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Abstra
t. In this work, we begin with a survey of 
omposition operators on the Hardy spa
e H2and on the Wiener algebra A+ of absolutely 
onvergent Taylor series, with spe
ial emphasis ontheir 
ompa
tness, or invertibility, or isometri
 
hara
ter. The main results are due respe
tivelyto J. Shapiro and D. Newman.In a se
ond part, we present more re
ent results, due to Gordon and Hedenmalm on the onehand, and to Bayart, the author et al. on the other hand, 
on
erning the analogues of H2 and
A+ in the setting of Diri
hlet series. We are led to the intermediate study of Taylor series inseveral, or 
ountably many, variables. We �nish with some open problems.0. Introdu
tion. The 
ontext in whi
h 
omposition operators are generally studied isthe following: Ω is an open set of C (o

asionally of C

d), H(Ω) is the set of holomorphi
fun
tions f : Ω → C, endowed with its natural topology of 
ompa
t 
onvergen
e, X is aBana
h spa
e 
ontinuously embedded in H(Ω), and φ is a holomorphi
 self-map of Ω (inshort φ ∈ H
(
Ω,Ω)

). The 
omposition operator Cφ with symbol φ is then formally de�nedby Cφ(f) = f ◦φ, and maps in parti
ular X to H(Ω). And the question is: when does Cφmap X to itself? (Then, Cφ is automati
ally bounded, by the 
losed graph Theorem).The answer depends very mu
h on the spa
e X and on the map φ, and a big amount ofresear
h work has been devoted to this question, in the last twenty years, with spe
ialemphasis on the 
onne
tions between the operator-theoreti
 properties of Cφ : X → X,and the analyti
 properties of φ : Ω → Ω. We refer to the books [S2℄, [CoM
Cl℄ and tothe arti
les whi
h they quote; the 
ase of Hardy or of Bergman spa
es is studied there ingreat detail. We 
an also have two di�erent Bana
h spa
es X and Y ⊂ H(Ω), and studythe Cφ's mapping X to Y ; see the interesting paper [HJ℄ in this dire
tion.In this rather short survey, we shall deliberately restri
t ourselves to four spa
es Xand to four theoreti
al aspe
ts of the operator Cφ, namely:2000 Mathemati
s Subje
t Classi�
ation: Primary 47B33; Se
ondary 30B50, 42B35.Key words and phrases: 
omposition operators, Taylor series, Diri
hlet series.The paper is in �nal form and no version of it will be published elsewhere.[261℄ 
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262 H. QUEFFÉLEC1) Boundedness;2) Compa
tness;3) Automorphi
 
hara
ter;4) Isometri
 
hara
ter.Other important theoreti
al aspe
ts, like spe
trum, hyper
y
li
ity, et
. will be leftaside.Our four spa
es will be two Hilbert spa
es and two Bana
h algebras:1) The Hardy-Hilbert spa
e H2 of analyti
 fun
tions f(z) =
∑∞

0 anz
n with square-summable 
oe�
ients: ‖f‖2 =

∑∞
0 |an|2 <∞. We often write f̂(n) instead of an.2) The Wiener-Bana
h algebra A+ of analyti
 fun
tions f(z) =

∑∞
0 anz

n with sum-mable 
oe�
ients: ‖f‖ =
∑∞

0 |an| <∞.3) The Hardy-Diri
hlet Hilbert spa
eH2 of analyti
 fun
tions f admitting a Diri
hletseries expansion f(s) =
∑∞

1 ann
−s with square-summable 
oe�
ients: ‖f‖2 =∑∞

1 |an|2 <∞.4) The Wiener-Diri
hlet algebra A+ of analyti
 fun
tions admitting a Diri
hlet seriesexpansion f(s) =
∑∞

1 ann
−s with summable 
oe�
ients:

‖f‖ =
∑∞

1 |an| <∞.As we shall see, the fun
tional properties ofH2 andH2, or of A+ and A+, are quitedi�erent; in parti
ular, to study this last spa
e, we will be led to the intermediatestudy of the spa
es A+(Tk), A+(T∞), of absolutely 
onvergent Taylor series in k(resp. in�nitely many) 
omplex variables.Two general and easy properties will be frequently used:
(1) Cφ1◦φ2

= Cφ2
◦ Cφ1

for any φ1, φ2 : Ω → Ω.

(2) C∗
φ(Ka) = Kφ(a) for any a ∈ Ω.(Here, X is a Hilbert spa
e of analyti
 fun
tions on Ω, with reprodu
ing kernel K, and

C∗
φ is the adjoint of Cφ).A word on the notations and on the 
ontent: when proofs are given in full detail inexisting papers, we generally omit, or brie�y sket
h, them. Conversely, when they areonly sket
hed in the literature, we add some detail, for the 
onvenien
e of the reader.
D will denote the open unit disk; we will frequently write the 
omplex number s withRiemann's notation:

s = σ + it, σ = ℜs, t = ℑs.
Cθ will denote the open half-plane ℜs > θ, where θ is a given real number.The paper is divided into six se
tions: in Se
tion 1, we study the Hardy spa
e H2; inSe
tion 2, we study the Wiener algebra A+; Se
tion 3 introdu
es to the Diri
hlet seriessetting; Se
tions 4 and 5 study the Diri
hlet analogues H2, A+ of H2 and A+; �nally,Se
tion 6 is devoted to some 
on
luding remarks and questions.1. The Hardy spa
es H2. Let us �rst �x some notation, and re
all some basi
 fa
ts:
φ will always denote an analyti
 self-map of D; m will denote the Haar measure ofthe 
ir
le T, and we shall write ∫

. . . dm for ∫ 2π

0
. . . dθ

2π ; AutD = {λφa} is the group of



COMPOSITION OPERATORS 263automorphisms of D, with λ ∈ T, a ∈ D, φa(z) = z−a
1−āz ; φ is inner if |φ∗(eiθ)| = 1 m-a.e.,where φ∗(eiθ) is the radial limit of φ at eiθ; then, φ∗ maps T to itself; �nally, if a ∈ D,

Pa : T → R+ denotes the Poisson kernel at a: Pa(eit) = 1−|a|2
|eit−a|2 . The following fa
ts are
lassi
al:

(3) H2 is a Hilbert spa
e of fun
tions holomorphi
 in D.
(4) Ka(z) =

1

1−āz is the reprodu
ing kernel of H2 at a; Ka

‖Ka‖
w→ 0 as |a| <→ 1.

(5) For any f ∈ H2, ‖f‖2 = sup
0<r<1

∫
|f(reiθ)|2dm =

∫
|f∗(eiθ)|2dm.If φ(0) = 0 and if u, v : D → R are subharmoni
 fun
tions su
h that v = u ◦φ, we saythat v is subordinate to u, and we have the famous [S2℄:Theorem 1.1 (Littlewood's subordination prin
iple). If v is subordinate to u, then(6) ∫

v(reiθdm ≤
∫
u(reiθ)dm, for any 0 < r < 1.Sin
e u = |f |2 is subharmoni
 when f ∈ H2, (6) immediately gives(7) If φ(0) = 0, Cφ is a 
ontra
tion of H2 to itself.Note that the 
onverse is true: (2) implies C∗

φ(1) = Kφ(0), so that (1− |φ(0)|2)−1/2 =

‖Kφ(0)‖ ≤ 1, and that φ(0) = 0.The 
ase φ(0) = a is handled by the following (easy to 
he
k) observations of Nord-gren [No℄:(8) If φ is inner with φ(0) = a, we have φ∗(m) = Pam.In parti
ular, if f ∈ H2, we have that(9) ∫
|f

(
φ∗(eiθ)

)
|2dm =

∫
|f(eiθ|2Pa(eiθ)dm,and Nordgren used this to prove that(10) If φ is inner with φ(0) = a, we have ‖Cφ‖ = ‖Pa‖∞ =

(
1 + |a|
1 − |a|

)1/2

.The two fa
ts (7), (10) 
ombine to give:(11) For any φ, Cφ maps H2 to itself, and ‖Cφ‖ ≤
(

1 + |φ(0)|
1 − |φ(0)|

)1/2

.Indeed, if φ(0) = a, we have φa◦φ(0) = 0 and φ = φ−a(φaφ), so that Cφ = Cφa◦φ Cφ−aand ‖Cφ‖ ≤ ‖Cφ−a
‖ =

( 1+|a|
1−|a|

)1/2
. The question of boundedness (not of the exa
t value of

‖Cφ‖! see [Co℄) is thus automati
ally settled; and J. Shapiro [S1℄ added the following ni
espe
i�
ation to (10) (if T is an operator on H2, we denote by ‖T‖e its essential norm,i.e. its distan
e to 
ompa
t operators):Theorem 1.2 (J. Shapiro). If φ is inner with φ(0) = a, we have
‖Cφ‖e = ‖Cφ‖ =

(
1 + |a|
1 − |a|

)1/2

.



264 H. QUEFFÉLECProof. Let Kn(n = 0, 1, . . .) be the n-th partial sum operator: Knf(z) =
∑n

j=0 f̂(j)zj ,and let Rn = I − Kn be the 
omplementary orthogonal proje
tion; Rn is a norm-one,self-adjoint, operator, and Rnf → 0 for ea
h f ∈ H2, so that it easily follows (see [S1℄for the details) that, for any operator T , we have(12) ‖T‖e = lim
n→∞

‖TRn‖.Now, let f ∈ H2, with ‖f‖2 ≤ 1; if g(z) = zn+1f(z), we have Rng = g, so that (8)gives: ‖CφRn‖2 ≥ ‖CφRng‖2 = ‖Cφg‖2 =
∫
|g(eiθ)|2Pa(eiθ)dm =

∫
|f(eiθ)|2Pa(eiθ)dm =

‖Cφf‖2, showing that ‖CφRn‖2 = ‖Cφ‖2 for any n; now, (12) and (10) give the result.The integral formula (5) was adapted, through the Littlewood subordination prin
iple,to the study of boundedness for Cφ; for the study of 
ompa
tness, we need another integralrepresentation, whi
h is given by (see [S1℄, [S2℄):Theorem 1.3 (Littlewood-Paley identity). For any f ∈ H2, we have
‖f‖2 = |f(0)|2 +

∫

D

|f ′(z)|2dλ1(z),where dλ1(z) is the probability measure 2
π log 1

|z|dxdy on D.Using the 
hange of variables formula in the non-inje
tive 
ase [Fe℄, Theorem 1.3 easilyimplies the following:(13) ‖Cφf‖2 = |f
(
φ(0)

)
|2 +

∫

D

Nφ(w)

log 1
|w|

dλ1(w), for any f ∈ H2,where Nφ is the so-
alled �Nevanlinna 
ounting fun
tion�:
Nφ(w) =

∑

φ(z)=w

log
1

|z|
(
Nφ(w) = 0 if w 6∈ φ(D)

)
.

