PERSPECTIVES IN OPERATOR THEORY
BANACH CENTER PUBLICATIONS, VOLUME 75
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2007

ON THE SPECTRUM AND EIGENFUNCTIONS
OF THE OPERATOR (Vf)(x fo

I. Yu. DOMANOV

Institute of Applied Mathematics and Mechanics, NAS of Ukraine
Roza-Luzemburg St. 74, Donetsk, 83114, Ukraine
E-mail: domanovi@yahoo.com

1. Introduction. It is well known that the Volterra operator V : f — fo t)dt defined
on L?(0,1) (C[0,1]) is quasinilpotent, that is, o(V) = {0}. It was pointed out in [5]-[6]
that the operator

o(x)
(1) Vo f— /0 f(t)dt

which is a composition of integration and substitution with ¢ € C[0, 1] is quasinilpotent
on C[0,1] if ¢(z) < x for all z € [0,1].

Let ¢ : [0,1] — [0,1] be a measurable function and let Vy : LP(0,1) — LP(0,1)
(1 < p < ) be defined by (1). It was proved in [12]-[13] that Vj is quasinilpotent
on LP(0,1) if and only if ¢(z) < x for almost all = € [0,1]. It was also noted in [13]
and proved in [14] that the spectral radius of V,« defined on L?(0,1) or C[0,1] is 1 — «
0<a<l).

We note also paper [4], where the hypercyclicity of V. was proved on some Fréchet
space.

In this note we find the spectrum of V,« defined on L?(0,1) and investigate some
properties of its eigenfunctions.

NoOTATIONS. Let X be a Banach space and let T" be a bounded operator on X. Then
kerT := {x € X : Ta = 0} denotes a kernel of T and R(T) := {Tz :x € X} denotes a
range of T'. I denotes the identity operator on X; spanFE denotes the closed linear span
of the set £ C X; 1 denotes the function f = 1 in L?(0,1); Zy := {0,1,2,...}. For
simplicity we set Y*  ay :=0if n > m.
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2. Auxiliary results. The following two Lemmas are well known. For the sake of com-
pleteness, proofs are given.

LEMMA 1. The system {(Inx)"}°°, is complete in L*(0,1).

Proof. Since the Laguerre functions fy,(z) := e’w/zfiuemé—nn(x”e*””) (n € Zy) form [1]
an orthonormal basis in L?(0, 00), the system {z"e~%/2}22_ is complete in L?(0, 00). Let
the operator T : L?(0,00) — L?(0,1) be defined by

@) =T,

It is easily proved that T is a surjective isometry. Thus the system {T'(z"e~%/2)}20 , =
{(=Inx)"}5°, is complete in L?(0,1). m

REMARK 1. Consider an operator C': L?(0,1) — L?(0,1) defined by (Cf)(z) = f(z) —
le %t)dt. It is well known [2] that C is a simple unilateral shift. Since kerC* = {¢- 1 :
¢ € C}, it follows [8] that the set {C™1}5°, forms an orthonormal basis in L?(0,1). It
can easily be checked that (C"1)(z) = P,(Inx), where P, is a polynomial of degree n.

Thus L?(0,1) = span{(lnz)™ : n > 0}.

LEMMA 2. Let A be a compact operator defined on a Hilbert space H, Af, = Anfn and
span{f, :n > 1} = H. Then

1) UP(A) = {)\n}ﬁ’il;
2) if Xi # X\j for i # j then for every eigenvalue of A the algebraic multiplicity is
equal to one.

Proof. 1) Let A € 0,(A) and A # A, for all n = 1,2,.... Then \ € 0,(A*) and hence
H # (ker(A* — XI))l =R(A— M) =span{(A—A])f, :n>1}
=span{(A, — A)fn :n > 1} =span{f, :n>1} = H.

This contradiction proves 1).
2) Let A\, € 0,(A). Since A is a compact operator and span{f, : n > 1} = H, we
obtain

dimker(A — \pI)™ = dimR(A — AD)™

= dim (span{(A, — Ap)™fp i1 > 01T
:dim(span{fn:nzo,n;ék})J‘zl, m=1,2,....
Hence the algebraic multiplicity of Ay is equal to one. m

The following Lemma is a rephrasing of Problems 1.50, V.161, V.162 from [9].

