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1. Introduction. It is well known that the Volterra operator V : f →
∫ x

0
f(t)dt defined

on Lp(0, 1) (C[0, 1]) is quasinilpotent, that is, σ(V ) = {0}. It was pointed out in [5]–[6]

that the operator

(1) Vφ : f →

∫ φ(x)

0

f(t)dt

which is a composition of integration and substitution with φ ∈ C[0, 1] is quasinilpotent

on C[0, 1] if φ(x) ≤ x for all x ∈ [0, 1].

Let φ : [0, 1] → [0, 1] be a measurable function and let Vφ : Lp(0, 1) → Lp(0, 1)

(1 ≤ p < ∞) be defined by (1). It was proved in [12]–[13] that Vφ is quasinilpotent

on Lp(0, 1) if and only if φ(x) ≤ x for almost all x ∈ [0, 1]. It was also noted in [13]

and proved in [14] that the spectral radius of Vxα defined on Lp(0, 1) or C[0, 1] is 1 − α

(0 < α < 1).

We note also paper [4], where the hypercyclicity of Vxα was proved on some Fréchet

space.

In this note we find the spectrum of Vxα defined on L2(0, 1) and investigate some

properties of its eigenfunctions.

Notations. Let X be a Banach space and let T be a bounded operator on X. Then

kerT := {x ∈ X : Tx = 0} denotes a kernel of T and R(T ) := {Tx : x ∈ X} denotes a

range of T . I denotes the identity operator on X; spanE denotes the closed linear span

of the set E ⊂ X; 1 denotes the function f ≡ 1 in L2(0, 1); Z+ := {0, 1, 2, . . . }. For

simplicity we set
∑m

k=n ak := 0 if n > m.
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2. Auxiliary results. The following two Lemmas are well known. For the sake of com-

pleteness, proofs are given.

Lemma 1. The system {(lnx)n}∞n=0 is complete in L2(0, 1).

Proof. Since the Laguerre functions fn(x) := e−x/2 1
n!e

x dn

dxn (xne−x) (n ∈ Z+) form [1]

an orthonormal basis in L2(0,∞), the system {xne−x/2}∞n=0 is complete in L2(0,∞). Let

the operator T : L2(0,∞) → L2(0, 1) be defined by

(Tf)(x) :=
f(− lnx)

x1/2
.

It is easily proved that T is a surjective isometry. Thus the system {T (xne−x/2)}∞n=0 =

{(− lnx)n}∞n=0 is complete in L2(0, 1).

Remark 1. Consider an operator C : L2(0, 1) → L2(0, 1) defined by (Cf)(x) = f(x) −
∫ 1

x
f(t)

t dt. It is well known [2] that C is a simple unilateral shift. Since kerC∗ = {c · 1 :

c ∈ C}, it follows [8] that the set {Cn1}∞n=0 forms an orthonormal basis in L2(0, 1). It

can easily be checked that (Cn1)(x) = Pn(lnx), where Pn is a polynomial of degree n.

Thus L2(0, 1) = span{(lnx)n : n > 0}.

Lemma 2. Let A be a compact operator defined on a Hilbert space H, Afn = λnfn and

span{fn : n > 1} = H. Then

1) σp(A) = {λn}
∞
n=1;

2) if λi 6= λj for i 6= j then for every eigenvalue of A the algebraic multiplicity is

equal to one.

Proof. 1) Let λ ∈ σp(A) and λ 6= λn for all n = 1, 2, . . . . Then λ ∈ σp(A
∗) and hence

H 6=
(

ker(A∗ − λI)
)⊥

= R(A − λI) = span{(A − λI)fn : n > 1}

= span{(λn − λ)fn : n > 1} = span{fn : n > 1} = H.

This contradiction proves 1).

2) Let λk ∈ σp(A). Since A is a compact operator and span{fn : n > 1} = H, we

obtain

dimker(A − λkI)m = dimR(A − λkI)m
⊥

= dim (span{(λn − λk)mfn : n ≥ 0})
⊥

= dim (span{fn : n ≥ 0, n 6= k})⊥ = 1, m = 1, 2, . . . .