Nφ satis�es the Littlewood inequality:(14) Nφ(w) ≤ log

∣∣∣∣
1 − w̄φ(0)

w − φ(0)

∣∣∣∣, w ∈ D.(13) and (14) show part of the followingTheorem 1.4. Let φ ∈ H(D,D). Then:a) If Cφ is 
ompa
t, we have lim|z|→1
1−|φ(z)|

1−|z| = ∞.b) The 
onverse of a) is true if φ is inje
tive, or �nitely valent.
) If ‖φ‖∞ < 1, Cφ is 
ompa
t, and even in any S
hatten 
lass Sp, p > 0.d) Cφ is Hilbert-S
hmidt (∈ S2) if and only if ∫
dθ

1−|φ∗(eiθ)|dm <∞.Proof. a) We know from (4) that Ka/‖Ka‖ w→ 0, so ‖C∗
φ(Ka/‖Ka‖)‖ = ‖Kφ(a)‖/‖Ka‖

→ 0 as |a| → 1.b) φ is �nitely valent if there exists an integer p su
h that, for any w ∈ D, the equation
φ(z) = w has at most p solutions (e.g. a Blas
hke produ
t of p Möbius fa
tors is exa
tly
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p-valent); if moreover 1−|φ(z)|

1−|z| → ∞, we have
lim

|w|→1

Nφ(w)

log 1
|w|

= 0,whi
h is seen to be a su�
ient 
ondition (in fa
t also ne
essary) for the 
ompa
tness of
Cφ by using (13) (see [S1℄). But (see [S2℄) there are in�nite Blas
hke produ
ts B, forwhi
h CB is not 
ompa
t sin
e B is inner, and su
h that lim|z|→1

1−|B(z)|
1−|z| = ∞.
) This is trivial, sin
e the nth approximation number sn of Cφ is O(‖φ‖n

∞), so that∑
sp

n <∞ for any p > 0.d) Equivalently, we have
∫

dm(θ)

1 − |φ∗(eiθ)|2 =

∞∑

0

∫
|φ∗(eiθ)|2ndm = ‖φ‖2

HS <∞.Let us mention that b) was used by Ma
Cluer and Shapiro [M
ClS℄ to prove theexisten
e of a surje
tive (and �nitely valent) φ : D → D su
h that Cφ is yet 
ompa
t.Theorem 1.4 has the importantCorollary 1.5. a) There are 
ompa
t 
omposition operators Cφ for whi
h ‖φ‖∞ = 1.b) There exist 
ompa
t, but non-Hilbert-S
hmidt, 
omposition operators Cφ (then
‖φ‖∞ = 1).Proof. a) Let P be a polygon ins
ribed in D, and let φ : D → P be a 
onformal mapping.We have ‖φ‖∞ = 1, and it is fairly easy (see [S2℄, or use the S
hwarz-Christo�el formulae)to 
he
k that ∫

dm
1−|φ∗(eiθ| <∞, so that Cφ is even Hilbert-S
hmidt.b) This is more deli
ate, and we refer to [CoM
Cl℄ pp. 147�148 for the details.The general ne
essary and su�
ient 
ondition (already mentioned in b) of The-orem 1.4) was found by Shapiro [S1℄, in a beautiful way:Theorem 1.6. A ne
essary and su�
ient 
ondition for Cφ : H2 → H2 to be 
ompa
t isthat Nφ(w) = o(log 1

|w| ) as |w| <→ 1. More pre
isely, we have
‖Cφ‖e = lim

|w|→1

(
Nφ(w)

log 1
|w|

)1/2

.The 
hara
terization of 
ompa
tness for 
omposition operators on H2 is thus seen tobe a signi�
ant result, although it is 
ompletely solved. The situation is not so satisfa
torywith Diri
hlet series, as we shall see in Se
tion 4. Let us �nish with the somewhat simplerproblems of invertibility or isometry on H2.Theorem 1.7 ([M
Cl℄). For φ ∈ H(D,D), the following are equivalent:a) Cφ is Fredholm;b) Cφ is invertible;
) φ ∈ AutD.Proof. a) ⇒ 
). If φ(a) = φ(b) for some distin
t a, b ∈ D, the open mapping theoremshows the existen
e of disjoint sequen
es (an), (bn) of distin
t points su
h that φ(an) =
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φ(bn), with an → a, bn → b. Then, the fun
tions Kan
−Kbn

are linearly independent andin the kernel N of C∗
φ, so that dimN = ∞, 
ontradi
ting the Fredholm 
hara
ter of C∗

φ,and showing that φ is inje
tive. If φ is not surje
tive, a 
onne
tedness argument showsthat the boundary of φ(D) interse
ts D, and we 
an �nd v ∈ D and a sequen
e (zn) su
hthat |zn| → 1 and φ(zn) → v. Set T = C∗
φ, fn = Kzn

/‖Kzn
‖.

Tfn = Kφ(zn)/‖Kzn
‖ s→ 0, and fn

w→ 0. If L, S are a 
ompa
t and a bounded operator,we have STfn
s→ 0, whereas ‖(I + L)fn‖ → 1, preventing the relation ST = I + L, i.e.preventing T to be invertible modulo 
ompa
t operators, i.e. preventing [Ar℄ T to beFredholm. So φ is surje
tive, and we are done, sin
e 
) ⇒ b) and b) ⇒ a) are trivial.As 
on
erns isometries, we haveTheorem 1.8. For φ ∈ H(D,D), the following are equivalent:a) Cφ : H2 → H2 is (similar to) an isometry.b) φ is inner and �xes the origin.Proof. b) ⇒ a) is an immediate 
onsequen
e of (8). Conversely, if Cφ is an isometry,we have, using (8) and (7), φ(0) = 0, and so 1 = ‖Cφ(z)‖2 =

∫
|φ∗(eiθ)|2P0(e

iθ)dm =∫
|φ∗(eiθ)|2dm, implying that φ is inner. If we only assume that Cφ is similar to anisometry, things are slightly more 
ompli
ated, and we refer to [J℄ or [B1℄.2. The Wiener algebra A+. We re
all that A+ is the Bana
h algebra of fun
tions

f(z) =
∑∞

0 anz
n whi
h are analyti
 in D and have summable 
oe�
ients: ‖f‖ =∑∞

0 |an| <∞.
A+ is a 
ommutative, unital, Bana
h algebra with spe
trum D̄. In 
ontrast to the
ase of H2, if φ ∈ H(D,D), it is not automati
 that Cφ is bounded on A+, and we havethe following ni
e ne
essary and su�
ient 
ondition due to Newman [Ne℄.Theorem 2.1. The following are equivalent:a) Cφ maps A+ to itself;b) φ ∈ A+ and ‖φn‖A+ = O(1) as n → ∞; this happens if and only if all maximumpoints θ0 of |φ(eiθ)| are �ordinary points�, i.e. if and only if we have, as t→ 0,(15) log φ(ei(θ0+t)) = α0 + α1t+ αkt

k + . . . ,where k > 1 and αk 6= 0 is not purely imaginary.Newman used this theorem to give the following two non-trivial examples:Example 1. φ(z) = 1+z−z2
√

5
⇒ Cφ maps A+ to A+, and ‖φ‖∞ = 1.Indeed, writing z ∈ T under the form z = c + is, c = cos t, s = sin t, we have

|1+z−z2| = |z̄+1−z| = |1−2is| =
√

1 + 4s2 ≤
√

5. The maximum points are θ0 = ±π
2 ,and they �pass� the 
riterion (15), see [Ne℄, p. 39.Example 2. φ(z) = 12+16z−3z2

25 ⇒ Cφ does not map A+ to itself.Indeed, ‖φ∞‖ = 1 and θ0 = 0 is the only maximum point, due to the identity(16) |12 + 16z − 3z2|2 + 36|z − 1|4 = 625,



COMPOSITION OPERATORS 267for any z of modulus one. In fa
t, if we write z = c+ is, c = cos t, s = sin t we have
|12 + 16z−3z2|2 + 36|z − 1|4 = |12z̄ + 16 − 3z|2 + 36|z − 1|4 = |9c+ 16 − 15is|2

+ 144(c− 1)2 = (9c+ 16)2 + 225s2 + 144(c− 1)2 = (81 + 144)c2

+ 288c− 288c+ 225s2 + 256 + 144 = 225 + 256 + 144 = 625.And θ0 = 0 fails to pass (see [Ne℄ p. 40) the 
riterion (2.1).Compa
tness was not studied by Newman, but we 
an easily [BFLQ1℄ prove thefollowing ne
essary and su�
ient 
ondition, similar to the result of [S
℄ and [B2℄ for thealgebras H∞ and H∞.Theorem 2.2 ([BFLQ1℄). For a non-
onstant analyti
 fun
tion φ : D → D̄ indu
ing abounded Cφ : A+ → A+, the following are equivalent: a) Cφ is 
ompa
t; b) ‖φ‖∞ < 1.Proof. It is easily seen that Cφ is 
ompa
t if and only if ‖φn‖A+ → 0; and we have, bythe spe
tral radius formula
‖φ‖∞ = lim

n→∞
‖φn‖1/n

A+ = inf
n≥1

‖φn|1/n
A+ ,giving the result.Newman proved that the 
omposition operators on A+ are very poor in automor-phisms (i.e. in invertible 
omposition operators) sin
e we haveTheorem 2.3. For a bounded Cφ : A+ → A+, the following are equivalent:a) Cφ is invertible;b) φ is a rotation: φ(z) = λz, with |λ| = 1.Proof. a) ⇒ b. As in the 
ase of H2, it is easy to see that we must have φ ∈ AutD, i.e.

