k=j+1

CjUjU
−1
k+1Bkxk,(3.14)

(Qx)j = CjUjPx, x ∈ C
d, Rx = −P

∞∑

k=−∞

U−1
k+1Bkxk ∈ C

d1 ,(3.15)

(Sx)j = CjUj(I − P )x, x ∈ C
d, Wx = (I − P )

∞∑

k=−∞

U−1
k+1Bkxk ∈ C

d2 ,(3.16)

so that (3.11) - (3.12) in this notation become

T = H− + QR(3.17)

= H+ + SW = D + H0
+ + SW.(3.18)

We stress that the operators R and W have finite ranks d1 and d2, respectively. Properties

of the operators (3.13) - (3.16) are summarized in the following lemmas.

Lemma 3.1. Assume (3.1) - (3.3). Then σ(H−) = {0}, H− ∈ B2(ℓ
2), and det2(I−H−) =

1. If, in addition to (3.1) - (3.3), we assume that T ∈ B1(ℓ
2), then H− ∈ B1(ℓ

2) and

det(I − H−) = 1.

Lemma 3.2. Assume (3.1) - (3.4). Then:

(3.19) D ∈ B1(ℓ
2) and det(I − D) =

∏

j∈Z

(
det A−1

j det(Aj + BjCj)
)
,

(3.20) the operator (I − D) is invertible,
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(3.21) det2(I − D) =
∏

j∈Z

(
detA−1

j det(Aj + BjCj)
)
exp

∑

j∈Z

−tr(CjUjU
−1
j+1Bj),

σ((I − D)−1H0
+) = {0}, (I − D)−1H0

+ ∈ B2(ℓ
2), and

det2(I − (I − D)−1H0
+) = 1.

(3.22)

If, in addition to (3.1) - (3.4), we assume that T ∈ B1(ℓ
2) then

(3.23) (I − D)−1H0
+ ∈ B1(ℓ

2), and det(I − (I − D)−1H0
+) = 1.

Lemma 3.3. Assume (3.1) - (3.4). Then H+ ∈ B2(ℓ
2), det2(I − H+) = det2(I − D),

and the operator I − H+ is invertible. If, in addition to (3.1) - (3.4), we assume that

T ∈ B1(ℓ
2) then H+ ∈ B1(ℓ

2) and det(I − H+) = det(I − D).

Proof. Using notation (2.5), we remark that H− = V −
a,b with a = (CjUj)j∈Z and b =

(U−1
j+1Bj)j∈Z. Since a,b ∈ ℓ2 by (3.3), the first three assertions in Lemma 3.1 follow,

respectively, from (2.9), (2.8), and (2.10). If T ∈ B1(ℓ
2) then H− ∈ B1(ℓ

2) because

R ∈ B1(ℓ
2) is of finite rank and (3.17) holds. We already know that σ(H−) = {0}. Thus,

det(I − H−) = 1 follows from (2.1), and Lemma 3.1 is proved.

To prove Lemma 3.2, note that D = Dd, see (2.6), where d = (−CjUjU
−1
j+1Bj)j∈Z. As-

sumption (3.3) and Cauchy-Schwarz imply d ∈ ℓ1. Then D ∈ B1(ℓ
2) by (2.13). Moreover,

using (2.15) and the identity Uj+1 = AjUj , j ∈ Z, we verify (3.19) as follows:

det(I − D) =
∏

j∈Z

det(Id×d + CjUjU
−1
j+1Bj) =

∏

j∈Z

det(I + UjU
−1
j+1BjCj)

=
∏

j∈Z

det(I + A−1
j BjCj) =

∏

j∈Z

detA−1
j det(Aj + BjCj).

To prove (3.20), we use assumption (3.4) and the identity Uj+1 = AjUj to infer:

(I+CjUjU
−1
j+1Bj)

−1 = (I + CjA
−1
j Bj)

−1 = I − Cj(I + A−1
j BjCj)

−1A−1
j Bj

= I − Cj(Aj + BjCj)
−1Bj = I − CjUj(U

−1
j+1(Aj + BjCj)Uj)

−1U−1
j+1Bj

= I − CjUj(I + U−1
j+1BjCjUj)

−1U−1
j+1Bj .

Note that (CjUj)j∈Z, (U−1
j+1Bj)j∈Z ∈ ℓ2 ⊂ ℓ∞(Z; Cd×d) and limj→∞ ‖U−1

j+1BjCjUj‖ = 0

by assumption (3.3). Thus (3.20) holds and, moreover, (I − D)−1 = Dd, where

(3.24) d = ((I + CjUjU
−1
j+1Bj)

−1)j∈Z ∈ ℓ∞(Z; Cd×d).

Formula (3.21) follows from (3.19) and (2.3). Using notation (2.5) and (3.24) we re-

mark that (I − D)−1H0
+ = V +

a,b, where a = (−(I + CjUjU
−1
j+1Bj)

−1CjUj)j∈Z and

b = (U−1
j+1Bj)j∈Z. By d ∈ ℓ∞ in (3.24) and assumption (3.3) we conclude a,b ∈

ℓ2, and then (3.22) follows from (2.9), (2.8), and (2.10). Finally, if T ∈ B1(ℓ
2) then

H+ = D + H0
+ ∈ B1(ℓ

2) by (3.18) since W is of finite rank. Since D = Dd with

d = (−CjUjU
−1
j+1Bj) ∈ ℓ1, see assumption (3.3), by (2.13) we have D ∈ B1(ℓ

2). Therefore

H0
+ ∈ B1(ℓ

2) and thus (I−D)−1H0
+ ∈ B1(ℓ

2) since (I−D)−1 is a bounded operator. The

last assertion in (3.23) now follows from σ((I − D)−1H0
+) = {0} and (2.1). Assertions in

Lemma 3.3 follow from the identity I − H+ = (I − D)(I − (I − D)−1H0
+).
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Our first main result gives a formula for the (modified) Fredholm determinant of the

(infinite-dimensional) operator I − T in terms of finite-dimensional determinants.

Theorem 3.4. Assume (3.1), (3.2), (3.3), and (3.4). Then

det2(I − T ) = detCd1 (Id1×d1
− R(I − H−)−1Q) exp

∑

j∈Z

−tr(PU−1
j+1BjCjUjP )(3.25)

= detCd2 (Id2×d2
− W (I − H+)−1S)(3.26)

×
∏

j∈Z

det A−1
j det(Aj + BjCj) exp

∑

j∈Z

−tr(PU−1
j+1BjCjUjP ).

If, in addition to (3.1) - (3.4), we assume that T ∈ B1(ℓ
2), then

det(I − T ) = detCd1 (Id1×d1
− R(I − H−)−1Q)(3.27)

= detCd2 (Id2×d2
− W (I − H+)−1S)

∏

j∈Z

detA−1
j det(Aj + BjCj).(3.28)

Proof. Using representation (3.17), recalling that det2(I−H−) = 1 by Lemma 3.1, noting

that (I −H−)−1QR ∈ B1 ⊂ B2 because R is of rank d1, and applying (2.4) and (2.3), we

infer:

det2(I − T ) = det2[(I − H−)(I − (I − H−)−1QR)]

= det2(I − H−) det2(I − (I − H−)−1QR) exp(−tr[H−(I − H−)−1QR])

= det(I − (I − H−)−1QR) exp tr[(I − H−)−1QR] exp(−tr[H−(I − H−)−1QR])

= det(I − R(I − H−)−1Q) exp tr(QR)

= detCd1 (Id1×d1
− R(I − H−)−1Q) exp tr(RQ).