Hence the algebraic multiplicity of λk is equal to one.

The following Lemma is a rephrasing of Problems I.50, V.161, V.162 from [9].

Lemma 3. Let |q| < 1 then

1) Fq(z) :=
∞
∏

k=1

(1 − qkz) = 1 +
∞
∑

k=1

qk(k+1)/2

(q − 1) · · · (qk − 1)
zk is an entire function.

2) The polynomials Pn(z) := 1 +
n
∑

k=1

n!

(n − k)!

qk(k+1)/2

(q − 1) · · · (qk − 1)
zk have only real

positive zeroes.
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3. Main results

Proposition 1. Let 0 < α < 1 and Vα := Vxα be defined on L2(0, 1). Then

1) σp(Vα) = {(1 − α)αn−1}∞n=1;

2) the algebraic multiplicity of every eigenvalue of Vα is equal to one;

3)

fn+1(x) = x
α

1−α

(

lnn x +
n
∑

k=1

n!

(n − k)!

αk(k−1)/2(1 − α)k

(1 − α) . . . (1 − αk)
lnn−k x

)

, n ∈ Z+

is an eigenfunction for the operator Vα with eigenvalue λn+1 := (1 − α)αn;

4)

gn+1(x) = 1 +
∞
∑

k=2

(−1)k−1 α(k−1)(k−2−2n)/2

(1 − α) . . . (1 − αk−1)
x

1−αk−1

(1−α)αk−1 , n ∈ Z+

is an eigenfunction for the operator V ∗
α with eigenvalue λn+1 := (1 − α)αn.

5) the system {fn}
∞
n=1 is complete in L2(0, 1);

6) the system {gn}
∞
n=1 is not complete in L2(0, 1).

7) the operator Vα does not admit a spectral synthesis, i.e. there exists an invariant

subspace E such that Vα|E is quasinilpotent.

Proof. 3) Since xε lnm x ∈ C[0, 1] for all ε > 0 and m ∈ Z+, we have that fn+1 ∈ L2(0, 1).

Let us check that fn+1(x) is an eigenfunction of Vα corresponding to the eigenvalue

λn+1 := (1 − α)αn. By definition, put

Cn−k(α) :=
n!

(n − k)!

αk(k−1)/2(1 − α)k

(1 − α) . . . (1 − αk)
, k = 1 . . . n.

Then

α

1 − α
Cn−k(α)+(n−k+1)Cn−k+1(α) =

n!

(n − k)!

α(k−1)(k−2)/2(1 − α)k−1

(1 − α) . . . (1 − αk−1)

(

αk

1 − αk
+ 1

)

=
n!

(n − k)!

α(k−1)(k−2)/2(1 − α)k−1

(1 − α) . . . (1 − αk)
, k = 1 . . . n.

Further,

(2) αxα−1fn+1(x
α) = αxα−1(xα)

α
1−α

(

lnn xα +

n
∑

k=1

Cn−k(α) lnn−k xα

)

= αxα−1+ α2

1−α

(

αn lnn x +

n
∑

k=1

n!

(n − k)!

αk(k−1)/2(1 − α)k

(1 − α) . . . (1 − αk)
αn−k lnn−k x

)

= (1 − α)αnx
2α−1
1−α

(

α lnn x

1 − α
+

n
∑

k=1

n!

(n − k)!