φ(z) = λ z−a
1−āz , with λ ∈ T and a ∈ D.But here, a big di�eren
e with H2 o

urs:Lemma 2.4. Let φ ∈ A+, with φ(eit) = eig(t), g being a real C2, non-a�ne fun
tion.Then(17) ‖φn‖A+ ≥ δ

√
n, for some positive 
onstant δ.This is proved in [Kal℄ p. 76, as a 
onsequen
e of the van der Corput inequalities forintegrals, and is sharp: we also have ‖φn‖A+ ≤ C

√
n.Now, if φ(z) = λ z−a

1−āz and if Cφ maps A+ to itself, Theorem 2.1 shows that ‖φn‖A+ =

O(1), and sin
e φ(eit) is unimodular, Lemma 2.4 shows that g has to be a�ne, so that
a = 0, whi
h �nishes the proof of Theorem 2.3.The 
omposition operators on A+ are also poor in isometries, and Harzallah (see thebook of [Kal℄ p. 144) obtained the followingTheorem 2.5. For a bounded Cφ : A+ → A+, the following are equivalent:a) Cφ is isometri
;b) φ is a monomial φ(z) = λzd, with |λ| = 1, and d ∈ N.



268 H. QUEFFÉLECWe have only to prove that a)⇒ b); this is now a spe
ial 
ase of a more general result,whi
h we shall prove in Se
tion 5. We see in that se
tion that, unlike the 
ase of H2, themain problem here is not 
ompa
tness, but boundedness.3. General fa
ts about Diri
hlet series. Re
all that a Diri
hlet series is a series ofthe form(18) A(s) =

∞∑

1

ann
−s, with s = σ + it ∈ C.The analogue of the radius of 
onvergen
e for Taylor series is here the abs
issa of
onvergen
e, but one should bear in mind the fa
t that there are several su
h abs
issas (seee.g. [Q2℄): the abs
issa σc of simple 
onvergen
e: (18) 
onverges for ℜs > σc, diverges for

ℜs < σc; the abs
issa σu of uniform 
onvergen
e: (18) 
onverges uniformly in ℜs ≥ σu+ε,not in ℜs ≥ σu − ε; the abs
issa σa of absolute 
onvergen
e: (18) 
onverges absolutelyin ℜs ≥ σa + ε, not in ℜs ≥ σa − ε; the abs
issa σh of holomorphy: A has an analyti
extension to ℜs > σh, not to ℜs > σh − ε.Those abs
issas are related by σh ≤ σc ≤ σu ≤ σa, and we have (see [Q2℄)
σa ≤ σu +

1

2
(optimal);

σa ≤ σc + 1 (optimal).The di�eren
e σa − σc 
an take any value between 0 and 1: indeed, if 0 < α < 1 andif an = einα , the Euler-Ma
laurin summation formula shows that ∑n
k=1 e

ikα ∼ n1−α

iα einα ,so that σa = 1 and σc = 1 − α.The inequality σh ≤ σc may be stri
t, whereas a Taylor series always has a singularpoint on its 
ir
le of 
onvergen
e; more pre
isely:Proposition 3.1. There exists a Diri
hlet series ∑∞
1 ann

−s = A(s) su
h that σc = 0and σh = −∞.Proof. One possibility is to take the alternate Riemann series ∑∞
1 (−1)n−1/ns =

(1 − 21−s)ζ(s); the zero of the �rst fa
tor kills the unique pole of zeta at 1, so that
σh = −∞, and 
learly σc = 0; any L-fun
tion asso
iated with a non-prin
ipal 
hara
termodulo q ≥ 3 has the same property; but perhaps the following example, shown to me byJ. Peyrière [P℄ some years ago, is the most elementary: let (εn)n≥0 be the Morse sequen
e,de�ned by ε0 = 1, ε2n = εn, ε2n+1 = −εn, for whi
h

∞∑

0

εnz
n = (1 − z)(1 − z2)(1 − z4) . . . for z ∈ D.Consider the Diri
hlet series A(s) =

∑∞
0 εn/(n+ 1)s. Sin
e

1

(n+ 1)s
=

1

Γ(s)

∫ ∞

0

ts−1e−nte−tdt, ℜs > 0,we 
learly have(19) A(s) =
1

Γ(s)

∫ ∞

0

ts−1
∞∏

k=0

(1 − e−2kt)e−tdt, for ℜs > 1.



COMPOSITION OPERATORS 269The RHS of (19) is an entire fun
tion, sin
e the produ
t in the integrand has a zeroof in�nite order at t = 0; therefore, σh = −∞. If we set Sn = ε0 + · · · + εn, we have
S2n+1 =

∑n
k=0(ε2k + ε2k+1) =

∑n
k=0(εk − εk) = 0, so that |Sn| ≤ 1 for ea
h n, and anAbel summation by parts shows that σc = 0.In Se
tion 4, we shall en
ounter ℓ2-series A(s) =

∑∞
1 ann

−s with square-summable
oe�
ients; for su
h series, σa ≤ 1
2 , sin
e we have by Cau
hy-S
hwarz: ∑∞

1 |ann
−s|

≤
(∑∞

1 |an|2
)1/2(∑∞

1 n−2σ)1/2. The existen
e of �exoti
� su
h series will be useful to us,under the form of the following theorem, in whi
h (εn) denotes a sequen
e of independent,symmetri
, equidistributed, non-zero, square-integrable random variables de�ned on someprobability spa
e Ω.Theorem 3.2. a) Let (bn)n≥1 = n−1/2(log(n+ 1))−1 and Aω(s) =
∑∞

1 εn(ω)bnn
−s.Then, we have almost surely that σc(Aω) = 0 and that the line ℜs = 0 is a naturalboundary for the l2-series Aω.b) There exists a ℓ2-series A su
h that σc = 1

2 and that the line ℜs = 1
2 is a naturalboundary for A.Proof. a) Sin
e ∑∞

1 b2nn
−2σ <∞ if and only if σ ≥ 0, the three series theorem [Re℄ showsthat σc(Aω) = 0 almost surely; and sin
e the variables Xn = εnbn are independent andsymmetri
, a general result [Ka2℄ or [LiQ℄ shows that the verti
al line ℜs = 0 is almostsurely a natural boundary for Aω.b) Instead of using a probabilisti
 method as in a), we shall now use a topologi
almethod, i.e. we shall apply the Baire 
ategory theorem to the 
ompa
t spa
e Ω = {−1, 1}Nof all 
hoi
es of signs ω = (εn(ω))n≥1, εn(ω) = ±1, equipped with its natural topology.A subset E of Ω will be said to be quasi-sure if E 
ontains a dense Gδ set of Ω. Theresult will be a spe
ial 
ase of the following theorem, where 0 ≤ λ1 < λ2 < . . . < λn < . . .,

λn → ∞.Theorem 3.3. Let the general Diri
hlet series ∑∞
1 ane

−λns have the abs
issa of absolute
onvergen
e σa = α; then, the line ℜs = α is quasi-surely a natural boundary for the series
fω(s) =

∑∞
1 εn(ω)ane

−λns, ω ∈ Ω.Proof (see [Q1℄, whi
h 
ontains a slight mistake; repla
e σc by σa). Denote by Q the setof rational numbers, by E the set of ω ∈ Ω for whi
h ℜs = α is not a natural boundaryfor fω. We have(20) E =
⋃
Ea,r,N , where a = α+ it, t ∈ Q, r ∈ Q+, N integer ≥ 1,and where Ea,r,N is the set of ω's su
h that ∑∞

1 εn(ω)ane
−λns has an analyti
 extension(still denoted by fω) to D(a, r) = {s : |s− a| < r}, with |fω| ≤ N for s ∈ D(a, r).A simple normal family argument shows that ea
h Ea,r,N is 
losed in Ω; let ω0 = (εn)be an interior point of Ea,r,N , andM an integer su
h that εn(ω) = εn for ea
h n ≤M im-plies ω ∈ Ea,r,N ; if now ω ∈ Ω, write fω(s) =

[∑M
1 εnane

−λns+
∑∞

M+1 εn(ω)ane
−λns

]
+[ ∑M

1 (εn(ω)− εn)ane
−λns

]
= [fω′(s)]+ [g(s)], where ω′ ∈ Ea,r,N and where the Diri
hletpolynomial g is an entire fun
tion. So that fω 
an be analyti
ally extended to D(a, r),whith |fω(s)| ≤ N +

∑M
1 |an|e−λn(α−r) def

= C.



270 H. QUEFFÉLECNow, take 0 < ρ < r
3 , so that D̄(a+ ρ, 2ρ) ⊂ D(a, r). The Cau
hy inequalities imply

|f (j)
ω (a+ ρ)|

j!
=

|
∑∞

1 anεn(ω)λj
ne

−λn(a+ρ)|
j!

≤ C

(2ρ)j
, j = 0, 1, . . .Sin
e supεn=±1 |

∑∞
1 εnzn| ≥ 1

2

∑∞
1 |zn| for any sequen
e (zn) of 
omplex numberssu
h that ∑∞

1 |zn| <∞, we get
(∗)

∞∑

n=1

|an|jλj
ne

−λn(α+ρ)

j!
≤ 2C

(2ρ)j
.Take ρ < R < 2ρ, multiply ea
h term of (∗) by Rj , j = 0, 1, . . . , sum and permute toget

∞∑

n=1

|an|e−λn(α+ρ)eλnR ≤ 2C

∞∑

j=0

(
R

2ρ

)j

<∞.