Using (3.15), we have (3.25). To establish (3.26), we first apply representation (3.18),

Lemma 3.3, and (2.4):

det2(I − T ) = det2[(I − H+)(I − (I − H+)−1SW )]

= det2(I − H+) det2(I − (I − H+)−1SW ) exp(−tr[H+(I − H+)−1SW ])

= det2(I − D) det(I − (I − H+)−1SW ) exp(tr[(I − H+)−1SW − H+(I − H+)−1SW ])

= det2(I − D) det(I − W (I − H+)−1S) exp tr(SW )

= det2(I − D) detCd2 (Id2×d2
− W (I − H+)−1S) exp tr(WS),

recalling that W is of rank d2, and thus (I − H+)−1SW ∈ B1 ⊂ B2, which allows us to

use (2.3). Using (3.21) and (3.16) we therefore have:

det2(I − T ) = detCd2 (Id2×d2
− W (I − H+)−1S)

∏

j∈Z

detA−1
j det(Aj + BjCj)

× exp
∑

j∈Z

tr[−CjUjU
−1
j+1Bj + CjUj(I − P )U−1

j+1Bj ],

which implies (3.26). Formula (3.27) follows from representation (3.17) and Lemma 3.1:

det(I − T ) = det[(I − H−)(I − (I − H−)−1QR)]

= det(I − H−) det(I − R(I − H−)−1Q) = detCd1 (I − R(I − H−)−1Q).
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Formula (3.28) follows from representation (3.18) and Lemmas 3.2 - 3.3:

det(I − T ) = det[(I − H+)(I − (I − H+)−1SW )]

= det(I − H+) det(I − (I − H+)−1SW ) = det(I − D) det(I − W (I − H+)−1S),

which concludes the proof.

Our next objective is to relate the finite-dimensional determinants in the right-hand

side of (3.25) - (3.28) to the determinants of a particular matrix solution (U×
j )j∈Z satis-

fying U×
j+1 = A×

j U
×
j . We stress that this solution could be singular. For this, we consider

the following matrix difference equations:

X+
j = CjUj(I − P ) −

∞∑

k=j

CjUjU
−1
k+1BkX+

k ,(3.29)

X−
j = CjUjP +

j−1∑

k=−∞

CjUjU
−1
k+1BkX−

k , j ∈ Z.(3.30)

Using notation (3.13) - (3.16), equations (3.29) - (3.30) for X± = (X±
j )j∈Z can be rewrit-

ten as follows:

(3.31) X+x = Sx + H+X+x, X−x = Qx + H−X−x, x ∈ C
d.

By assumption (3.3), we have Sx, Qx ∈ ℓ2(Z; Cd). By Lemmas 3.1 and 3.3 operators I −

H± are invertible. Thus, (3.29) - (3.30) have a unique pair of solutions X± ∈ ℓ2(Z; Cd×d)

given by

(3.32) X+ = (I − H+)−1S and X− = (I − H−)−1Q.

Since the solutions X± of (3.29) - (3.30) are unique, multiplying (3.29) by (I − P ) and

(3.30) by P from the right, we also have: X+
j = X+

j (I−P ) and X−
j = X−

j P, j ∈ Z. Thus,

we can treat matrices X±
j as operators X+

j : Im(I − P ) → C
d and X−

j : Im P → C
d.

Using (3.32) and notations (3.15) - (3.16) we then have for X±
j from (3.29) - (3.30):

(3.33) detCd1 (Id1×d1
− R(I − H−)−1Q) = detCd1

(
Id1×d1

+

∞∑

k=−∞

PU−1
k+1BkX−

k P
)
,

(3.34) detCd2 (Id2×d2
− W (I − H+)−1S)

= detCd2

(
Id2×d2

−
∞∑

k=−∞

(I − P )U−1
k+1BkX+

k (I − P )
)
.

We remark that the series
∑∞

k=−∞ U−1
k+1BkX±

k converge absolutely by assumption (3.3),

X± ∈ ℓ2(Z; Cd×d), and Cauchy-Schwarz.

Using the direct sum decomposition Cd = Im(I − P ) ⊕ Im P , consider a matrix

sequence, U× = (U×
j )j∈Z, defined by U×

j = UjVj where (Uj)j∈Z is the fundamental

matrix solution of the unperturbed equation xj+1 = Ajxj , U0 = I, and the (2× 2) block

matrix Vj is defined as follows:
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(3.35) Vj =




I − P −
∞∑

k=j

(I − P )U−1
k+1BkX+

k (I − P )
j−1∑

k=−∞

(I − P )U−1
k+1BkX−

k P

−
∞∑

k=j

PU−1
k+1BkX+

k (I − P ) P +
j−1∑

k=−∞

PU−1
k+1BkX−

k P




First, we claim that U× is a solution of the matrix equation U×
j+1 = A×

j U
×
j , j ∈ Z. Indeed,

(3.35) and Uj+1 = AjUj imply:

U×
j+1 = Uj+1Vj+1 = Uj+1Vj + Bj

[
X+

j (I − P ) X−
j P

]

= AjU
×
j + Bj

[
X+

j (I − P ) X−
j P

]
,

for the (1× 2) block row
[
X+

j (I − P ) X−
j P

]
: Im(I −P )⊕ Im P → C

d. Using (3.29) -

(3.30) and (3.35), we also have
[
X+

j (I − P ) X−
j P

]
= CjUjVj , and the claim is proved.

Second, we observe that there exist limits V±∞ = limj→±∞ U−1
j U×

j , and the operators

V∞ and V−∞ are, respectively, upper- and lower-triangular matrices in the direct-sum

decomposition C
d = Im(I − P ) ⊕ Im P . Moreover, detCd V∞ and detCd V−∞ are equal,

respectively, to the right hand sides of (3.33) and (3.34). Finally, since U and U× are

solutions of the equations Uj+1 = AjUj and U×
j+1 = A×

j U
×
j , we can use formulas (3.5)

- (3.6) to recalculate the right hand sides of (3.33) and (3.34) via detCd U×
0 (recall that

detU0 = 1 since U0 = I). Using Theorem 3.4, we arrive to the following result.

Theorem 3.5. Assume (3.1) - (3.4), let X±
j be the matrix solutions of (3.29) - (3.30),

and define U× = (U×
j )j∈Z as U×

j = UjVj, where Vj are given by formula (3.35). Then

det2(I − T ) = (detCd U×
0 )

∞∏

j=0

det(Aj + BjCj)

detAj
× exp

∑

j∈Z

−tr(PU−1
j+1BjCjUjP ).

If, in addition to (3.1) - (3.4), we assume that T ∈ B1(ℓ
2), then

(3.36) det(I − T ) = (detCd U×
0 )

∞∏

j=0

det(Aj + BjCj)

detAj
.

4. The Evans determinant. In this section we continue to assume that (3.1) - (3.4)

hold. Because of (3.1), U is exponentially bounded: supj,k∈Z e−α(k−j)‖UjU
−1
k+1‖ < ∞

for some α ∈ R. This allows us to introduce the following notions related to the Bohl

(or, in other terminology, general Lyapunov) exponents. For the corresponding theory

in differential equations case see [DK]; also, these notions are related to the so-called

Sacker-Sell, or dynamical spectrum, see [SS] and the bibliography in [CL].

If J = Z or J = Z
±, and Q is a projection on C

d so that supk∈J ‖UkQU−1
k ‖ < ∞

then the upper and lower Bohl exponents, κg and κ′
g, are defined as follows:

(4.1) κg(Q; J) = inf{α ∈ R : sup
j≥k∈J

e−α(j−k)‖UjQU−1
k+1‖ < ∞},

(4.2) κ
′
g(Q; J) = sup{α ∈ R : sup

j≤k∈J
e−α(j−k)‖UjQU−1

k+1‖ < ∞}.

For instance, if P is the dichotomy projection, cf. (3.7), then

(4.3) κg(I − P ; Z) < 0 < κ
′
g(P ; Z).



FREDHOLM DETERMINANTS AND THE EVANS FUNCTION 121

A system {Qi}
d0
i=1 of disjoint projections on C

d, 1 ≤ d0 ≤ d, is called an exponential

splitting of order d0 if the following holds: Q1 + · · ·+ Qd0
= I, supk∈J ‖UkQiU

−1
k ‖ < ∞,

and the segments [κ′
g(Qi; J), κg(Qi; J)] are all disjoint, i = 1, . . . , d0. An exponential

splitting is called the finest if there is no exponential splitting of order d0 + 1.