α(k−1)(k−2)/2(1 − α)k−1

(1 − α) . . . (1 − αk)
lnn−k x

)

, n ∈ Z+,

and

(3) f ′
n+1(x) =

α

1 − α
x

α
1−α−1

(

lnn x +
n
∑

k=1

Cn−k(α) lnn−k x

)
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+x
α

1−α

(

n lnn−1 x

x
+

n−1
∑

k=1

Cn−k(α)
1

x
(n − k) lnn−k−1 x

)

= x
2α−1
1−α

(

α lnn x

1 − α
+ n lnn−1 x

)

+x
2α−1
1−α

(

n
∑

k=1

αCn−k(α)

1 − α
lnn−k x +

n
∑

k=2

Cn−k+1(α)(n − k + 1) lnn−k x

)

= x
2α−1
1−α

[

α lnn x

1 − α
+

n

1 − α
lnn−1 x +

n
∑

k=2

(

αCn−k(α)

1 − α
+ (n − k + 1)Cn−k+1(α)

)

lnn−k x

]

= x
2α−1
1−α

(

α lnn x

1 − α
+

n
∑

k=1

n!

(n − k)!

α(k−1)(k−2)/2(1 − α)k−1

(1 − α) . . . (1 − αk)
lnn−k x

)

, n ∈ Z+.

It follows from (2)-(3) that αxα−1fn+1(x
α) = (1 − α)αnf ′

n+1(x). Thus

(Vαfn+1)(x) =

∫ xα

0

fn+1(t)dt =

∫ x

0

αtα−1fn+1(t
α)dt = (1 − α)αn

∫ x

0

f ′
n+1(t)dt

= (1 − α)αn(fn+1(x) − fn+1(0)) = (1 − α)αnfn+1(x), n ∈ Z+.

4) The convergence of the series

S :=
∞
∑

k=2

α(k−1)(k−2−2n)/2

(1 − α) . . . (1 − αk−1)
xk−1, x ∈ [0, 1]

follows from d’Alembert rule. Since αk−1−1
(α−1)(αk−1)

= 1
α + · · ·+ 1

αk−1 > k− 1, we obtain that

xk−1 > x
αk−1

−1

(α−1)(αk−1) for x ∈ [0, 1]. Now the absolute convergence of gn(x) for x ∈ [0, 1]

(and hence continuity of gn) is implied by the convergence of S.

Let us check that gn+1(x) is an eigenfunction for the operator V ∗
α with the corre-

sponding eigenvalue λn+1 := (1 − α)αn:

(4) (V ∗
α gn+1)(x) =

∫ 1

x1/α

gn+1(t)dt

= 1 − x1/α +

∞
∑

k=2

(−1)k−1α(k−1)(k−2−2n)/2

(1 − α) . . . (1 − αk−1)

(1 − α)αk−1

1 − αk
x

1−αk

(1−α)αk−1

∣

∣

∣

1

x1/α

= (1 − α)αn
∞
∑

k=1

(−1)k−1αk(k−1−2n)/2

(1 − α) . . . (1 − αk)
(1 − x

1−αk

(1−α)αk−1 ) =: λn+1(S1 − S2)

= λn+1(S1 − (1 − gn+1(x))) = λn+1(S1 − 1) + λn+1gn+1(x).

By Lemma 3 1)

(5) S1=
∞
∑

k=1

(−1)k−1αk(k−1−2n)/2

(1 − α) . . . (1 − αk)
=−

∞
∑

k=1

αk(k+1)/2α(−n−1)k

(α − 1) . . . (αk − 1)
=−(Fα(α−n−1) − 1) = 1.

Combining (4) and (5), we get (V ∗
α gn+1)(x) = λn+1gn+1(x).
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5) It can be proved that En+1 := span{f1, . . . , fn+1} = span{x
α

1−α lnk x : k = 0 . . . n}.

Hence by Lemma 1

E∞ := span{fk : k ∈ Z+} = span{x
α

1−α lnk x : k ∈ Z+} = x
α

1−α L2(0, 1) = L2(0, 1).

1), 2) follow from 5) and Lemma 2.

6) It follows from Müntz-Szász theorem [7], [11] that the system {x
1−αn

(1−α)αn }∞n=0 is not

complete in L2(0, 1). Since span{gn : n ≥ 1} ⊂ span{x
1−αn

(1−α)αn : n ≥ 0}, we have that the

system {gn}
∞
n=1 is not complete in L2(0, 1).