LEMMA 3. Let |q] < 1 then

o 00 qk(k+1)/2
DFE(2):=[11—-¢g"2)=1+ > TEDERCL 1)21C is an entire function.
ot Silg—1) (g5 —
0ol R
2) The polynomials Pn(z) == 1+ > 2F have only real

= (=Kl (g—1)---(¢" - 1)

positive zeroes.
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3. Main results
PROPOSITION 1. Let 0 < o < 1 and V,, := Vya be defined on L?(0,1). Then

1) op(Va) ={(1 —a)a"" R
2) the algebraic multiplicity of every eigenvalue of V,, is equal to one;

3)
QM2
fnt1(z) = In" x—f—z = (—a) . (1o In" x|, n e Zy

is an eigenfunction for the operator V,, with eigenvalue Apy1 := (1 — a)a™;

4)

(kfl)(k7272n)/2 1_ak—1

gni1(a —1+Z e p e G

is an eigenfunction for the operator V¥ with eigenvalue Api1 := (1 — a)a™.

5) the system {f,}22, is complete in L*(0,1);

6) the system {g,}2>, is not complete in L*(0,1).

7) the operator V,, does not admit a spectral synthesis, i.e. there exists an invariant
subspace E such that V,|g is quasinilpotent.

Proof. 3) Since 2¢ In" x € C[0, 1] for all € > 0 and m € Z,, we have that f,.; € L%(0,1).
Let us check that f,41(z) is an eigenfunction of V,, corresponding to the eigenvalue
Ant1 = (1 — a)a™. By definition, put

nl O[Ic(kfl)/2(1 _ a)k

n— = , k=1...n.
A Py s ey "
Then
a n! a(kfl)(k72)/2(1 _ a)kfl ok
= Onrl@) =kt DCnenle) = O =g — T — k) <1 VI 1>
| (k=1)(k=2)/2(1 _ \k—1
= n @ (1 a) s k =1...n.
n—k)! (1-a)...(1—ak)
Further,

(2) az® L (2Y) = az® L (zY) e <1n” %+ Z Cr_p(a)In"* a:“)

k=1

2 n ] k(k=1)/2(1 _ 4)F
_ a1 n n o (1-a) —kq1,.n—k
=azx 1 (a”ln SC-i-E (n—k‘)!(l—a)...(l—ak)an In T
k=1

2am1 [aln"z & n! o= DE=2)/2(1 _ q)k-1 i
= (1-a)a"sT= " z
(1-a)a"z? <1a +Z(nfk)! O—a)..  (1—af = 7] "E&

k=1
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n 1
trToa < +ZC” & ( — k) In" Rl x)

20-1 (aln x el )
=g 1o +nln" "z

11—«

200—1 - (IC%f, « n— - n—

1o (Ei%(i)ln Fo+ 3 Cusrpa(@)(n—k +1)In w)
k=1 k=2

2a—1

—ri-a

aln™x n i aCr_i( ek
- +ﬁ n x—i—Z( (n—k—i—l)anH(oz)) In"""x

201 [ ln™ - n! o= DE=2)/2(] _ g)k-1 &
=gzg1-=a In"~ , €Z,.
* (1—a +kz_:1 (n—k)! (1-a)...(1-ak) vt nE o

It follows from (2)-(3) that az®~! f,41(z*) = (1 — @)™ f}, 4 (x). Thus
(Vi) (@ / Fusa(t)dt = / ot )it = (1= o [ (o
= (1= a)a"(fas1(2) = far1(0)) = (1 = )" fuya(2), n € L.

4) The convergence of the series

(k=1 (k—2-2n)/2

k-1
Z A—a) (o l)a: , z €10,1]

follows from d’Alembert rule. Since # = —|— -+ k + > k — 1, we obtain that

a—1)(ak-1)
ak—1_1
=1 > x @D for x € [0,1]. Now the absolute convergence of g, (z) for z € [0,1]
(and hence continuity of g,) is implied by the convergence of S.
Let us check that g,11(z) is an eigenfunction for the operator V* with the corre-
sponding eigenvalue A, 11 := (1 — a)a™:
1

(4) (V) (&) = / oy (1)t

1/

B 1/a+z (k 1)(k—2— 271)/2( )ak—lx(ljg)zl]v;71 1
l—oz (1=ak ) 1—ak al/e

N > -1 kflak(k7172n)/2 1_ak‘
= (1= (<1 ! iy (LT = A (81 82)
,;1

= A41(51 = (1 = gnt1(2))) = A1 (S1 = 1) + Any1gny1(2).
By Lemma 3 1)

