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Abstract. In this work, we begin with a survey of composition operators on the Hardy space H>
and on the Wiener algebra A1 of absolutely convergent Taylor series, with special emphasis on
their compactness, or invertibility, or isometric character. The main results are due respectively
to J. Shapiro and D. Newman.

In a second part, we present more recent results, due to Gordon and Hedenmalm on the one
hand, and to Bayart, the author et al. on the other hand, concerning the analogues of H? and
AT in the setting of Dirichlet series. We are led to the intermediate study of Taylor series in
several, or countably many, variables. We finish with some open problems.

0. Introduction. The context in which composition operators are generally studied is
the following:  is an open set of C (occasionally of C%), H(Q) is the set of holomorphic
functions f : Q2 — C, endowed with its natural topology of compact convergence, X is a
Banach space continuously embedded in H(£2), and ¢ is a holomorphic self-map of 2 (in
short ¢ € H(Q, Q)) The composition operator Cy with symbol ¢ is then formally defined
by C4(f) = fo¢, and maps in particular X to H(2). And the question is: when does Cy
map X to itself? (Then, Cy is automatically bounded, by the closed graph Theorem).
The answer depends very much on the space X and on the map ¢, and a big amount of
research work has been devoted to this question, in the last twenty years, with special
emphasis on the connections between the operator-theoretic properties of Cy : X — X,
and the analytic properties of ¢ : Q — Q. We refer to the books [S2], [CoMcC]] and to
the articles which they quote; the case of Hardy or of Bergman spaces is studied there in
great detail. We can also have two different Banach spaces X and Y C H(2), and study
the Cy’s mapping X to Y see the interesting paper [HJ| in this direction.

In this rather short survey, we shall deliberately restrict ourselves to four spaces X
and to four theoretical aspects of the operator Cy, namely:
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1) Boundedness;
2) Compactness;
3) Automorphic character;

4) Isometric character.

Other important theoretical aspects, like spectrum, hypercyclicity, etc. will be left
aside.
Our four spaces will be two Hilbert spaces and two Banach algebras:

1) The Hardy-Hilbert space H? of analytic functions f(z) = Y ° a,2" with square-
summable coefficients: || f[|2 = Y20 |an|? < 0o. We often write f(n) instead of a,.

2) The Wiener-Banach algebra A™ of analytic functions f(z) = Y a,,2™ with sum-
mable coefficients: || f]| = Yo" |an| < oc.

3) The Hardy-Dirichlet Hilbert space H? of analytic functions f admitting a Dirichlet
series expansion f(s) = Y.{" a,n~* with square-summable coefficients: ||f||* =
21 lanl? < oo

4) The Wiener-Dirichlet algebra AT of analytic functions admitting a Dirichlet series
expansion f(s) = > a,n~* with summable coefficients:

17 = 25 lan] < o0

As we shall see, the functional properties of H? and H?, or of AT and At are quite
different; in particular, to study this last space, we will be led to the intermediate
study of the spaces AT(TF), AT (T>), of absolutely convergent Taylor series in k
(resp. infinitely many) complex variables.

Two general and easy properties will be frequently used:
(1) Corop, = Cp,0Cy,  for any ¢q, ¢a : 2 — Q.
(2) Ci(Ka) = Kyq) for any a € Q.

(Here, X is a Hilbert space of analytic functions on €2, with reproducing kernel K, and
% is the adjoint of Cy).

A word on the notations and on the content: when proofs are given in full detail in
existing papers, we generally omit, or briefly sketch, them. Conversely, when they are
only sketched in the literature, we add some detail, for the convenience of the reader.

D will denote the open unit disk; we will frequently write the complex number s with
Riemann’s notation:

s=oc+it, oc=%Rs, t=Ss.

Cy will denote the open half-plane Rs > 0, where 6 is a given real number.

The paper is divided into six sections: in Section 1, we study the Hardy space H?; in
Section 2, we study the Wiener algebra A™; Section 3 introduces to the Dirichlet series
setting; Sections 4 and 5 study the Dirichlet analogues H2, A1 of H? and A™; finally,
Section 6 is devoted to some concluding remarks and questions.

1. The Hardy spaces H2. Let us first fix some notation, and recall some basic facts:
¢ will always denote an analytic self-map of D; m will denote the Haar measure of

the circle T, and we shall write [...dm for OQW . %; AutD = {Ad,} is the group of
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automorphisms of D, with A € T, a € D, ¢4(2) = 2=%; ¢ is inner if |¢*(e??)| = 1 m-a.e.,

l—az’

where ¢*(e?) is the radial limit of ¢ at €; then, ¢* maps T to itself; finally, if a € D,
. 2
P, : T — R denotes the Poisson kernel at a: P,(e') = Alal - The following facts are

= Jef—al?
classical:
(3) H? is a Hilbert space of functions holomorphic in D.
1 K, w
(4) K,(z) = 1z, is the reproducing kernel of H? at a; HTZH 2 0as |a| S 1.
(5) For auy f € 2 |f* = swp [ I(re")Pdm = [ 17°(e")Pm.
0<r<1

If $(0) = 0 and if u,v : D — R are subharmonic functions such that v = u o ¢, we say
that v is subordinate to u, and we have the famous [S2]:

THEOREM 1.1 (Littlewood’s subordination principle). If v is subordinate to u, then
(6) /v(remdm < /u(rew)dm7 forany 0 <r < 1.
Since u = |f|? is subharmonic when f € H?, (6) immediately gives

(7) If $(0) = 0, Cy is a contraction of H? to itself.