7) Let E = span{gn : n ≥ 1}⊥. Then VαE ⊂ E and by 5) the operator Vα|E is

quasinilpotent.

Corollary 1. Let 0 < α < 1, φ(x) = 1 − (1 − x)1/α. Then the operators V ∗
xα and Vφ

are unitarily equivalent and hence σp(Vφ) = {(1 − α)αn−1}∞n=1.

Proof. Let U be a unitary operator defined by (Uf)(x) = f(1− x). Then simple compu-

tations show that V ∗
xα = U−1VφU .

Remark 2. Suppose φ(x) = (1− (1−x)1/α)′, then φ′(0) = 1/α. Thus Corollary 1 states

that the condition φ′(0) = ∞ is not necessary for card{σp(Vφ)} = ∞.

Remark 3. It is interesting to note that if φ(φ(x)) = x then the operator Vφ is selfad-

joint, and hence eigenfunctions of Vφ form an orthonormal basis in L2(0, 1). The state-

ments 5) and 6) of Proposition 1 imply that the operator Vα is not similar and even qua-

sisimilar (see definition in [8], [10]) to V ∗
α . It contrasts to the case α = 1 : V ∗ = U−1V U .

It follows also that Vα is not quasisimilar to any selfadjoint operator.

Corollary 2. 1) fn(x) is a continuous function with n real zeroes which belong to [0, 1];

2) zeroes of fn(x) and fn+1(x) interlace.

Proof. 1) The continuity of fn(x) was proved in Proposition 1. Let us prove that the

function fn+1 has n + 1 zeroes which belong to [0, 1]. By definition, put

Pn(x) :=

(

t−
α

1−α fn+1(t)

lnn t

∣

∣

∣

t=e−
1−α
αx

)

=

(

1 +
∞
∑

k=1

n!

(n − k)!

αk(k−1)/2(1 − αk)

(1 − α) . . . (1 − αk)
ln−k t

)

∣

∣

∣

t=e−
1−α
αx

= 1 +

∞
∑

k=1

n!

(n − k)!

αk(k+1)/2

(α − 1) . . . (αk − 1)
xk.

It can easily be checked that

fn+1(t) = t
α

1−α lnn tPn

(

−α

(1 − α) ln t

)

.

It follows from Lemma 3 2) that the polynomial Pn has exactly n positive zeroes. Thus

the function fn+1 has n + 1 zeroes which belong [0, 1].

2) Let us note that (xnPn+1(x
−1))′ = nxn−1Pn(x−1). Therefore zeroes of Pn(x) and

Pn+1(x) interlace. Hence zeroes of fn(x) and fn+1(x) interlace.
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Remark 4. We suppose that eigenfunctions gn of the operator V ∗
xα have the same prop-

erties of zeroes as fn. Namely

1) gn(x) is a continuous function with n real zeroes which belong to [0, 1];

2) zeroes of gn(x) and gn+1(x) interlace.

Remark 5. Proposition 1 as well as Corollary 2 hold also if the operator Vα is defined

on Lp(0, 1) (1 ≤ p < ∞). To prove it one can easily check that the operator Vα defined

on L2(0, 1) is quasisimilar to the operator Vα defined on Lp(0, 1).

Remark 6. It was proved in [4] that Vα is hypercyclic on the Fréchet space C0([0, 1]) :=

{u ∈ C([0, 1]) : u(0) = 0}, endowed with the system of seminorms

‖u‖k = max
t∈[0,1−1/(k+1)]

|u(t)|, k = 1, 2, . . . .

If the operator Vα is defined on Lp(0, 1) (1 ≤ p < ∞) then σ(V ∗
α ) is an infinite set and

hence (see [3]) Vα cannot be even supercyclic on Lp(0, 1).

Acknowledgments. I am grateful to Professor J. Zemánek for encouraging me to study
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