Or ∑∞
n=1 |an|e−λn(α+ρ−R) <∞. But this is impossible sin
e α+ ρ−R < α. This 
ontra-di
tion shows that Ea,r,N is of empty interior; therefore, E is a dense Gδ set, and this endsthe proof of Theorem 3.3. To derive b) of Theorem 3.2, start from ∑∞

1
1√

n log(n+1)
n−s;the 
hoi
e an = εn(ω√

n log(n+1)
will work for some ω ∈ Ω (
hosen �topologi
ally�, not �atrandom� !)4. The Hardy-Diri
hlet spa
e H2. This is the Hilbert spa
e of Diri
hlet series f(s) =∑∞

1 ann
−s, with ‖f‖2 =

∑∞
1 |an|2 < ∞; it was introdu
ed by Hedenmalm, Lindqvist,Seip [HLS℄ to study 
ompleteness problems in L2(0, 1); an orthonormal basis of H2 isformed by the en(s) = n−s,n = 1, 2, . . ., so that the reprodu
ing kernel Ka of H2 at

a ∈ C1/2 is: Ka(s) =
∑∞

1 en(s)en(a) = ζ(s + ā), where ζ denotes the Riemann zetafun
tion; this is enough to demonstrate that the fun
tional properties of H2 will be fairlydi�erent from those of the Hardy spa
e H2 !It will be 
onvenient to introdu
e the spa
e D of fun
tions whi
h are analyti
 in
C1/2, and representable by a 
onvergent Diri
hlet series ∑∞

1 ann
−s for ℜs large enough(a typi
al example is f(s) = Ψ(s − a), where Ψ(s) = (1 − 21−s)ζ(s); f is entire, andrepresentable by ∑∞

1 (−1)n−1nan−s for ℜs > a).If f ∈ D, f(s) =
∑∞

1 ann
−s, we have f(s) → a1 as ℜs → ∞, so that there areanalyti
 fun
tions (s, es, . . .) analyti
 on C1/2 whi
h do not belong to D.This leads to a de�nition: An analyti
 fun
tion φ on C1/2 will be 
alled representableif φ(s) = c0s+ ϕ(s), where c0 is a non-negative integer and ϕ ∈ D.The following two results were proved in [GH℄: Re
all that Cθ denotes the half-plane

ℜs > θ, and that N = {1, 2, . . .} and N0 = N ∪ {0}.Theorem 4.1. Let φ : C0 → C be an analyti
 fun
tion su
h that k−φ ∈ D for k =

1, 2, . . . . Then, φ is representable.Theorem 4.2. An analyti
 self-map φ : C1/2 → C1/2 indu
es a bounded 
ompositionoperator Cφ : f 7→ f ◦ φ on H2 if and only if



COMPOSITION OPERATORS 271a) φ is representable: φ(s) = c0s+ ϕ(s), with c0 ∈ N0 and ϕ ∈ D.b) φ is �extendable� with �
ontrolled range�, namely φ has an analyti
 extension to
C0, still denoted by φ, and su
h thati) φ(C0) ⊂ C0 if c0 ≥ 1.ii) φ(C0) ⊂ C1/2 if c0 = 0.It will be 
onvenient to introdu
e also the set S of all 
ompletely multipli
ative fun
-tions χ : N → T su
h that χ(1) = 1; su
h a fun
tion is 
ompletely determined by thesequen
e (χ(p1), χ(p2), . . .) ∈ T∞ of its values on prime numbers p1, p2, . . ., so S may andwill be identi�ed with T∞, equipped with its Haar measure m.If f(s) =

∑∞
1 ann

−s ∈ H2 and χ ∈ S, we write(21) fχ(s) =
∞∑

1

anχ(n)n−s.The following result is due to Helson [He℄. Using a theorem of Men
ho� [Al℄, one 
angive a simpli�ed proof [B3℄.Theorem 4.3. Let f(s) =
∑∞

1 ann
−s ∈ H2. Then, for almost all χ ∈ S, fχ has ananalyti
 extension to C0.Proof. Set fn(χ) = χ(n). The fun
tions fn : S → C are not independent random vari-ables, but they form an orthonormal system. For su
h a system, the theorem of Men
ho�reads:

(∗) If c1, . . . , cn . . . are 
omplex numbers su
h that ∑∞
1 |cn|2 log2 n < ∞, then∑∞

1 cnfn(χ) 
onverges for almost all χ.Applying (∗) with cn = ann
−s, s ∈ C0, and letting s take the values 1

2 ,
1
3 , . . ., weimmediately get Theorem 4.3.In Se
tion 2, the integral representations for the norm (e.g. the Littlewood-Paleyidentity) played an important role; su
h representations are more di�
ult to obtain here,but we still have (see [GH℄ and [B2℄):Proposition 4.4. a) Let u ∈ L1(R), with u ≥ 0 and ‖u‖1 = 1. Set ua(t) = a−1u(ta−1),

a > 0. If f(s) =
∑∞

1 ann
−s ∈ H2, the series being uniformly 
onvergent in C0, we have(22) ‖f‖2 =

∞∑

1

|an|2 = lim
a→+∞

∫ ∞

−∞
|f(it)|2ua(t)dt.b) For any f ∈ H2 and any Borel probability measure µ on R, we have(23) ‖f‖2 = |f(∞)|2 +

∫ ∞

0

∫

R

∫

T

σ|f ′χ(σ + it)|2dσdµ(t)dm(χ).We 
an now sket
h the proof of Theorem 4.2.We �rst show that the 
onditions on φ are su�
ient. If c0 ≥ 1, for a > 0, denote by
Ψa the 
onformal mapping s 7→ s−a

s+a of C0 onto D, and by λa the probability measure
a

π(a2+t2)dt on R, for whi
h one easily 
he
ks that λa = Ψ−1
a (m),m being the Haar measureof T.



272 H. QUEFFÉLECNow, let f(s) =
∑N

1 ann
−s be a Diri
hlet polynomial, and a, b > 0; we have fromb) that ω = Ψb ◦ φ ◦ Ψ−1

a ∈ H(D,D) and F = f ◦ Ψ−1
b ∈ H2, the Hardy spa
e (F isbounded); by (1.9) of Se
tion 1, we have

∫
|F ◦ ω|2dm ≤ 1 + |ω(0)|

1 − |ω(0)|

∫
|F |2dm,equivalently(24) ∫

|f ◦ φ|2dλa ≤
1 + | φ(a)−b

φ(a)+b|

1 − | φ(a)−b
φ(a)+b|

∫
|f |2dλb.Observe (this is due to a)) that φ(a) ∼ c0a as a→ +∞, then take b = c0a, let a→ ∞and apply a) of Proposition 4.4 to u(t) = 1

π(1+t2) to get (‖ ‖ denoting the norm in H2)from (24): ‖f ◦ φ‖2 ≤ ‖f‖2.This shows that Cφ : H2 → H2 is even a 
ontra
tion.If c0 = 0, things are slightly more 
ompli
ated. We use the inequality(25) ∫ α+1

α

∣∣∣
N∑

1

ann
it
∣∣∣
2

dt ≤ C
N∑

1

n|an|2,where α ∈ R and C is a numeri
al 
onstant, whi
h is an easy 
onsequen
e of the weightedHilbert inequality [MVau℄, [MVaa℄, in whi
h λ1, . . . , λN denote distin
t real numbers and
δn = infm 6=n |λm − λn|: ∣∣∣∣

∑

m 6=n

aman

λm − λn

∣∣∣∣ ≤ C0

∑ |an|2
δn

.One easily derives from (25) that(26) ∫
|f(σ + it)|2dλa(t) ≤ C‖f‖2, ∀f ∈ H2, ∀a > 0, ∀σ > 1

2
.In fa
t, with obvious notations,

∫
|f(σ + it)|2dλa(t) ≪

∑

k∈Z

∫ k+1

k

|f(σ + it)|2 a

a2 + t2
dt

≪
∑

k∈Z

a

a2 + k2

∫ k+1

k

|f(σ + it)|2dt≪
∑

k∈Z

a

a2 + k2

∞∑

n=1

nn−2σ|an|2(by (25) applied to f(σ + it) =
∑
ann

−σn−it)
≪

∑

k∈Z

a

a2 + k2
‖f‖2 ≪ ‖f‖2

∫
a dt

a2 + t2
≪ ‖f‖2.We now argue as in the 
ase c0 ≥ 1, but we take ω = Ψb◦τ ◦φǫ◦Ψ−1

a , F = f ◦τ−1◦Ψ−1
b ,where φǫ(s) = φ(s+ ǫ), ǫ > 0, and where τ (s) = s− 1/2. We get, using the inequality

∫
|F ◦ ω|2dm ≤ 1 + |ω(0)|

1 − |ω(0)|

∫
|F |2dm,the fa
ts that F ◦ω = f ◦ φǫ ◦Ψ−1

a , λa = Ψ−1
a (m), λb = Ψ−1

b (m), and �nally (26) (where
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2 when f is a Diri
hlet polynomial), that

∫
|f ◦ φε(it)|2dλa(t) ≤ 1 + |ω(0)|

1 − |ω(0)|

∫ ∣∣∣∣f
(

1

2
+ it

)∣∣∣∣
2

dλb(t) ≤ C
1 + |ω(0)|
1 − |ω(0)| ‖f‖

2.Write f ◦φ(s) =
∑∞

n=1 bnn
−s; f ◦φ is bounded in C0, so by a famous theorem of Bohr[Bo℄, the series ∑∞

1 bnn
−s 
onverges uniformly in ea
h half-plane Cε; so that if we let

a→ ∞ (keeping ε and b �xed) above, we get from (22), sin
e ω(0) = Ψb[φ(a+ ε)− 1
2 ] →

Ψb(c1 − 1
2 ) = zb ∈ D,

∞∑

1

|bn|2n−2ε ≤ C
1 + |zb|
1 − |zb|

‖f‖2 = Cb‖f‖2.Now, let ε tend to zero to get ‖f ◦ φ‖2 =
∑∞

1 |bn|2 ≤ Cb‖f‖2. On
e again, Cφ isbounded.We now show that the 
onditions on φ are ne
essary. We shall use the following fa
ts(see [GH℄); �extension� will always mean �analyti
 extension�.Fa
t 1 ([GH℄ l.2 p. 315). If φ(s) = c0s+ϕ(s), with c0 ∈ N and ϕ ∈ D, maps Cθ to Cτ ,and if φχ(s) = c0s+ ϕχ(s), χ ∈ S, then φχ extends to a map: Cθ → Cτ .Just use the property that ϕχ(s) = limN→∞ ϕ(s + itN ), for some sequen
e (tN ) ofreal numbers.Fa
t 2 ([GH℄ Prop. 4.3, p. 321). If φ is representable and maps Cθ to C 1
2
, then

(f ◦ φ)χ(s) = fχc0 ◦ φχ(s), ∀f ∈ H2, ∀χ ∈ S.Fa
t 3 ([GH℄ Prop. 5.1, p. 322). If Cφ : H2 → H2 (with φ : C 1
2
→ C 1

2
), then for almostevery χ ∈ S, φχ has an analyti
 extension to C0.We know that φ is representable by Theorem 4.1; for ea
h integer n ≥ 2, (n−φ)χ
an be almost surely extended to C0, by Helson's theorem 4.3; and we have (n−φ)χ =

χ(n)c0n−φχ . It follows that φχ itself has almost surely an extension to C0.Now, suppose �rst that c0 ≥ 1. We know from Fa
t 3 that φχ 
an almost surely beextended to C0, and the main point is that φχ(C0) ⊂ C0; if this were not so, we would�nd s0 ∈ C0 with ℜφχ(s0) = 0 and φ′χ(s0) 6= 0, and Fa
t 2 would imply that the formula
fχc0 = (f ◦ φ)χ ◦ φ−1