Let {Qi}
d0
i=1 denote the finest exponential splitting over Z for U = (Uj)j∈Z. In what

follows we assume that projections Qi are numbered such that κg(Qi; Z) < κ′
g(Qi+1; Z);

we set Q0 = 0, Qd0+1 = I. Since P is the dichotomy projection for U, there exists an

n ∈ {1, . . . , d0} such that I − P = Q1 + · · · + Qn and P = Qn+1 + · · · + Qd0
. Thus,

κ
′
g(Qi; Z) ≤ κg(Qi; Z) < 0 for i = 1, . . . , n, and(4.4)

0 < κ
′
g(Qi; Z) ≤ κg(Qi; Z) for i = n + 1, . . . , d0.(4.5)

Clearly, {Qi}
d0
i=1 is also an exponential splitting for U over Z+ and Z−. We denote:

(4.6)

κ
′
i = κ

′
g(Qi; Z), κ

′ ±
i = κ

′
g(Qi; Z±), κi = κg(Qi; Z), κ

±
i = κg(Qi; Z±), i = 1, . . . , d0,

(4.7) ε0 =
1

2
min{−κn, κ′

n+1, κ
′
i − κi−1 : i = 1, . . . , n − 1, n + 1, . . . , d0}.

In this section we will use the following assumptions for the perturbation (BjCj)j∈Z:

There exists a δ ∈ (0, ε0) such that

∞∑

k=0

e(κ+
i −κ

′ +
i +δ)k‖BkCk‖ < ∞, for i = 1, . . . , n,(4.8)

0∑

k=−∞

e−(κ−

i −κ
′ −

i +δ)k‖BkCk‖ < ∞, for i = n + 1, . . . , d0.(4.9)

Our next objective is to construct matrix solutions of the perturbed difference equation

xj+1 = A×
j xj that are asymptotic to the solutions (UjQi)j∈Z of the unperturbed equation

xj+1 = Ajxj . For some N ∈ N consider the following (d×d) matrix difference equations:

Y
(i)
j − UjQi = −

∞∑

k=j

Uj(Qi + · · · + Qd0
)U−1

k+1BkCkY
(i)
k

+

j−1∑

k=N

Uj(I − (Qi + · · · + Qd0
))U−1

k+1BkCkY
(i)
k , j > N, i = 1, . . . , n,(4.10)

Y
(i)
j − UjQi =

j−1∑

k=−∞

Uj(Q1 + · · · + Qi)U
−1
k+1BkCkY

(i)
k

−
−N∑

k=j

Uj(I − (Q1 + · · · + Qi))U
−1
k+1BkCkY

(i)
k , j ≤ −N, i = n + 1, . . . , d0.(4.11)

Remark 4.1. If the sequence Y(i) = (Y
(i)
j ), where j > N , resp. j ≤ −N , is a solution of

(4.10), resp. (4.11), then this sequence is a solution of the (perturbed) difference equation

Yj+1 = A×
j Yj for j > N , resp. j ≤ −N . If U× = (U×

j )j∈Z, U×
0 = I, denotes the

fundamental matrix solution of the equation U×
j+1 = A×

j U×
j (this solution is non-singular
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by assumption (3.4)), then the solutions Y(i) = (Y
(i)
j ), i = 1, . . . , n, resp. i = n+1, . . . , d0,

originally given for j > N , resp. j ≤ −N , could be extended to Z+ = {0, 1, . . . }, resp.

Z− = {. . . ,−1, 0}, by setting

Y
(i)
j = U×

j (U×
N+1)

−1Y
(i)
N+1, j = 0, . . . , N,

Y
(i)
j = U×

j (U×
−N )−1Y

(i)
−N , j = −N + 1, . . . , 0.

(4.12)

Lemma 4.2. Assume (4.8), resp. (4.9). Then, for a sufficiently large N = N(δ), there

exists a solution Y(i) = (Y
(i)
j )j>N , i = 1, . . . , n, of (4.10), resp. Y(i) = (Y

(i)
j )j≤−N ,

i = n + 1, . . . , d0, of (4.11). Moreover, these solutions satisfy Y
(i)
j = Y

(i)
j Qi and have the

following properties:

(a) sup
j>N

e−(κ+
i + δ

2 )j‖Y
(i)
j ‖ < ∞, i = 1, . . . , n,

sup
j≤−N

e−(κ′ −

i − δ
2 )j‖Y

(i)
j ‖ < ∞, i = n + 1, . . . , d0;

(b) inf
j>N

e−(κ′ +
i − δ

2 )j‖Y
(i)
j ‖• > 0, i = 1, . . . , n,

inf
j≤−N

e−(κ−

i + δ
2 )j‖Y

(i)
j ‖• > 0, i = n + 1, . . . , d0;

(c) sup
j>N

e−(κ′ +
i − δ

2 )j‖Y
(i)
j − UjQi‖ < ∞, i = 1, . . . , n,

sup
j≤−N

e−(κ−

i + δ
2 )j‖Y

(i)
j − UjQi‖ < ∞, i = n + 1, . . . , d0.

Proof. For i = 1, . . . , n set α = κ
′+
i − δ/2 so that α ∈ (κ+

i−1, κ
′+
i ). Using (4.1) - (4.2)

with J = Z+, find constants cα and c′α such that

‖Uj(I − (Qi + · · · + Qd0
))U−1

k+1‖ ≤ cαeα(j−k), j ≥ k ≥ 0,(4.13)

‖Uj(Qi + · · · + Qd0
)U−1

k+1‖ ≤ c′αeα(j−k), k ≥ j ≥ 0.(4.14)

Using assumption (4.8), choose N so large that

(4.15) q :=

∞∑

k=N

max{cα, c′α}e
(κ+

i −κ
′ +
i +δ)k‖BkCk‖ < 1.

With this N , and letting β = κ
+
i + δ/2, we define a Banach space, ℓ∞+,β , of Cd×d-valued

sequences u = (uj)j>N as follows: ℓ∞+,β = {u : ‖u‖+,β := supj>N e−βj‖uj‖ < ∞}. Let T

denote the operator corresponding to the right-hand side of (4.10), so that this equation

becomes Y(i) − (UjQi)j>N = TY(i). We claim that T is a contraction in ℓ∞+,β . Indeed,

using (4.13) - (4.14), and then (4.15), we infer:

‖Tu‖+,β ≤ ‖u‖+,β sup
j>N

e−βj
( ∞∑

k=j

c′αeα(j−k)‖BkCk‖e
βk +

j−1∑

k=N

cαeα(j−k)‖BkCk‖e
βk

)

≤ ‖u‖+,β max{cα, c′α} sup
j>N

∞∑

k=N

e(α−β)(j−k)‖BkCk‖ < q‖u‖+,β ,(4.16)

because (α − β)j = −(κ+
i − κ

′+
i + δ)j < 0. Since supj≥0 e−βj‖UjQi‖ < ∞ by (4.1) with

J = Z+, k = −1, and β > κ
+
i , we have (UjQi)j>N ∈ ℓ∞+,β . This proves the existence and
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uniqueness of a solution Y(i) ∈ ℓ∞+,β of (4.10), and thus (a). Also, multiplying (4.10) by

Qi from the right, and using the uniqueness, we have Y
(i)
j = Y

(i)
j Qi. Similarly to estimate

(4.16), we have

‖Tu‖+,α ≤ ‖u‖+,β max{cα, c′α}
∞∑

k=N

e(β−α)k‖BkCk‖ = q‖u‖+,β .

Since Y(i) − (UjQi)j>N = TY(i) and Y(i) ∈ ℓ∞+,β , we have Y(i) − (UjQi)j>N ∈ ℓ∞+,α and

assertion (c) in the lemma follows. To prove assertion (b), we estimate

‖Y
(i)
j ‖• = ‖Y

(i)
j − UjQi + UjQi‖• ≥ ‖UjQi‖• − ‖Y

(i)
j − UjQi‖(4.17)

≥ ‖UjQi‖• − c1e
αj

with some positive constant c1 from (c). If ‖x‖ = 1 and Qix = x then, using (4.2) for

J = Z+, and that α + δ/4 = κ
′+
j − δ/4 < κ

′+
j , we infer for any k > 0:

1 = ‖Qix‖ ≤ ‖QiU
−1
k+1‖ · ‖U

−1
k+1Qix‖ = (e(α+δ/4)k‖QiU

−1
k+1‖)(e

−(α+δ/4)k‖U−1
k+1Qi‖)

≤ ( sup
0≤j≤k

e−(α+δ/4)(j−k)‖UjQiU
−1
k+1‖)(e

−(α+δ/4)k‖U−1
k+1Qix‖)

≤ ce−(α+δ/4)k‖U−1
k+1Qix‖.