X (—1)k-lgkk—1-2n)/2 o k(E+1)/2,(—n—1)k

6 S$i=), I-a)...(1-aF) 2 e D) (@_p- Tl D=1

k=1

Combining (4) and (5), we get (V. gn+1)(2) = Apt19n+1(2).
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5) It can be proved that E,, 41 :=span{f1,..., fny1} =span{zT=s In"z: k=0...n}.
Hence by Lemma 1

Eo :=span{fy : k€ Zy} =span{zTa "z : k € Z,} = 272 L2(0,1) = L?(0,1).
1), 2) follow from 5) and Lemma 2.

6) It follows from Miintz-Szédsz theorem [7], [11] that the system {x<1 e 122 is not
complete in L2(0,1). Since span{g, : n > 1} C span{x<1 =5 > 0}, we have that the
system {g,}5; is not complete in L?(0,1).

7) Let E = span{g, : n > 1}*. Then V,E C E and by 5) the operator V,|g is

quasinilpotent. m

COROLLARY 1. Let 0 < a < 1, ¢p(x) = 1 — (1 — 2)'/®. Then the operators Vu and V

are unitarily equivalent and hence o,(Vy) = {(1 — a)a™1}52,.

Proof. Let U be a unitary operator defined by (U f)(z) = f(1 — «). Then simple compu-
tations show that V. = U1V, U. =

REMARK 2. Suppose ¢(z) = (1 — (1 —z)**), then ¢/(0) = 1/a. Thus Corollary 1 states

that the condition ¢’(0) = oo is not necessary for card{c,(Vy)} = cc.

REMARK 3. It is interesting to note that if ¢(¢(x)) = x then the operator V, is selfad-

joint, and hence eigenfunctions of V, form an orthonormal basis in L?(0,1). The state-

ments 5) and 6) of Proposition 1 imply that the operator V,, is not similar and even qua-

sisimilar (see definition in [8], [10]) to V,*. It contrasts to the case a =1 : V* = U1V U.
It follows also that V, is not quasisimilar to any selfadjoint operator.

COROLLARY 2. 1) f,(x) is a continuous function with n real zeroes which belong to [0, 1];
2) zeroes of fn(x) and fny1(x) interlace.

Proof. 1) The continuity of f,(z) was proved in Proposition 1. Let us prove that the
function f,41 has n + 1 zeroes which belong to [0, 1]. By definition, put

Pu(a) = (M ) )

In"™ ¢
k(kfl)/z(l 7ozk)
1 In~"¢ ’ .
( +Z '1—a)...(1—ak) " —

ax

ok k+1)/2

- Z (n—K)!'(a—1).. (ak—l)xk'

It can easily be checked that
_a n —
fr1(t) =75 In" tP, (m) -
It follows from Lemma 3 2) that the polynomial P, has exactly n positive zeroes. Thus
the function f,,4+1 has n + 1 zeroes which belong [0, 1].
2) Let us note that (2" P, y1(z7 1)) = na" 1P, (2~ !). Therefore zeroes of P, (z) and
P, +1(x) interlace. Hence zeroes of f,(z) and f,+1(z) interlace. m
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REMARK 4. We suppose that eigenfunctions g, of the operator V. have the same prop-
erties of zeroes as f,,. Namely

1) gn(z) is a continuous function with n real zeroes which belong to [0, 1];
2) zeroes of g, (x) and gn41(z) interlace.

REMARK 5. Proposition 1 as well as Corollary 2 hold also if the operator V,, is defined
on LP(0,1) (1 < p < o0). To prove it one can easily check that the operator V, defined
on L?(0,1) is quasisimilar to the operator V,, defined on LP(0,1).

REMARK 6. It was proved in [4] that V, is hypercyclic on the Fréchet space Cy([0, 1]) :=
{u € C([0,1]) : u(0) = 0}, endowed with the system of seminorms

[ulls = lu®)], k=12,....

max
te[0,1—-1/(k+1)]
If the operator V,, is defined on LP(0,1) (1 < p < o0) then o(V}) is an infinite set and
hence (see [3]) V,, cannot be even supercyclic on L?(0, 1).
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