χ gives an extension of fχc0 a
ross a small segment of the imaginaryaxis ℜs = 0; sin
e fχ and fχc0 have the same measure distribution, we see that, forea
h f ∈ H2, the axis ℜs = 0 is not a boundary for fχ, with positive probability; butif we take f(s) =
∑

p
1√

p log pp
−s ∈ H2, p running over primes, the variables χ(p) aresymmetri
 and independent, and the 
on
lusion a) of Theorem 3.2 is 
ontradi
ted. Wethus have φχ : C0 → C0, and Fa
t 1 shows that φ = (φχ)χ̄ has an extension to C0, with

φ(C0) ⊂ C0.If c0 = 0, Fa
t 2 gives (f ◦ φ)χ = f ◦ φχ, for any f ∈ H. If φχ does not map C0to C 1
2
, the same reasoning shows that f 
an be extended a
ross a small segment of theaxis ℜs = 1

2 . Now, take f as in b) of Theorem 3.2 to get a 
ontradi
tion.Having seen that boundedness of 
omposition operators Cφ on H2 is far from beingautomati
 (although a 
omplete des
ription of the pi
ture is available through Theo-rem 4.2), in 
ontrast with the 
ase of the Hardy spa
e H2, we now turn to the problem



274 H. QUEFFÉLECof 
ompa
tness. Here, the situation is not yet fully understood, and to the best of myknowledge there are only two papers ([B2℄, [FQV℄) giving partial answers to the question.One natural thing is to try to take advantage of the integral representation 23 to extendthe result of J. Shapiro for H2. This was partially done by Bayart [B2℄ who introdu
edthe new 
ounting fun
tion(27) Nφ(s) =
∑

w∈φ−1(s)

ℜw if s ∈ φ(C0), Nφ(s) = 0 otherwise.This 
ounting fun
tion seems to be appropriate when c0 ≥ 1. In fa
t, we haveTheorem 4.5 ([B2℄). Let φ : C0 → C0, φ(s) = c0s+ ϕ(s), c0 ≥ 1. Then
Nφ(s) ≤ 1

c0
ℜs for all s ∈ C0.This is the analogue of Littlewood's inequality (14), where φ(0) = 0 be
omes

φ(∞) = ∞.Theorem 4.6 ([B2℄). Let φ : C0 → C0, φ(s) = c0s+ ϕ(s), c0 ≥ 1. Suppose that:a) ℑϕ is bounded on C0;b) Nφ(s) = o(ℜs) if ℜs >→ 0.Then, Cφ is 
ompa
t on H2.We do not know whether the 
onverse is true; the equivalent of a) in Theorem 1.4be
omes (using the properties of the reprodu
ing kernel of H2):
(∗) If Cφ : H2 → H2 is 
ompa
t, ℜφ(a) >

1

2
for ℜs =

1

2
.But this has no interest: if φ(s) 6= s+ iτ , one 
an show that φ(C1/2) ⊂ C 1

2+ε for some
ε > 0, and if φ(s) = s+ iτ , Cφ is 
learly not 
ompa
t! At the end of this se
tion, we willrestri
t ourselves to symbols φ : C1/2 → C1/2 of the following type:(28) φ(s) = c0s+ c1 +

d∑

j=1

cqj
q−s
j , cqj

6= 0,where 2 ≤ q1 < . . . < qd are �multipli
atively independent�, i.e. ea
h integer n 
an bewritten as n = qα1
1 . . . qαd

d , αj ∈ N, in at most one way (e.g. q1 = 2, q2 = 6, q3 = 30).In that 
ase, the real numbers log q1, . . . , log qd are rationally independent, and theKrone
ker approximation theorem implies that
inf
t
ℜφ(σ + it) = c0σ + ℜc1 −

d∑

j=1

|cqj
|q−σ

j , for ea
h σ > 0.So that the boundedness 
ondition of Theorem 4.2 reads:
(29) If c0 ≥ 1, Cφ is bounded i� ℜc1 ≥ |cq1

| + · · · + |cqd
|.

(30) If c0 = 0, Cφ is bounded i� ℜc1 ≥ 1

2
+ |cq1

| + · · · + |cqd
|.A natural guess would be that Cφ is 
ompa
t if and only if the inequalities in (29)and (30) are stri
t; this is not quite the 
ase, and big di�eren
es between the 
ases c0 ≥ 1,

c0 = 0 appear; we have the following results:



COMPOSITION OPERATORS 275Theorem 4.7 ([B2℄). Suppose that c0 ≥ 1. Then, the following are equivalent:a) ℜc1 > |cq1
| + · · · + |cqd

|;d) φ(C0) ⊂ Cε for some ε > 0;
) Cφ is 
ompa
t.One only has to prove that 
) ⇒ a). Improving the useless (∗), one shows that the
ompa
tness of Cφ implies: limℜs→0
ℜφ(s)
ℜs = +∞, and this easily implies a).If c0 = 0, the integer d plays a 
ru
ial role, 
omparable to the role whi
h it plays ina famous theorem of Pólya: let e1, . . . , ed be the 
anoni
al basis of Rd, X be a randomvariable su
h that P (X = ±ej) = 1

2d , 1 ≤ j ≤ d, and (Sn) be the random walk on Zdasso
iated to X, i.e. Sn = X1 + · · · +Xn, where the X ′
ns are independent 
opies of X;thenTheorem 4.8 ([Re℄). Let (Sn) be the above random walk on Zd. Then:a) If d = 1 or 2, (Sn) is almost surely re
urrent, i.e. lim‖Sn‖ = 0 a.s.b) If d ≥ 3, (Sn) is almost surely transient, i.e. lim‖Sn‖ = ∞ a.s.In fa
t, ∑P (Sn = 0) = ∞ i� d ≤ 2. The analogue here will be the series ∑ ‖Cφ(n−s‖2and the Hilbert-S
hmidt 
hara
ter of Cφ a

ording to the values of d. We have morepre
isely the following statements:Theorem 4.9 ([FQV℄). Suppose that d = 1 and c0 = 0. Then, the following are equiva-lent:a) ℜc1 > |cq1

| + 1
2 ;b) φ(C0) ⊂ Cε+ 1

2
for some ε > 0;
) Cφ is 
ompa
t;d) Cφ is Hilbert-S
hmidt.By analyzing CφC
∗
φ, if ℜc1 = |cq1

|+ 1
2 one is led to the equivalent study of C : H2 →

H2 given by
C(zi) =

∑

j≥0

(i+ j)!

i!j!
2−i−jzj ,and we see that C = MCh, where M : H2 → H2 is the multipli
ation operator by the

H∞-fun
tion
(1 − z/2)−1,and h : D → D is given by h(z) = 1

2−z . We have lim
r

<→1

1−h(r)
1−r = 1 < ∞, therefore (seeTheorem 1.4) Ch and hen
e C are not 
ompa
t; the assertion d) will be proved later.Theorem 4.10 ([FQV℄). Suppose that d = 2 and c0 = 0. Then:a) Cφ is always 
ompa
t;b) Cφ is Hilbert-S
hmidt if and only if ℜc1 > 1

2 + |cq1
| + |cq2

|;
) There are 
omposition operators on H2 whi
h are 
ompa
t and not Hilbert-S
hmidt.



276 H. QUEFFÉLECThe most di�
ult point is a); by analyzing CφC
∗
φ, if ℜc1 = 1

2 + |cq1
| + |cq2

|, one isled to the equivalent study of an operator C : H2(T2) → H2(T2) whi
h is no longer a
omposition operator as in Theorem 4.9, but the operator f 7→
∫
C(u, v;x, y)f(u, v)du dvasso
iated with the kernel

C(u, v;x, y) =
1

4 − a(eix + e−iu) − b(eiy + e−iv)on T4, with a, b > 0 and a + b = 2. One shows that C ∈ L2(T4), so that the asso
iatedoperator C is Hilbert-S
hmidt, whi
h implies that Cφ is in the S
hatten 
lass S4, and afortiori is 
ompa
t; b) is proved later; an example for 
) is provided by φ(s) = 3
2 + 2−s+3−s

2 ;it is interesting to 
ompare with b) of 
orollary 1.5.Theorem 4.11 ([FQV℄). Suppose that d ≥ 3. Thena) If c0 ≥ 1, Cφ is Hilbert-S
hmidt if and only if ℜc1 ≥ 1
2 +

∑d
j=1 |cqj

|.b) If c0 = 0, Cφ is Hilbert-S
hmidt if and only if Cφ is bounded. In parti
ular, thereare 
omposition operators Cφ on H2, with c0 = 0 and infℜs>0 ℜφ(s) = 1
2 , whi
hare Hilbert-S
hmidt.The proof uses the following:Lemma 4.12. Let d be an integer ≥, δ1, . . . , δd > 0, n ≥ 1, and

Sn =
∑

i1+···+id=n

(
n!

i1! . . . id!

)2

δ2i1
1 . . . δ2id

dbe the sum of the squares of the multinomial 
oe�
ients. Then, as n→ ∞:(31) Sn ∼ λn− d−1
2 (δ1 + · · · + δd)

2n,where λ > 0 is a 
onstant independent from n.Proof. For equal δj 's, this is nothing but Pólya's theorem, and the general 
ase is similar;we 
an assume δ1 + · · · + δd = 1; denote by Qd the unit 
ube [
−1

2 ,
1
2

]d of Rd and set
e(x) = e2iπx, c(x) = cos 2πx, s(x) = sinπx. Parseval's relation gives
(∗) Sn =

∫

Qd

|δ1e(θ1) + · · · + δde(θd)|2ndθ1 . . . dθd.Now, we have
∣∣∣

d∑

j=1

δje(θj)
∣∣∣
2

=

d∑

j=1

δ2j + 2
∑

1≤j<k≤d

δjδkc(θj − θk)

=

d∑

j=1

δ2j + 2
∑

1≤j<k≤d

δjδk − 2
∑

1≤j<k≤d

δjδk
(
1 − c(θj − θk)

)

= 1 − 4
∑

1≤j<k≤d

δjδks
2(θj − θk).
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hange of variable θk−θ1 = ϕk, 2 ≤ k ≤ d, and use the translation-invarian
eto get
Sn =

∫

Qd−1

(
1 − 4

∑

2≤k≤d

δ1δks
2(ϕk) − 4

∑

2≤j<k≤d

δjδks
2(ϕj − ϕk)

)n

dϕ2 . . . dϕd

= n− d−1
2

∫
√

nQd−1

(
1 − 4

∑

2≤k≤d

δ1δks
2

(
Ψk√
n

)
− 4

∑
δjδks

2

(
Ψj − Ψk√

n

))n

dΨ2 . . . dΨd

(where ∑ is an abbreviation for ∑

2≤j<k≤d

)

=: n− d−1
2

∫

Rd−1

fn(Ψ2, . . . ,Ψd)dΨ2 . . . dΨd,where we have
0 ≤ fn(Ψ2, . . . ,Ψd) ≤ exp(

−4nδ1

d∑

k=2

δks
2

(
Ψk√
n

))
1√nQd−1

(Ψ2, . . . ,Ψd)

≤ exp( − 16
d∑

k=2

δ1δkΨ2
k

)
, be
ause |s(x)| ≥ 2|x| for |x| ≤ 1

2
.Moreover, fn(Ψ2, . . . ,Ψd) → g(Ψ2, . . . ,Ψd) as n→ ∞, with

g(Ψ2, . . . ,Ψd) = exp(
−4

d∑

k=2

δ1δkΨ2
k − 4

∑

2≤j<k≤d

δjδk(Ψj − Ψk)2
)
.