This implies that ‖UjQi‖• ≥ c2e
(α+δ/4)j for all j ∈ Z+ and some c2 > 0. Using (4.17),

we have e−αj‖Y
(i)
j ‖• ≥ c2e

(δ/4)j − c1 ≥ 1 starting from some sufficiently large j0 > N .

Since Y(i) = Y(i)Qi is a solution of the equation Y
(i)
j+1 = A×

j Y
(i)
j , the last assertion and

assumption (3.4) imply that ‖Y
(i)
j ‖• > 0 for each j ∈ [N, j0]. This proves (b), and the

proof of the lemma for i = 1, . . . , n is complete. The proof for i = n+1, . . . , d0 is similar.

Remark 4.3. By Lemma 4.2 and Remark 4.1 we thus have matrix solutions Y(i) =

(Y
(i)
j )j≥0, i = 1, . . . , n, resp. Y(i) = (Y

(i)
j )j≤0, i = n+1, . . . , d0, of the perturbed equation

xj+1 = A×
j xj on Z+, resp. Z−. Define Y+ = Y(1) + · · ·+Y(n) and Y− = Y(n+1) + · · ·+

Y(d0). Using the property Y
(i)
j Qi = Y

(i)
j , we may view Y +

j , resp. Y −
j , as operators acting

from Im(I −P ) = ImQ1 ⊕ · · · ⊕ Im Qn, resp. ImP = Im Qn+1 ⊕ · · · ⊕ Im Qd0
, to Cd and

thus write Y+ = [Y(1) · · ·Y(n)], resp. Y− = [Y(n+1) · · ·Y(d0)] either as (1 × n)-, resp.

(1 × (d0 − n)) block rows, or, cf. (3.8), as (d × d2)-, resp. (d × d1)-matrices.

Assertions (a) and (b) of Lemma 4.2 and Remark 4.1 show that the solution Y(i)

of the perturbed equation xj+1 = A×
j xj , j ∈ Z+, resp. Z−, corresponds to the segment

[κ′+
i , κ+

i ], resp. [κ′ −
i , κ−

i ], in the Bohl spectrum for i = 1, . . . , n, resp. i = n + 1, . . . , d0.

In particular, for i = 1, . . . , n one has ‖Y
(i)
j ‖ → 0 as j → ∞, and for i = n + 1, . . . , d0

one has ‖Y
(i)
j ‖ → 0 as j → −∞, see (4.4) - (4.5) and recall that κ′

i ≤ κ
′ ±
i ≤ κ

±
i ≤ κi

by (4.1) - (4.2). Assertion (c) shows that the solutions Y(i) of the perturbed equation

are asymptotic to the solutions (UjQi)j∈Z of the unperturbed equation xj+1 = Ajxj ,

j ∈ Z, as j → ∞ for i = 1, . . . , n, resp. j → −∞ for i = n + 1, . . . , d0. This motivates the

following definition.

Definition 4.4. If Y(i) = (Y
(i)
j )j≥0, i = 1, . . . , n and Y(i) = (Y

(i)
j )j≤0, i = n+1, . . . , d0

are the matrix solutions of the perturbation xj+1 = A×
j xj , A×

j = Aj + BjCj , of the
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difference equation xj+1 = Ajxj , then the Evans determinant, E , is defined as follows:

(4.18) E = det[Y +
0 +Y −

0 ], where Y +
0 = Y

(1)
0 + · · ·+Y

(n)
0 and Y −

0 = Y
(n+1)
0 + · · ·+Y

(d0)
0 .

The terminology is related to the so-called Evans function, a powerful tool frequently

used for detecting isolated eigenvalues of differential (and difference) operators that ap-

pear after linearizing nonlinear equations about such special solutions as travelling waves,

see [AGJ, JK, S] and [BCK, KK], and the bibliographies therein. The Evans function,

D(z), is usually defined, cf. [S], in the situation when the coefficients of the unperturbed

and perturbed equations depend (analytically) on a (spectral) parameter z. Thus, in our

terminology, the values of the Evans function for fixed z’s are called the Evans deter-

minants. In Proposition 4.5 we will show that the definition of the Evans determinant

E given in (4.18) coincides with the definition of the Evans determinant D standardly

accepted in the literature on the Evans function, cf. [JK, S]; moreover, the Evans de-

terminant E gives a canonical choice among the standard Evans determinants D whose

definition in [JK, S] is not unique.

Out of several available (equivalent) standard definitions of D we chose the definition

using the exponential dichotomies on Z+ and Z−, cf. [S, Def. 4.1] for the differential

equations case. Recall the definition from [S]. Assume that the perturbed equation xj+1 =

A×
j xj has exponential dichotomies P+ and P− on Z+ and Z−, respectively, so that for its

solution x = (xj) one has: ‖xj‖ → 0 as j → ∞ if and only if x0 ∈ Im(I −P+); ‖xj‖ → ∞

as j → ∞ if and only if x0 has a nonzero component in ImP+; ‖xj‖ → 0 as j → −∞ if and

only if x0 ∈ Im P−; and ‖xj‖ → ∞ as j → −∞ if and only if x0 has a nonzero component

in Im(I −P−). In addition, following [S], assume that dim Im(I −P+) = dim Im(I −P−)

and denote the common value of these dimensions d′. Choose ordered bases u1, . . . , ud′

and ud′+1, . . . , ud of Im(I − P+) and ImP−, respectively, and define

(4.19) D = detCd [u1 · · ·ud],

the Evans determinant. Note that D depends on the choice of the basis vectors ui; how-

ever, if D̃ is the determinant corresponding to another choice of ũi, then D = cD̃ for a

nonzero c; if A× = A×(z) and ui = ui(z) and ũi = ũi(z) depend on z analytically then

one can show [S] that c = c(z) is a nonvanishing analytic multiplier.

Proposition 4.5. Assume (3.1), (3.2), (3.4), and (4.8) - (4.9). Then the Evans deter-

minant E , as defined in (4.18), coincides with D, as defined in (4.19), where u1, . . . ud′

and ud′+1, . . . , ud are the columns of the matrices Y +
0 and Y −

0 , respectively.

Proof. First, we claim that

(4.20) dim Im(I − P ) = dim Im(I − P+) and dim ImP = dim ImP−

for the dichotomy projection P over Z of the unperturbed equation xj+1 = Ajxj and the

dichotomy projections P± over Z± of the perturbed equation yj+1 = A×
j yj . To prove the

first equality in (4.20) (the second is proved similarly), we recall that the perturbation

BjCj = A×
j −Aj , j ∈ Z, is assumed to satisfy (BjCj)j∈Z+

∈ ℓ1(Z+; Cd×d), cf. (4.8). Under

this assumption, following the proof of [Co, Prop. 4.3], one can see that the (bounded

on Z+) solutions x = (xj)j∈Z+
of the equation xj+1 = Ajxj and y = (yj)j∈Z of the
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equation yj+1 = A×
j yj are in one-to-one correspondence. Indeed, using (3.7), choose N

so large that the operator T defined by

(Ty)j = −
∞∑

k=j

UjPU−1
k+1BkCkyk +

j−1∑

k=N

Uj(I − P )U−1
k+1BkCkyk, j ∈ Z+,

is a contraction on ℓ∞(Z+; Cd×d), cf. the proof of Lemma 4.2. Then the above-mentioned

correspondence is given by the formula y = x + Ty. Since the solutions x and y are

bounded on Z+ if and only if x0 ∈ Im(I −P ), resp. y0 ∈ Im(I −P+), and using notation

(3.8), the equality d2 = d′ in (4.20) follows.

Next, we claim that for the solutions Y+ =[Y(1) · · ·Y(n)] and Y−=[Y(n+1) · · ·Y(d0)],

see Remark 4.3, of the equation yj+1 = A×
j yj , obtained in Lemma 4.2 and Remark 4.1,

one has the following equalities:

(4.21) rank Y +
0 = dim Im(I − P+) and rank Y −

0 = dim ImP−.

As soon as (4.21) is proved, the equality E = D follows. Indeed, recalling (4.4) - (4.5),

and the inequality δ < ε0 for ε0 defined in (4.7), we use Lemma 4.2(a) to observe that

‖Y
(i)
j ‖ → 0 as j → ∞, resp. j → −∞, for i = 1, . . . , n, resp. i = n + 1 . . . , d0. Therefore,

recalling (4.20), the definitions of the exponential dichotomies P±, see (3.7), and Remark

4.3, we observe that the columns u1, . . . , ud2
and ud2+1, . . . , ud of the matrices Y +

0 and,

respectively, Y −
0 belong to the subspace Im(I −P+), respectively, to the subspace Im P−.

By (4.21), these columns form bases in the respective subspaces, and thus E = D.

To prove the first equality in (4.21) (the second is proved similarly), we will use

(4.20) and will show that rankY +
0 = dim Im(I − P ). For this, it is enough to check

that rankY +
j = dim Im(I − P ) for sufficiently large j because rank Y +

j = rank Y +
0 using

Y +
j = U×

j Y +
0 for the invertible by (3.4) matrices U×

j forming the fundamental matrix

solution U× of the equation yj+1 = A×
j yj . Finally, since matrices Uj are also invertible,

and I − P = Q1 + · · · + Qn, we have:

dim Im(I−P ) = rank[Q1 · · ·Qn] = rank[UjQ1 · · ·UjQn] = rank[Y
(1)
j · · ·Y

(n)
j ] = rankY +

j ,

where the relation ‖Y
(i)
j − UjQi‖ → 0 as j → ∞, i = 1, . . . , n, from Lemma 4.2 (c) has

been used to justify the third equality. Thus, (4.21) follows, and E = D is proved.

One advantage of Definition 4.4 adapted in the current paper is that the Evans de-

terminant given in (4.18) is uniquely defined by A and A× (indeed, the finest exponen-

tial splitting {Qi}
d0
i=1 is uniquely defined; although the solutions Y(i) depend on N , see

Lemma 4.2, the determinant (4.18) is proved below to be N -independent, see (4.22)). In

other words, the columns of the matrices Y +
0 and Y −

0 give the canonical choice of the

bases in Im(I − P+) and ImP− needed in (4.19). Also, if A = A(z) and A× = A×(z)

depend on z analytically, then the analyticity of the Evans function E = E(z), where

the Evans determinant E(z) is defined for each fixed z using A(z) and A×(z) as indi-

cated in (4.18), follows automatically from the analyticity of the corresponding Fredholm

determinant whose connection to the Evans determinant is given next.

Theorem 4.6. Assume that (Bj)j∈Z, (Cj)j∈Z ∈ ℓ2(Z; Cd×d), and (3.1), (3.2), (3.4),

(4.8), (4.9) hold. Then the Fredholm determinant for the operator T ∈ B1(ℓ
2(Z; Cd×d)),
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defined in (1.1), and the Evans determinant (4.18) are related as follows:

(4.22) det(I − T ) = E
∞∏

j=0

det(Aj + BjCj)

detAj
.

Remark 4.7. In this paper we study the perturbed equation xj+1 = (Aj +BjCj)xj with

the perturbation term Rj = BjCj having a predefined factorization. Given a perturbed

equation xj+1 = (Aj + Rj)xj , we can define the factorization Rj = BjCj by using the

polar decomposition Rj = VRj
|Rj | and setting Bj = VRj

|Rj |
1
2 and Cj = |Rj |

1
2 . If (4.8) -

(4.9) are assumed for Rj = BjCj then (Rj)j∈Z ∈ ℓ1 and (Bj)j∈Z, (Cj)j∈Z ∈ ℓ2.

Proof. First, we remark that T ∈ B1(ℓ
2) provided b = (Bj)j∈Z and c = (Cj)j∈Z belong

to ℓ2. Indeed, let K, (Kx)j =
∑

k∈Z
Kjkxk, denote the (bounded on ℓ2) operator with

the kernel given by (1.2) and satisfying ‖Kjk‖ ≤ ce−α|k−j|, see (3.7). Then T = DcKDb

using notation (2.6). By (2.8) we have Dc, Db ∈ B2(ℓ
2) and thus T ∈ B1, see, e.g. [GGK,

Lem. IV.7.2]. Next, we remark that the product in the right-hand side of (4.22) converges

absolutely provided (3.1) and b, c ∈ ℓ2 hold:

∞∏

j=0

∣∣∣∣
det(Aj + BjCj)

det Aj

∣∣∣∣ =
∞∏

j=0

| det(I + A−1
j BjCj)| ≤

∞∏

j=0

(1 + d‖(A−1
j )j∈Z‖ℓ∞‖BjCj‖) < ∞

because (BjCj)j∈Z ∈ ℓ1.

Further, we claim that it is enough to prove (4.22) for finitely supported b and c.

For M ∈ N let χM denote the characteristic function of [−M, M ] ∩ Z, and set b(M) =

(χM (j)Bj)j∈Z, c(M) = (χM (j)Cj)j∈Z, T (M) = Dc(M)KDb(M) . By (2.16), Dc(M) → Dc and

Db(M) → Db in B2(ℓ
2)-norm as M → ∞. Using e.g. [GGK, Lem. IV.7.2], we conclude

that T (M) → T in B1(ℓ
2)-norm and hence det(I−T (M)) → det(I−T ) as M → ∞, see e.g.

[GGK, (IV.5.14)]. Let d+ = (A−1
j BjCj)j≥0 and d

(M)
+ = (χM (j)A−1

j BjCj)j≥0. Then the

product in the right-hand side of (4.22) is equal to det(I+Dd+
) = limM→∞ det(I+D

d
(M)
+

)

because D
d

(M)
+

→ Dd+
in B1(ℓ

2(Z+; Cd))-norm, as above. Thus, to prove the claim it

remains to show that

(4.23) E = lim
M→∞

E(M)

where E(M) is defined as in (4.18) using the solutions Y(i,M) of equations (4.10) - (4.11)

with Bj and Cj replaced by B
(M)
j = χM (j)Bj and C

(M)
j = χM (j)Cj . Note that q(M) ≤

q, cf. (4.15). Thus, N in Lemma 4.2 could be fixed independent of M . Note that for

i = 1, . . . , n (and similarly for i = n + 1, . . . , d0) we have Y(i) = (I − T )−1(UjQi)j>N

and Y(i,M) = (I − T (M))−1(UjQi)j>N for the operators T and T (M) defined by the

right-hand side of (4.10), and that ‖T‖ < q < 1 and ‖T (M)‖ < q uniformly for M ∈ N,

for the operator norm in l∞+,β , cf. (4.16). Also, U×,M
j → U×

j as M → ∞ uniformly for

|j| ≤ N , cf. Remark 4.1. Thus, (4.23) is proved as soon as we show that ‖T −T (M)‖ → 0

as M → ∞. But T − T (M) is again given by the same expression as T , see (4.10), except

the product BkCk should be replaced by BkCk − B
(M)
k C

(M)
k = (1 − χM (k))BkCk. We

can now use (4.16) to estimate for i = 1, . . . , n the operator norm of T − T (M) in l∞+,β:
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‖T − T (M)‖ ≤ max{cα, c′α}
∞∑

k=N

(1 − χM (k))e(κ+
i −κ

′ +
i +δ)k‖BkCk‖(4.24)

= max{cα, c′α}
∞∑

k=M+1

e(κ+
i −κ

′ +
i +δ)k‖BkCk‖ → 0 as M → ∞,

using (4.8). A similar argument works for i = n + 1, . . . , d0. Thus, (4.23) holds, and the

claim above is verified.

From now on we therefore assume that (Bj)j∈Z and (Cj)j∈Z are finitely supported.

Note that then assumption (3.3) holds, and thus (3.36) holds. So, to establish (4.22) we

need to prove that E = detU×
0 , where U×

0 = V0 is given by (3.35) in terms of the solutions

X± of difference equations (3.29) - (3.30).