Lebesgue's dominated 
onvergen
e theorem now shows that Sn ∼ λn− d−1
2 , with λ =∫

Rd−1 g(Ψ2, . . . ,Ψd)dΨ2 . . . dΨd > 0.It is now easy to 
omplete the proofs of Theorems 4.9, 4.10, 4.11 with the help of thefollowing simple lemma:Lemma 4.13. Let b > 1 be �xed, and let a > 0 tend to in�nity. Then
∑

k≥1

(log k)a

kb
∼

∫ ∞

1

(log t)a

tb
dt =

Γ(a+ 1)

(b− 1)a+1
,

where Γ is the Euler gamma fun
tion.Regardless of the value of c0, and using the independen
e of the qj 's, we get
∞∑

n=1

‖Cφ(n−s)‖2 =
∑

i1,...,id≥0

δ
2i1
1 . . . δ

2id

d

(i1! . . . id!)2

∞∑

n=1

(log n)2(i1+···+id)

n2γ1
,

where γ1 = ℜc1 and δj = |cqj
|. So that, using Lemmas 4.12 and 4.13, we get with obviousnotations:
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∞∑

n=1

‖Cφ(n−s)‖2 ≈
∑

i1,...,id≥0

δ
2i1
1 . . . δ

2id

d

(i1! . . . id!)2
(2i1 + · · · + 2id)!

(2γ1 − 1)2(i1+···+id)

=
∞∑

l=1

(2l)!

(2γ1 − 1)2l(l!)2

∑

i1+...+id=l

(
l!

i1! . . . id!

)2

δ2i1
1 . . . δ2id

d

=

∞∑

l=1

Cl
2l

(2γ1 − 1)2l
Sl≈

∞∑

l=1

4l

√
l(2γ1 − 1)2l

1

l
d−1
2

(δ1+. . .+δd)
2l

=

∞∑

l=1

l−d/2

(
2(δ1 + . . .+ δd)

2γ1 − 1

)2l

.Now, if d = 1 or 2, the last series 
onverges if and only if 2γ1 − 1 > 2(δ1 + . . .+ δd), whileif d ≥ 3, it 
onverges if and only if 2γ1 − 1 ≥ 2(δ1 + . . .+ δd). This �nishes the proof.Let us mention (see [FQV℄) that Theorem 4.11 holds for more general symbols φ(s) =

c0s + c1 +
∑∞

j=1 cqj
q−s
j , where ∑

|cqj
| < ∞, cqj

6= 0, and at least three of the qj 's areindependent; Cφ is Hilbert-S
hmidt as soon as it is bounded. Nevertheless, the generalpi
ture for 
ompa
tness is not 
lear, in spite of Theorem 4.6, all the more as φ is neverinje
tive if c0 = 0 [Fa℄. We hope to 
ome ba
k to this problem of 
ompa
tness in anotherwork.In 
ontrast with the 
ase of the unit disk, there are very few invertible or isometri

omposition operators on H2. Indeed we have [B1℄:Theorem 4.14. Let Cφ : H2 → H2 be bounded. Then, the following are equivalent:a) Cφ is invertible;b) Cφ is Fredholm;
) φ(s) = s+ iτ , where τ ∈ R.Theorem 4.15. Let Cφ : H2 → H2 be bounded, with φ(s) = c0s+ϕ(s). Assume that theDiri
hlet series of ϕ 
onverges uniformly on C0. Then, the following are equivalent:a) Cφ is isometri
;b) Cφ is similar to an isometry;
) φ(s) = c0s+ iτ , where c0 ≥ 1 and τ ∈ R.5. The Wiener-Diri
hlet algebra A+. This is the Bana
h algebra of Diri
hlet series
f(s) =

∑∞
1 ann

−s, with ‖f‖ =
∑∞

1 |an| < ∞. This algebra is 
ommutative and unital,and 
an be interpreted as a spa
e of analyti
 fun
tions on C0; as we already mentioned inSe
tion 4, the study of fun
tion spa
es formed by Diri
hlet series has been the subje
t ofsome re
ent interest (see [B1℄, [B2℄, [FQ℄, [FQV℄, [HLS℄, [GH℄, [M
Ca℄ for example). Now,a method due to Bohr (see [Q2℄ for other appli
ations) identi�es the algebra A+ withthe algebra A+(T∞) formed by absolutely 
onvergent Taylor series in 
ountably manyvariables (this allows one to identify the spe
trum of A+ as D̄∞). Let us re
all the waythis identi�
ation is 
arried out. Let (pj)j≥1 be the in
reasing sequen
e of prime numbers
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(p1 = 2, p2 = 3, . . .). A fun
tion f in A+(T∞) 
an be written as

f(z) =
∑

α∈N
(∞)
0

aαz
α, with ‖f‖A+(T∞) =

∑

α

|aα| <∞,

where, as usual, we set α = (α1, . . . , αr, 0, 0, . . .) and zα = zα1
1 . . . zαr

r for z = (zj)j≥1.Then ∆ : A+ → A+(T∞) is de�ned by(32) ∆
( ∞∑

n=1

ann
−s

)
=

∞∑

n=1

anz
α1
1 . . . zαr

r , n = pα1
1 . . . pαr

r .

∆ is an isometri
 isomorphism; for s ∈ C0, f ∈ A+, g ∈ A+(T∞), we set
z[s] = (p−s

j )j≥1 ∈ D∞; ‖f‖∞ = sup
s∈C0

|f(s)|; ‖g‖∞ = sup
z∈D∞

|g(z)|.With those notations, ∆ has the two following properties (see [B2℄):(33) ∆f(z[s]) = f(s), for any f ∈ A+ and any s ∈ C0;(34) ‖∆f‖∞ = ‖f‖∞, for ea
h f ∈ A+.When we study 
omposition operators Cφ : A+ → A+ asso
iated with an analyti

φ : C0 → C0, Theorem 4.1 indi
ates that φ has to be representable, whi
h we assume on
eand for all in the sequel (as well as the fa
t that φ is non-
onstant, to avoid trivialities).A big di�eren
e with the 
ase of the Wiener algebra at on
e appears: in the latter 
ase,the identity fun
tion z ∈ A+, so that if we want Cφ to map A+ to itself, we have toassume that φ itself belongs to A+; here, the identity fun
tion s does not belong to A+,and in fa
t we do not know if the 
ondition φ ∈ A+ is ne
essary for Cφ to map A+ toitself; we have the following Theorems 5.1 and 5.2, whi
h may be viewed as analogues ofTheorems 2.1 and 2.2 respe
tively, with φn being repla
ed by n−φ (see [BFLQ1℄):Theorem 5.1. Let φ : C0 → C0. Thena) Cφ maps A+ to itself if and only if n−φ ∈ A+ for n ∈ N, and ‖n−φ‖ ≤ C for ea
h

n ∈ N.b) If φ(s) = c0s+
∑∞

1 cnn
−s with ∑∞

1 |cn| <∞, then Cφ maps A+ to itself as soonas ℜc1 ≥
∑∞

2 |cn|, regardless of the value of c0.Theorem 5.2. Let φ : C0 → C0. Thena) Cφ : A+ → A+ is 
ompa
t if and only if ‖n−φ‖ → 0 as n→ ∞.b) If Cφ is 
ompa
t, we have φ(C0) ⊂ Cδ for some δ > 0. The 
onverse is true if
φ(s) = c0s+ ϕ(s), with ϕ ∈ A+.a) is proved exa
tly as Theorem 2.2. The existen
e of δ in b) is easy: set δ =

infs∈C0
ℜφ(s); we have n−δ = ‖n−φ‖∞ ≤ ‖n−φ‖, so n−δ → 0 by a), and δ is positive;
onversely, if δ > 0 and ϕ ∈ A+, we use the following fa
ts:Fa
t 1. If φ(s) = c0s + ϕ(s) maps Cθ to Cτ and ϕ is non-
onstant, ϕ maps Cθ to

Cτ−c0θ ([GH℄).Fa
t 2. If v ∈ A+ and r ≥ 1, then r−v ∈ A+, and ‖r−v‖ ≤ r‖v‖.
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h algebra. Now, let
φ(s) = c0s + ϕ(s), with φ(C0) ⊂ Cδ and ϕ ∈ A+. We have ϕ(C0) ⊂ Cδ by Fa
t 1, andif Ψ = 2−ϕ, the spe
tral radius formula and Bohr's method (see the beginning of thisse
tion) give

lim
j→∞

‖Ψj‖1/j = sup
h∈SpA+

|h(Ψ)| = sup
s∈C0

|Ψ(s)| ≤ 2−δ,and in parti
ular ‖Ψj‖ → 0; any integer n ≥ 2 
an be written as n = 2jr, j ∈ N,
1 ≤ r ≤ 2, so that

‖n−φ‖ = ‖n−ϕ‖ = ‖2−jϕr−ϕ‖ ≤ ‖Ψj‖‖r−ϕ‖ ≤ ‖Ψj‖2‖ϕ‖,using Fa
t 2 and r ≤ 2. Therefore, ‖n−φ‖ → 0, and Cφ is 
ompa
t by Part a) of theTheorem.Note that the assumption φ(C0) ⊂ Cδ holds if ℜc1 > ∑∞
2 |cn|.However, 
onditions like ∑∞

2 |cn| ≤ ℜc1 (or < ℜc1) are not ne
essary to have bound-edness or 
ompa
tness, as shown by the following examples,Theorem 5.3. Let φ(s) = c0s+ c1 + crr
−s + cr2r−2s, where r ≥ 2, and cr, cr2 > 0.a) If(35) ℜc1 >
(cr)

2

8cr2

+ cr2 ,then Cφ : A+ → A+ is 
ompa
t.b) If Cφ : A+ → A+ is bounded (resp. 
ompa
t) and moreover cr ≤ 4cr2 , we musthave ℜc1 ≥ (cr)2

8c
r2

+ cr2 (resp. we must have (35)).
) If ℜc1 = (cr)2

8c
r2

+ cr2 , then Cφ maps A+ to itself if and only if cr 6= 4cr2 .Proof. W.l.o.g., we assume r = 2. It is easy to 
he
k that(36) If c2 ≤ 4c4 (resp. > 4c4),we have inf
s∈C0

ℜφ(s) = ℜc1 −
c22
8c4

− c4(resp. inf . . . = ℜc1 + c4 − c2). Therefore, a) and b) follow from Theorem 5.2, sin
e
c2
2

8c4
+ c4 > c2 − c4 if c2 > 4c4. But, one may give a more informative proof, whi
h hasother appli
ations (see Se
tion 6).Let H0, H1, . . . be the sequen
e of Hermite polynomials, whose generating fun
tion is

∞∑

k=0

Hk(λ)

k!
xk = exp(2λx− x2).