Consider the following matrix difference equations:

Z+
j − (I − P ) = −

∞∑

k=j

U−1
k+1BkCkUkZ+

k ,(4.25)

Z−
j − P =

j−1∑

k=−∞

U−1
k+1BkCkUkZ−

k ,(4.26)

and introduce on ℓ∞(Z; Cd×d) operators H̃+ and H̃− corresponding to the right-hand

sides of (4.25) - (4.26) so that these equations become (I − H̃+)Z+ = (I − P )j∈Z

and (I − H̃−)Z− = (P )j∈Z. We claim that the operators I − H̃± are invertible on

ℓ∞(Z; Cd×d). Indeed, using notation (2.5) - (2.6) we have H̃+ = −Dd − V +
a,b and H̃− =

V −
a,b with a = (U−1

j+1Bj)j∈Z ∈ ℓ1, b = (CjUj)j∈Z ∈ ℓ1, and d = (U−1
j+1BjCjUj)j∈Z ∈ ℓ1.

The operator I + Dd is invertible in ℓ∞(Z; Cd×d) since the operator I + Dd′ ,d′ =

(BjCjUjU
−1
j+1)j∈Z in invertible in ℓ∞(Z; Cd×d) by assumptions (3.1) and (3.4) and the

identities I + BjCjUjU
−1
j+1 = A×

j A−1
j , j ∈ Z (recall that A×

j = Aj for sufficiently large |j|

because (Bj)j∈Z and (Cj)j∈Z are finitely supported). Moreover, (I + Dd)−1 = Dd′′ with

some d′′ = (d′′j )j∈Z ∈ ℓ∞(Z; Cd×d). Since

I − H̃+ = (I + Dd)(I + (I + Dd)−1V +
a,b) = (I + Dd)(I + V +

a′,b)

with a′ = (d′′j U−1
j+1Bj)j∈Z ∈ ℓ1, the operators I − H̃+ and I − H̃− are invertible by

(2.12), as claimed. Therefore, equations (4.25) - (4.26) have a unique pair of solutions

Z± ∈ ℓ∞(Z; Cd×d) given by

(4.27) Z+ = (I − H̃+)−1(I − P )j∈Z and Z− = (I − H̃−)−1(P )j∈Z.

In particular Z+
j (I − P ) = Z+

j and Z−
j P = Z−

j , j ∈ Z. Also, using (4.25) - (4.26), it

is easy to see that (UjZ
±
j )j∈Z are solutions of the equation xj+1 = A×

j xj , j ∈ Z. Thus,

if (U×
j )j∈Z is the fundamental matrix solution of the equation xj+1 = A×

j xj , then the

following relations hold:

(4.28) Z+
0 = (U×

N+1)
−1(UN+1Z

+
N+1) and Z−

0 = (U×
−N )−1(U−NZ−

−N )

(recall that U0 = U×
0 = I, and N here is chosen as in Lemma 4.2). On the other hand,

multiplying (4.25) - (4.26) by CjUj from the left, letting X±
j = CjUjZ

±
j and recalling

that (CjUj)j∈Z is finitely supported, we conclude that X± = (Xj)j∈Z ∈ ℓ2(Z; Cd×d) is the



128 D. CRAMER AND Y. LATUSHKIN

unique pair of solutions of equations (3.29) - (3.30). Using the direct sum decomposition

C
d = Im(I − P ) ⊕ Im P , and writing Z+

j + Z−
j , j ∈ Z, as a (2 × 2)-block matrix, we

observe that Z+
j + Z−

j = Vj , where Vj is given in (3.35) in terms of X±. So, to complete

the proof of the theorem we need to show that E = det[Z+
0 + Z−

0 ].

Since (U−1
j+1Bj)j∈Z and (CjUj)j∈Z are finitely supported, equations (4.10) - (4.11) can

be equivalently rewritten as follows:

Y
(i)
j = UjQi −

∞∑

k=j

UjU
−1
k+1BkCkY

(i)
k(4.29)

+
∞∑

k=N

Uj(I − (Qi + · · · + Qd0
))U−1

k+1BkCkY
(i)
k , j > N,

Y
(i)
j = UjQi +

j−1∑

k=−∞

UjU
−1
k+1BkCkY

(i)
k(4.30)

−
−N∑

k=−∞

Uj(I − (Q1 + · · · + Qi))U
−1
k+1BkCkY

(i)
k , j ≤ −N,

Recall that Y
(i)
j Qi = Y

(i)
j by Lemma 4.2, and that I − P = Q1 + · · · + Qn, P = Qn+1 +

· · · + Qd0
, so that (I − P )Qi = Qi for i = 1, . . . , n and PQi = Qi for i = n + 1, . . . , d0.

Using notation Y +
j =

∑n
i=1 Y

(i)
j and Y −

j =
∑d0

i=n+1 Y
(i)
j , we derive from (4.29) - (4.30):

Y +
j = Uj(I − P ) −

∞∑

k=j

UjU
−1
k+1BkCkY +

k + UjT+, j > N,(4.31)

Y −
j = UjP +

j−1∑

k=−∞

UjU
−1
k+1BkCkY −

k + UjT−, j ≤ −N,(4.32)

where we have denoted:

T+ =

n∑

i=1

(I − (Qi + · · ·Qd0
))ηiQi, ηi =

∞∑

k=N

U−1
k+1BkCkY

(i)
k ,(4.33)

T− =

d0∑

i=n+1

(I − (Q1 + · · ·Qi))ηiQi, ηi =
−N∑

k=−∞

U−1
k+1BkCkY

(i)
k .(4.34)

We remark that, in the direct sum decomposition Cd = Im(I − P ) ⊕ Im P ,

(4.35) T+ = (I − P )T+(I − P ), T− = PT−P, and T+ + T− = T+ ⊕ T−.

Using the operators H̃±, we can also rewrite (4.31) - (4.32) as follows:

(I − H̃+)(U−1
j Y +

j )j>N = ((I − P )(I − P + T+))j>N ,

(I − H̃−)(U−1
j Y −

j )j≤−N = (P (P + T−))j≤−N .

Comparison with (4.27) yields:

Y +
j = UjZ

+
j (I − P + T+), j > N, and Y −

j = UjZ
−
j (P + T−), j ≤ −N.
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Formulas (4.12) and (4.28) with the fundamental matrix solution (U×
j )j∈Z of xj+1 =

A×
j xj then imply:

Y +
0 + Y −

0 = (U×
N+1)

−1Y +
N+1 + (U×

−N )−1Y −
−N

= (U×
N+1)

−1(UN+1Z
+
N+1(I − P + T+)) + (U×

−N )−1(U−NZ−
−N (P + T−))

= Z+
0 (I − P + T+) + Z−

0 (P + T−) = (Z+
0 + Z−

0 )(I + T+ + T−).

In the last equality we also used the fact that Z+
0 = Z+

0 (I − P ) and Z−
0 = Z−

0 P , and

assertions (4.35). Since E = det[Y +
0 + Y −

0 ] by (4.18), to finish the proof of the identity

E = det[Z+
0 + Z−

0 ] (and thus the proof of the theorem), it suffices to prove that

(4.36) det[I + T+ + T−] = 1.

For this, cf. (4.35), we note that the operators T+ = (I −P )T+(I −P ) on Im(I −P ) and,

resp. T− = PT−P on ImP are represented by lower-, resp. upper-triangular matrices with

zero main diagonals in the direct sum decomposition Im(I − P ) = ImQ1 ⊕ · · · ⊕ Im Qn,

resp. Im P = Im Qn+1 ⊕ · · · ⊕ Im Qd0
(cf. (4.33) - (4.34)). Thus, the proof of (4.36) and

the theorem is completed.

5. Constant coefficients. In this section we specialize to the case where Aj ≡ A, j ∈ Z,

with a given matrix A ∈ Cd×d satisfying the assumptions

(5.1) 0 /∈ σ(A) and σ(A) ∩ {z ∈ C : |z| = 1} = ∅,

cf. assumptions (3.1) - (3.2). We will continue to assume that A×
j = A+BjCj is invertible

for each j ∈ Z, cf. (3.4). Note that Uj = Aj , j ∈ Z. We will show that in this constant

coefficients case assumptions (4.8) - (4.9) of the exponential decay of the perturbation

could be replaced with a weaker assumption of a polynomial decay. Specifically, let m

denote the maximal size of Jordan blocks in the Jordan canonical form of the (d × d)-

matrix A. (Then m = 0 provided all eigenvalues of A are semi-simple, that is, when all

Jordan blocks are diagonal.) The following assumption will replace (4.8) - (4.9):

(5.2)
∞∑

k=−∞

|k|2m‖BkCk‖ < ∞.

Let us decompose σ(A) = ∪d0
i=1σi where σi’s belong to concentric circles whose radii are

denoted by eκi so that σi = {λ ∈ σ(A) : |λ| = eκi}, and enumerate the numbers κi so

that

(5.3) κ1 < · · · < κn < 0 < κn+1 < κd0

for some n ∈ {1, . . . , d0}. Let Qi denote the spectral projection for A such that σ(A|Im Qi
)

= σi. Note that κi = κg(Qi; Z) = κ′
g(Qi; Z) = κ

′ ±
i = κ

±
i for the Bohl exponents, cf.

(4.6). Passing to appropriate coordinates, we will assume that A is in the Jordan normal

form. Thus, each A|Im Qi
is a direct sum of (maybe, several) Jordan blocks λI + E with

|λ| = eκi . By Lemma 2.3,

(5.4) ‖Aj |Im Qi
‖ ≤ c|j|mejκi , i = 1, . . . , d0, j ∈ Z.
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Equations (4.10) - (4.11) now become:

Y(i) − (AjQi)j>N = TiY
(i), i = 1, . . . , n,(5.5)

Y(i) − (AjQi)j≤−N = TiY
(i), i = n + 1, . . . , d0,(5.6)

where

(Tiu)j = −
∞∑

k=j

Aj−k−1(Qi + · · · + Qd0
)BkCkuk

+

j−1∑

k=N

Aj−k−1(I − (Qi + · · · + Qd0
))BkCkuk, u = (uj)j>N , i = 1, . . . , n,

(Tiu)j =

j−1∑

k=−∞

Aj−k−1(Q1 + · · · + Qi)BkCkuk

−
−N∑

k=j

Aj−k−1(I − (Q1 + · · · + Qi))BkCkuk, u = (uj)j≤−N , i = n + 1, . . . , d0.(5.7)

Lemma 5.1. Assume (5.1) - (5.2). Then for a sufficiently large N there exist solutions

Y(i) = (Y
(i)
j )j>N , i = 1, . . . , n, resp. Y(i) = (Y

(i)
j )j≤−N , i = n+1, . . . , d0, of (5.5), resp.

(5.6) such that Y
(i)
j = Y

(i)
j Qi and the following assertions hold:

(a) sup
j>N

|j|−me−jκi‖Y
(i)
j ‖ < ∞, i = 1, . . . , n,(5.8)

sup
j≤−N

|j|−me−jκi‖Y
(i)
j ‖ < ∞, i = n + 1, . . . , d0,

(b) e−jκi‖Y
(i)
j − AjQi‖ → 0

as j → ∞ for i = 1, . . . , n and as j → −∞ for i = n + 1, . . . , d0.

Proof. We prove the lemma for i = n + 1, . . . , d0; the proof for i = 1, . . . , n is similar.

Using (5.3) - (5.4), we infer:

‖Aj−k−1(Q1 + · · · + Qi)‖ ≤ c|j − k|me(j−k)κi , 0 ≥ j ≥ k,(5.9)

‖Aj−k−1(I − (Q1 + · · · + Qi))‖ ≤ c|j − k|me(j−k)κi+1(5.10)

≤ c′|j − k|me(j−k)κi , 0 ≥ k ≥ j.

Introduce the Banach space ℓ∞− = {u = (uj)j≤−N : ‖u‖ℓ∞
−

:= supj≤−N |j|−me−jκi‖uj‖

< ∞}. Denote qN =
∑−N

k=−∞ |k|2m‖BkCk‖ and remark that qN → 0 as N → ∞ by (5.2).

Using (5.9) - (5.10) and the fact that supk≥0 |k|
me−k(κi+1−κi) < ∞, we have for j ≤ −N

and the operator T = Ti(N) defined in (5.7):

|j|−me−jκi‖(Tu)j‖ ≤ c‖u‖ℓ∞
−

( j−1∑

k=−∞

|j−1(j − k)k|m‖BkCk‖

+

−N∑

k=j

(|j − k|me(j−k)(κi+1−κi))|j−1k|m‖BkCk‖
)
≤ c′qN‖u‖ℓ∞

−
.(5.11)
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Note that |k| ≥ |j| ≥ N ≥ 1 in the first sum and |j| ≥ |k| ≥ N ≥ 1 in the second sum.

Thus, ‖Tu‖ℓ∞
−

≤ cqN‖u‖ℓ∞
−

, and T = Ti(N) is a contraction on ℓ∞− for a sufficiently

large N . Since (AjQi)j≤−N ∈ ℓ∞− by (5.4), assertion (5.8) follows. To show (b) in the

lemma, we follow the proof of the celebrated Levinson Theorem in [E, p.14]. Indeed, for

j < −M < −N and u = (Y
(i)
j )j≤−N ∈ ℓ∞− , similarly to (5.11), we infer:

e−jκi‖(Tu)j‖ ≤ ‖e−jκi(Ti(M)u)j‖

+

−N∑

k=−M+1

‖Aj−k−1(I − (Q1 + · · · + Qi))BkCkuk‖

≤ c‖u‖ℓ∞
−

( j−1∑

k=−∞

|(j − k)k|m‖BkCk‖ +
−M∑

k=j

|j − k|me(j−k)(κi+1−κi)|k|m‖BkCk‖

+
−N∑

k=−M+1

(|j − k|me
1
2 (j−k)(κi+1−κi))e

1
2 (j−k)(κi+1−κi)|k|m‖BkCk‖

)

≤ c′‖u‖ℓ∞
−

(qM + c(M, N)e
1
2 j(κi+1−κi)).

Choosing first a sufficiently large M , and then letting j → −∞, we have (b) in the

lemma.

As soon as the existence of the solutions of (5.5) - (5.6) is established, we can use

formulas (4.12) to obtain the matrix solutions Y+ = Y(1) + · · · + Y(n) on Z+ and

Y− = Y(n+1) + · · · + Y(d0) on Z− of the perturbed equation xj+1 = (A + BjCj)xj ,

and then define the Evans determinant, E , as indicated in (4.18). Note that the equality

E = D for the “standard” Evans determinant D also holds as in Proposition 4.5 since Y±

enjoy the properties listed in Lemma 5.1. The proof of Theorem 4.6 remains unchanged

with a natural replacement of the exponential term in (4.24) by k2m. Thus, we have the

following result.

Proposition 5.2. Formula (4.22) holds provided A = Aj, j ∈ Z, assumption (3.4) is

satisfied, and assumptions (3.1) - (3.2) and (4.8) - (4.9) in Theorem 4.6 are replaced,

respectively, by (5.1) and (5.2).

Next, as an illustration, we will consider a particularly important class of second order

difference equations, the discrete Schrödinger equation, and show how to specialize our

results for the corresponding (2×2) first order system. Given a real-valued potential v =

(vj)j∈Z ∈ ℓ1(Z; R), consider on ℓ2(Z; C) a bounded self-adjoint operator, L, defined by

(Ly)j = yj+1 +yj−1 +vjyj , y ∈ ℓ2(Z; C). If (Sy)j = yj−1 denotes the shift operator, and

z ∈ R, then the following identity, cf. [LS, Exmp. 1.6], holds on (ℓ2(Z; C))2 = ℓ2(Z; C2)

for the operator L = S + S−1 + Dv, cf. (2.6):

(5.12)

[
0 I

I S

] [
L − zI 0

0 I

] [
0 S

I −S

]
=

[
I 0

0 I

]
+

[
0 −I

I Dv − zI

] [
S 0

0 S

]
.