It is possible to show [BFLQ1℄ that putting α = ℜc1 − c2
2

8c4
− c4, we have:

(37)
∞∑

k=0

|Hk(λ)|
k!

xk ≤ C(1 + x)1/2 exp(x2 + λ2/2), where C is a 
onstant;
(38) ‖n−φ‖ = n−ℜc1

∞∑

k=0

|Hk(λn)|
k!

xk
n ≤ C(logn)1/4n−α,
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√
c4 log n, and λn = − −c2

2
√

c4

√
log n;(39) If c2 ≤ 4c4, ‖n−φ‖ ≥ n−α for n ≥ 1.And those estimates 
learly give an alternative proof of a) and b).For 
), if c2 > 4c4, we have infs∈C0

ℜφ(s) > 0 by (36), and we are done. If c2 ≤ 4c4,we have
‖2−jφ‖A+ = ‖Ψj‖A+(T),where Ψ(z) = exp[−(c1 + c2z + c4z

2) log 2], and ‖Ψ‖∞ = 1.We then apply to Ψ the Newman 
riterion (15) on ordinary points: if |ψ(eiθ0)| = 1,the 
oe�
ient α2 of t2 in the Taylor expansion of log Ψ(ei(θ0+t)) is α2 = c2

2 e
iθ0 +2c4e

2iθ0 ,so that
ℜα2 =

c2
2

cos θ0 + 2c4(2 cos2 θ0 − 1).Now, sin
e ℜc1 =
c2
2

8c4
+ c4, one easily 
he
ks that |Ψ(eiθ0)| = 1 implies cos θ0 = −c2

4c4
, sothat

ℜα2 =
c22
8c4

− 2c4.Now, if c2 6= 4c4, ℜα2 6= 0, θ0 is an ordinary point, ‖Ψj‖A+ is bounded, ‖2−jφ‖ andtherefore ‖n−φ‖ (see the proof of Theorem 5.2) are bounded, and Cφ itself is bounded.If c2 = 4c4, we have θ0 = π(mod2π), log Ψ(ei(θ0+t)) = d0 + d1t+ 0 · t2 + α3t
3 + . . ., with

α3 = (i log 2) 2c4

3 6= 0 and ℜα3 = 0, so that θ0 is not an ordinary point, and ‖2−jφ‖,
‖n−φ‖ are not bounded. In parti
ular, φ(s) = ia + c(3 + 4.2−s + 4−s), with a ∈ R and
c > 0, provides an example of a symbol φ su
h that ∑

|cn| < ∞ and φ(C0) ⊂ C0, but
Cφ is not bounded on A+.This shows that the situation as 
on
erns boundedness and 
ompa
tness is not yetfully understood. Let us now turn to the automorphisms and isometries; we �rst studythe 
ase of the algebras A+(Tk), 1 ≤ k <∞, or A+(T∞).Theorem 5.4 ([BFLQ1℄). Assume that the map φ : Dk → D̄k indu
es a bounded op-erator Cφ : A+(Tk) → A+(Tk). Then, Cφ is an automorphism if and only if φ(z) =

(ε1zσ(1), . . . , εkzσ(k)) for some permutation σ of {1, . . . , k} and some 
omplex signs
ε1, . . . , εk.Proof. Suppose that Cφ is an automorphism; φj = Cφ(zj) ∈ A+(Tk), for 1 ≤ j ≤ k,therefore φ has a 
ontinuous extension φ : D̄k → D̄k; Cφ being surje
tive, φ is inje
tive;Osgood's Theorem [Na℄ implies that det φ′(z) 6= 0 ∀z ∈ Dk, therefore φ is an openmapping on Dk, and φ(Dk) ⊂ Dk; it is easy to 
he
k that φ : D̄k → D̄k is onto, therefore
φ(Dk) = Dk, and φ is an analyti
 automorphism of Dk. Therefore, we know that [Na℄ φseparates the variables:(40) φ(z) =

(
εj

zσ(j) − aj

1 − ājzσ(j)

)

1≤j≤kwhere aj ∈ D, |εj | = 1, and σ is a permutation of {1, . . . , k}.
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(
εj

(
z − aj

1 − ājz

))n∥∥∥∥
A+

= ‖φn
j ‖A+(Tk) = O(1),and this implies, as in the proof of Theorem 2.3, that aj = 0, whi
h �nishes the proof.We 
onje
ture that the same result holds for A+(T∞), but we are only able to provethe following (whi
h will yet be su�
ient for the 
ase of A+): it is 
onvenient to denoteby B = D∞ ∩ c0 the open unit ball of the Bana
h spa
e c0; then we have:Theorem 5.5. Let φ = (φj)j : B → B be an analyti
 map su
h that Cφ maps A+(T∞)to itself. Assume that Cφ is an automorphism, and that moreover we have for ea
h k :

φk(z) = zdk

k uk(z), where dk is a integer ≥ 1 and uk(0) 6= 0; then, φ(z) = (εjzj)j, forsome sequen
e of 
omplex signs εj .Proof (see [BFLQ1℄). Let K = D̄∞; φ is a homeomorphism of K, and the assumptionsallow us to show that Ψ = φ−1 maps B to B; φ is thus an analyti
 automorphism of B,and a theorem due to Harris [Ha℄, the so-
alled analyti
 Bana
h-Stone Theorem showsthat the analogue of (40) holds, namely(41) φ(z) =

(
εj

zσ(j) − aj

1 − ājzσ(j)

)

j≥1where (aj) ∈ B, |εj | = 1, and σ is a permutation of N.As before, we must have aj = 0 for ea
h j, and �nally the assumption φk(z) = zdk

k uk(z)implies that σ is the identity.The 
ase of isometries goes as follows (see [BFLQ1℄:Theorem 5.6. Assume that φ = (φj) : Dk → D̄k indu
es a 
omposition operator Cφ :

A+(Tk) → A+(Tk). Then, Cφ is an isometry if and only if there exists a square (k × k)matrix A = (aij), with aij ∈ N0 and det A 6= 0, and 
omplex signs ε1, . . . , εk su
h that(42) φi(z) = εi z
ai1
1 . . . zaik

k , 1 ≤ i ≤ k, z = (z1, . . . , zk) ∈ Dk.Proof. If α = (α1, . . . , αk) ∈ Nk
0 , let φα = φα1

1 . . . φαk

k . If f(z) =
∑
aαz

α ∈ A+(T∞),we write aα = f̂(α) and denote by Sp f (the spe
trum of f) the set of α's for whi
h
f̂(α) 6= 0. One has the following fa
ts:Fa
t 1. Cφ is an isometry if and only if :a) φi = εiFi, 1 ≤ i ≤ k, where |εi| = 1, F̂i ≥ 0, and Fi(e) = 1 = ‖Fi‖∞, with

e = (1, 1, . . . , 1);b) if α, α′ ∈ Nk
0 are distin
t, the spe
tra of φα and φα′ do not interse
t.Fa
t 2. if φ = (φi) and if one of the φi's is not a monomial, we 
an �nd distin
telements α, α′ ∈ N
k
0 su
h that the spe
tra of φα and φα′ interse
t.Fa
t 2 needs some arithmeti
al dis
ussion, but on
e we have these fa
ts, Theorem 5.6is 
lear.In the 
ase of A+(T∞), we have no su
h pleasant statement: for example, if

I1, . . . , Im, . . . are disjoint subsets of N with more than one element, cij positive num-bers su
h that ∑
j∈Ii

cij = 1 for ea
h i ≥ 1, and if the map φ = (φi) is de�ned by
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φi(z) =

∑
j∈Ii

cijzj , then Cφ is an isometry by Fa
t 1 (whi
h holds for A+(T∞)), andyet no φi is a monomial. Under the additional assumption that φ maps T
∞ to itself, wehave a more satisfa
tory statement, namelyTheorem 5.7. Let φ : D̄∞ → D̄∞ a map indu
ing a 
omposition operator Cφ : A+(T∞)

→ A+(T∞), and su
h that moreover φ(T∞) ⊂ T∞. Then:a) There exists a matrix A = (aij)i,j≥1, with aij ∈ N0 and ∑
j aij < ∞ for ea
h i,and 
omplex signs εi su
h that φ = (φi) and(43) φi(z) = εi

∞∏

j=1

z
aij

j , i = 1, 2, . . .b) Cφ is an isometry if and only if A∗ = (aji) is inje
tive on Z(∞).The main point is the following group-theoreti
al property [R℄.Theorem 5.8 (Beurling-Helson). Let G be a dis
rete abelian group, with 
onne
ted dualgroup Γ. Let φ ∈ A(Γ), the Wiener algebra of Γ, without zeros on Γ, and su
h that
‖φn‖A(Γ) ≤ C for some 
onstant C = (n = 0,±1,±2, . . .). Then, φ is a�ne, i.e. thereexists a 
omplex number a with |a| = 1 and an element x of G su
h that φ(γ) = aγ(x)for any γ ∈ Γ.Re
all that A(Γ) = {φ : Γ → C : φ(γ) =