Writing vj = ei arg vj |vj |, and introducing (2 × 2) matrices

(5.13) A =

[
0 1

−1 z

]
, B =

[
0 0

0 −ei arg vj |vj |
1
2

]
, C =

[
0 0

0 |vj |
1
2

]
,
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and A×
j = A + BjCj , we observe from (5.12) that the operator L − zI has a bounded

inverse on ℓ2(Z; C) if and only if the operator I −DA×S, A× = (A×
j )j∈Z, has a bounded

inverse on ℓ2(Z; C2) since the (2 × 2) operator matrices containing S in the left-hand

side of (5.12) are invertible operators on ℓ2(Z; C2), and the right-hand side of (5.12) is

I −DA×S. Recalling the operators GA and GA× , see the Introduction, corresponding to

the difference equations xj+1 = Axj and xj+1 = A×
j xj , xj ∈ C2, j ∈ Z, by the formulas

(GAx)j = xj+1−Axj and (GA×x)j = xj+1−A×
j xj , observe that (I−DA×S)S−1 = GA× .

Note that detA×
j = 1 and thus assumption (3.4) holds. The eigenvalues of A = A(z) will

be denoted by λ = λ(z) and λ−1; these are the roots of the equation λ2 − zλ + 1 = 0.

If |z| ≤ 2 then |λ| = 1; if |z| > 2 we choose λ so that |λ| < 1 and denote Λ = λ−1 − λ.

Thus, if |z| > 2 then A = A(z) satisfies assumptions (5.1). Then GA is invertible on

ℓ(Z; C2), and the kernel of the operator K = G−1
A

is given by (1.2) where Uj = Aj

and P = P (z) is the spectral projection for A so that σ(A|Im P ) = {λ−1}, explicitly,

P = 1
Λ

[
−λ 1
−1 λ−1

]
. Using the identity GA× = GA(I −G−1

A
DBDC) with B = (Bj)j∈Z ∈ ℓ2

and C = (Cj)j∈Z ∈ ℓ2, recalling that T = T (z) from (1.1) satisfies T = DCG−1
A

DB, and

noting that the operators I − G−1
A

DBDC and I − T are invertible at the same time, we

have the following corollary of Theorem 4.6.

Proposition 5.3. Assume v = (vj)j∈Z ∈ ℓ1(Z; R). If |z| > 2 then z ∈ σ(L) on ℓ2(Z; C)

if and only if E(z) = 0 for the Evans function E(z) = det(I − T (z)).

We remark that the Evans determinant E(z) here is defined, cf. (4.18), as E(z) =

det[Y +
0 + Y −

0 ], where Y± = Y±(z) are the (2 × 2) matrix solutions of the following

system:

Y +
j − Aj(z)(I − P (z)) = −

∞∑

k=j

Aj−k−1(z)BkCkY +
k , j ∈ Z,

Y −
j − Aj(z)P (z) =

j−1∑

k=−∞

Aj−k−1(z)BkCkY −
k , j ∈ Z.

(5.14)

Recall that the solutions satisfy Y +
j = Y +

j (I−P (z)), Y −
j = Y −

j P (z). Also, because (5.14)

are Volterra-type equations, passing to λ∓jY ±
j and using (2.12), one can easily see that

Y± = (Y ±
j ) are indeed defined for all j ∈ Z.

Next, we will use the special structure of A, Bj , and Cj to simplify system (5.14).

Introduce matrices

W =

[
1 1

λ λ−1

]
, W−1 = Λ−1

[
λ−1 −1

−λ 1

]
, V =

[
−1 −1

1 1

]
, Ã =

[
λ 0

0 λ−1

]
,

and remark that Ã = W−1AW and Λ−1vjV Ã = W−1BjCjW for the matrices A, Bj , and

Cj introduced in (5.13). The change of variables x̃j = W−1xj transforms the equation

xj+1 = A×
j xj to the equation x̃j+1 = (Ã + Λ−1vjV Ã)x̃j with the diagonal unperturbed

coefficient Ã whose dichotomy projection P̃ = W−1PW is given by P̃ =

[
0 0

0 1

]
. Similarly,

passing in equations (5.14) to the new unknowns Ỹ± = W−1Y±W , we may use the fact

that Y+ = Y+(I − P ) and Y− = Y−P imply Ỹ+ = Ỹ+(I − P̃ ) and Ỹ− = Ỹ−P̃ to
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conclude that the second column in Ỹ+
j and the first column in Ỹ−

j are equal to zero.

Let u+
j ∈ C

2, resp. u−
j ∈ C

2 denote the first column of Ỹ+
j , resp. the second column of

Ỹ−
j . Then equations (5.14) are equivalent to the following (2 × 1) vector equations:

u+
j = [λj 0]⊤ −

∞∑

k=j

Λ−1vkÃj−k−1V Ãu+
k , j ∈ Z,

u−
j = [0 λ−j ]⊤ −

j−1∑

k=−∞

Λ−1vkÃj−k−1V Ãu−
k , j ∈ Z.

(5.15)

Introducing (2 × 1) vectors x±
j = Wu±

j given, in components, by x±
j = [x±

j (1) x±
j (2)]⊤

and passing in (5.15) to the new unknowns x±
j , we have the following system of equations

equivalent to (5.14):

x+
j = [λj λj+1]⊤ −

∞∑

k=j

Λ−1vk[λ−j+k+1 − λj−k−1 λ−j+k − λj−k]⊤x+
k (2),

x−
j = [λ−j λ−j−1]⊤ +

j−1∑

k=−∞

Λ−1vk[λ−j+k+1 − λj−k−1 λ−j+k − λj−k]⊤x−
k (2).

(5.16)

Recall that y = (yj)j∈Z, yj ∈ C, is a solution of the difference equation Ly = zy if and

only if x = (xj)j∈Z with xj = [yj−1 yj ]
⊤ ∈ C2 is a solution of the equation xj+1 = A×

j xj .

Moreover, since det A×
j = 1, if y+ and y− are two solutions of the equation Ly = zy

with the corresponding x+ and x−, then the Wronskian

(5.17) W(y+,y−) := y+
j−1y

−
j − y+

j y−
j−1 = det[x+

j x−
j ]

does not depend on j ∈ Z.

A direct calculation shows that solutions x± = (x±
j ) of (5.16) have the property

x±
j+1(1) = x±

j (2). Also, x± satisfy the equation x±
j+1 = A×

j x±
j because Y± in (5.14) satisfy

this equation. Thus, letting y±
j = λ∓1x±

j (2) and keeping only the second component of

the vectors in (5.16), we have obtained the solutions y± = (y±
j ) of the second order

difference equation Ly = zy that satisfy the following equations:

y+
j = λj −

∞∑

k=j

Λ−1vk(λ−j+k − λj−k)y+
k , j ∈ Z,

y−
j = λ−j +

j−1∑

k=−∞

Λ−1vk(λ−j+k − λj−k)y−
k , j ∈ Z.

(5.18)

Introducing κ < 0 so that λ = eκ, (5.18) could be rewritten as follows:

y+
j = ejκ −

∞∑

k=j

vk
sinh(j − k)κ

sinh κ
y+

k , j ∈ Z,

y−
j = e−jκ +

j−1∑

k=−∞

vk
sinh(j − k)κ

sinh κ
y−

k , j ∈ Z.
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The solutions y± = (y±
j )j∈Z±

are asymptotic to λ±j = e±jκ as j → ±∞; these are

the Jost solutions of Ly = zy, cf. [CS, XVII.1.9-10], [GH, Sec. 2], [GM, (4.52)] for the

continuous and [C, C1], [FT, Sec. III.2], [GH, (6.6)], [HKS], [T, (10.3)], and [To, (3.3.1)]

for the discrete models. Recalling that y± = y±(z) and definition (5.17) of the Wronskian

of the solutions, we define the Jost function, J = J (z), by J (z) := Λ−1W(y+(z),y−(z)),

cf. [T, Sec. 10.2] and [To, (3.3.19)]. Our last claim is that, in fact, the Evans function for

the Schrödinger equation is the same as the Jost function.

Proposition 5.4. If v = (vj)j∈Z ∈ ℓ1(Z; R) and |z| > 2 then E(z) = J (z).

Proof. Using the choice of transformations converting (5.14) to (5.18), we infer:

E(z) = det[Y +
0 + Y −

0 ] = det[WỸ +
0 W−1 + WỸ −

0 W−1] = detW det[Ỹ +
0 + Ỹ −

0 ] detW−1

= det[u+
0 u−

0 ] = det[W−1x+
0 W−1x−

0 ] = Λ−1 det[x+
0 x−

0 ]

= Λ−1W(y+,y−) = J (z),

which concludes the proof.
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