∑∞
1 anγ(xn), with xn ∈ G and ∑∞

1 |an|
<∞}; we set ‖φ‖A(Γ) =

∑∞
1 |an|. What the lemma says is the following: take for example

G = Z, Γ = T, φ ∈ A+(T). The assumption ‖φn‖ ≤ C for n ∈ N does not say too mu
hon φ, as the example φ(z) = 1+z−z2
√

5
of Se
tion 2 shows; but the assumption ‖φn‖ ≤ Cfor n ∈ Z says mu
h more; and pre
isely, if we assume that φ ∈ A+(T) satis�es ‖φn‖ ≤ Cfor n ∈ N and |φ(eit)| = 1, we automati
ally have ‖φn‖ ≤ C for n ∈ Z, sin
e for n ∈ Nwe have ‖φ−n‖ = ‖φ̄n‖ = ‖φn‖. Now, if we use this lemma with G = Z(∞), the dire
tsum of 
ountably many 
opies of Z, and Γ = T∞, the 
omplete dire
t sum of 
ountablymany 
opies of T, we get (43).b) follows easily, letting A and A∗ a
t on Z(∞) by the formulas A(α) = B, A∗(α) = γ,with βi =

∑
j aijαj , γj =

∑
i aijαi.We then have, if Cφ is an isometry: Cφ(zα) = φα = εαzA∗(α), and we know fromthe proof of Theorem 5.6 that the φα's have disjoint supports, therefore the A∗(α)'s aredistin
t.If we 
ombine both properties (automorphism, isometry), we get the following (re
allthat B is the open unit ball of c0).Theorem 5.9. Let φ = (φj) : B → B be an analyti
 fun
tion whi
h indu
es a 
ompo-sition operator Cφ on A+(T∞). If Cφ is an isometri
 automorphism of A+(T∞), then

φ(z) = (εjzσ(j))j, for some permutation σ of N and some sequen
e (εj)j of 
omplex signs.This follows from an inspe
tion of the proof of Theorem 5.5; if Ψ = φ−1 does not map
B to B, we �nd distin
t integers j1, j2 su
h that the spe
tra of φj1 and φj2 interse
t,whi
h prevents Cφ from being isometri
.



284 H. QUEFFÉLECNow, we return to the 
ase of the Wiener-Diri
hlet algebra A+, for whi
h the state-ments are more satisfa
tory than for A+(T∞).Theorem 5.10. Let Cφ : A+ → A+ be a 
omposition operator. The following are equiv-alent:a) φ is a verti
al translation: φ(s) = s+ iτ, τ ∈ R.b) φ is a automorphism.Proof. b) ⇒ a). We write φ(s) = c0s + ϕ(s). Cφ being surje
tive, φ is inje
tive, and
c0 ≥ 1, by a well-known result [Fa℄ of the theory of analyti
, almost-periodi
 fun
tions.We will now use the transfer operator ∆ introdu
ed at the beginning of Se
tion 5, bysetting fk(s) = p

−φ(s)
k ∈ A+, φk = ∆fk and(44) φ̃ = (φ1, φ2, . . .).We have from (33): φ̃(z[s]) = (∆fk(z[s])) = (fk(s)) = z[φ(s)], and ‖φk‖∞ = ‖fk‖∞ by(34). Moreover, no φk is 
onstant, so the open mapping theorem implies that |φk(z)| < 1for z ∈ B, i.e. φ̃(z) ∈ D∞ for z ∈ B. Let us show that in fa
t φ̃(z) ∈ B. We have

fk(s) = p−c0s
k p

−ϕ(s)
k = p−c0s

k gk(s), with ‖gk‖A+ = ‖Cϕ(p−s
k )‖A+ ≤ C. So that φk(z) =

zc0

k ∆gk(z), and by (34),
|φk(z)| ≤ |zk|c0‖∆gk‖∞ = |zk|c0‖gk‖∞ ≤ |zk|c0‖gk‖A+ ≤ C|zk|c0 .Therefore, φ̃ maps B to B. Moreover, setting T = ∆Cφ∆−1 : A+(T∞) → A+(T∞), oneeasily 
he
ks that T is nothing but the 
omposition operator Cφ̃ asso
iated with φ̃. Forthis φ̃, we are fortunately in a position to apply Theorem 5.5: indeed we have that T isan automorphism and that

φk(z) = zc0

k ∆gk(z),with
∆gk(0) = lim

ℜs→∞
p
−ϕ(s)
k = p−c1

k 6= 0,and we know that c0 ≥ 1.Theorem 5.5 now implies that φ̃(z) = (εjzj)j , for some sequen
e (εj) of 
omplex signs.If we test this equality at the points z[s] = (p−s
j )j , s ∈ C0, and if we use (33), we get

p
−φ(s)
j = εjp

−s
j , s ∈ C0, j ∈ N.Taking the moduli, we obtain ℜφ(s) = ℜs. Sin
e φ(s) − s is analyti
 in the domain C0this implies φ(s) − s = iτ , with τ ∈ R.Theorem 5.11. Let Cφ : A+ → A+ be a 
omposition operator. The following are equiv-alent:a) φ(s) = c0s+ iτ , with c0 ∈ N and τ ∈ R.b) Cφ is an isometry.Proof. b) ⇒ a). Here, we do not need the transfer operator ∆, but 
learly the method ofproof of Theorem 5.5 works to show that(45) If m and n are distin
t integers, the spe
tra of m−φ and n−φ are disjoint.
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ally implies c0 6= 0, otherwise 1 ∈ Sp(n−φ) for ea
h n. Now if φ(s) =

c0s + c1 + ω(s), with ω(s) = crr
−s + cr+1(r + 1)−s + . . ., r ≥ 2 and cr 6= 0, one easily
he
ks that (nr)c0 ∈ Sp(n−φ)∩Sp(nr)−φ for large n, 
ontradi
ting (45). Therefore, ω = 0and we are done.The results of this se
tion are mainly taken from [BFLQ1℄.6. Con
luding remarks and questions. 1) Let φ = (φ1, . . . , φk) : D̄k → D̄k, non-
onstant, with Cφ : A+(Tk) → A+(Tk). If k = 1, we must have φ(D) ⊂ D, and this isused impli
itly in the proof of Theorem 2.2; but if k > 1, some 
omponent of φ (e.g.

φ(z1, z2) = ( 1
2z1, 1)) might be a unimodular 
onstant, and the analogue of Theorem 2.2 is(46) If φ = (φ1, . . . , φk) : D̄k → D̄k indu
es a bounded operator Cφ on A+(Tk),

Cφ is 
ompa
t if and only if ea
h 
omponent φj is either 
onstant or su
h that
‖φj‖∞ < 1.2) Our knowledge of 
ompa
t, or even Hilbert-S
hmidt, 
omposition operators Cφ on

H2 is far from being satisfa
tory. Bayart [B2℄ proved the following:Theorem 6.1. Let Cφ : H2 → H2 be bounded. Then:a) If Cφ is Hilbert-S
hmidt, we must have φ(C0) ⊂ C 1
2
.b) If φ(C0) ⊂ C 1

2+ε for some ε > 0, then Cφ is Hilbert-S
hmidt.We have already seen in Theorem 4.11 that the assumption of b) is not ne
essary, al-though it is ne
essary (see Theorems 4.9, 4.10) for symbols φ(s) = c0s+c1+
∑d

j=1 cqj
q−s
j ,where q1, . . . , qd are independent and d = 1 or 2.Using the properties of Hermite polynomials (see Se
tion 5), we were able to prove[BFLQ2℄:Theorem 6.2. Let r ∈ N, r ≥ 2, and φ(s) = c0s+c1 +crr

−s +cr2r−2s, with cr, cr2 > 0.Then, the following are equivalent:a) Cφ : H2 → H2 is Hilbert-S
hmidt.b) φ(C0) ⊂ C 1
2+ε for some ε > 0.3) An irritating question is the following: if φ(s) = c0s+ ϕ(s), with ϕ ∈ D, and if weknow that Cφ : A+ → A+, is it true that ϕ ∈ A+?Theorem 5.3 might indi
ate that this is not so; on the other hand, it would be in-teresting, in this Theorem, to treat the 
ase of 
omplex 
oe�
ients cr, cr2 . Here, re
entestimates due to Rusev [Ru℄ might help.4) The estimate ‖φn‖A+ ≥ δ

√
n of Lemma 2.4 is best possible. In fa
t (see [4℄, p. 76),it is fairly easy to see that ‖φn‖A+ ≤ C

√
n if φ = eig and g is C∞ (say), and a similar
omputation in dimension k (i.e. if we work with A+(Tk)) easily gives the estimate

‖φn‖A+(Tk) ≤ Ckn
k/2. Conversely, if φ is not a�ne, we probably have ‖φn‖A+(Tk) ≥ δ

√
n.When do we have the �best� minorization ‖φn‖A+(Tk) ≥ δnk/2? In general, it would beinteresting to have a pre
ise quantitative version of Beurling-Helson's lemma 5.8 when φis not a�ne.5) In the proof of Theorem 5.10, we used the fa
t that an analyti
 almost-periodi
fun
tion ∑

ane
−λns, uniformly 
onvergent in a strip a < ℜs < b, is never inje
tive on
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an an almost-periodi
 fun
tion f : R → C be inje
tive? (Of 
ourse,if f is real-valued, this is impossible: if f is inje
tive, it is monotoni
, therefore notalmost-periodi
).6) The ugly Theorem 5.5 is yet su�
ient to des
ribe the 
omposition automorphismsof A+ (observe in passing that Bayart's dire
t approa
h for H2 does not seem to workhere, whi
h explains our �detour� through A+(T∞)). Is the natural statement true, i.e. isit true that Cφ is an automorphism of A+(T∞) if and only if φ(z) = (εjzσ(j))j for somepermutation σ of N and some sequen
e (εj) of 
omplex signs?7) It is not true in general that the 
omposition operator Cφ̃ on A+(T∞) 
orrespondsto a 
omposition operator Cφ on A+, in (44) of the proof of Theorem 5.10; for example,if φ̃ = (φi), with
φi(z) =

z2i−1 + z2i

2
, i = 1, 2, . . . ,the equation φ̃(z[s]) = z[φ(s)] would give

p−s
2i−1 + p−s

2i

2
= p

−φ(s)
i , i = 1, 2, . . . ;taking equivalents of both members as s→ ∞ would give that

φ(s)

s
→ log p2i−1

log p2i
,and it is impossible to have that, even for one i, sin
e φ(s)

s → c0 ∈ N0 !A
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