Note that the converse is true: (2) implies C:;(l) = Ky(0), so that (1- |(;S(O)\2)71/2 =
| Kol <1, and that ¢(0) =0

The case ¢(0) = a is handled by the following (easy to check) observations of Nord-
gren [No]:

(8) If ¢ is inner with ¢(0) = a, we have ¢*(m) = P,m.
In particular, if f € H?, we have that
) 15 @) dm = [ 17 P Pu()am

and Nordgren used this to prove that

1+a|)1/2

(10) If ¢ is inner with ¢(0) = a, we have ||Cy|| = || Pylloc = (1 al
—|a

The two facts (7), (10) combine to give:

2
1 0
(11) For any ¢, Cjy maps H? to itself, and ||Cy| < (l()g .
1—[¢(0)]
Indeed, if $(0) = a, we have ¢,0¢(0) = 0 and ¢ = ¢_,(¢a¢), so that Cy = Cy, 00 Cy_,
and ||Cy|| < ||Cy_, |l = (1+|‘Z| )1/2. The question of boundedness (not of the exact value of

[|Cs||! see [Co]) is thus automatically settled; and J. Shapiro [S1] added the following nice
specification to (10) (if T is an operator on H?, we denote by ||T||. its essential norm,
i.e. its distance to compact operators):

THEOREM 1.2 (J. Shapiro). If ¢ is inner with ¢(0) = a, we have

B B 1__'_|a| 1/2
IColle = ol = (112
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Proof. Let K,(n =0,1,...) be the n-th partial sum operator: K, f(z) = Z;'L:o f(j)zj,
and let R, = I — K,, be the complementary orthogonal projection; R,, is a norm-one,
self-adjoint, operator, and R, f — 0 for each f € H?, so that it easily follows (see [S1]
for the details) that, for any operator T, we have

(12) 7. = lim TR,
Now, let f € H?, with ||f|2 < 1; if g(2) = 2"T1f(2), we have R,g = g, so that (8)

gives: [ CyRall? > ICoRag| = [Cygl> = J lg(e®)PPale®)dim = [ [£(ci®)2Pa(ei®)dm =
|Cy f|?, showing that ||CyR,[|? = ||Cy||? for any n; now, (12) and (10) give the result. m

The integral formula (5) was adapted, through the Littlewood subordination principle,
to the study of boundedness for Cy; for the study of compactness, we need another integral
representation, which is given by (see [S1], [S2]):

THEOREM 1.3 (Littlewood-Paley identity). For any f € H?, we have
117 = FOF + [ 17 )P,

where d\1(z) is the probability measure 2 log ‘71|dacdy on D.

Using the change of variables formula in the non-injective case [Fe|, Theorem 1.3 easily
implies the following;:
Ny(w)

D 1og‘—i}|

(13) ICsf1? = £ (¢(0))* + dhi(w), for any f € H?,

where Ny is the so-called “Nevanlinna counting function™

Ny(w) = Y log|—i‘ (Ny(w) = 0if w & ¢(D)).
$(2)=w

N satisfies the Littlewood inequality:

(14 Ny(w) < og| 0]

w —¢(0)
(13) and (14) show part of the following

, weD.

THEOREM 1.4. Let ¢ € H(D, D). Then:

a) If Cy is compact, we have lim|,|_,; %ﬂ(j)' = 00.

=3

)
) The converse of a) is true if ¢ is injective, or finitely valent.

) If |¢]le < 1, Cy is compact, and even in any Schatten class S,, p > 0.
d) C, is Hilbert-Schmidt (€ S2) if and only if [ %dm < o0.

¢]

Proof. a) We know from (4) that K,/||K.| = 0, so HC;;(KG/HKQH)H = [[Kgpa)ll/ | Kall
— 0 as |a| — 1.

b) ¢ is finitely valent if there exists an integer p such that, for any w € D, the equation
¢(z) = w has at most p solutions (e.g. a Blaschke product of p Mébius factors is exactly
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1-]¢(2)]
17|

— 00, we have

Ny(w)
Jw|—1 IOg ﬁ

p-valent); if moreover
= 0,

which is seen to be a sufficient condition (in fact also necessary) for the compactness of

Cy by using (13) (see [S1]). But (see [S2]) there are infinite Blaschke products B, for
1= [B()| _
1-[z]

c) This is trivial, since the n'® approximation number s,, of Cy; is O(||¢||%), so that
>8P < oo for any p > 0.

d) Equivalently, we have

[ e - Z/|¢> O Prdm = 6l < oo.

Let us mention that b) was used by MacCluer and Shapiro [McCIS] to prove the
existence of a surjective (and finitely valent) ¢ : D — D such that Cy is yet compact.

which Cpg is not compact since B is inner, and such that lim,_;

Theorem 1.4 has the important

COROLLARY 1.5. a) There are compact composition operators Cy for which ||¢|. = 1.
b) There exist compact, but non-Hilbert-Schmidt, composition operators Cy (then
6]l = 1)

Proof. a) Let P be a polygon inscribed in D, and let ¢ : D — P be a conformal mapping.
We have ||¢]|co = 1, and it is fairly easy (see [S2], or use the Schwarz-Christoffel formulae)
to check that f % < 00, so that Cy is even Hilbert-Schmidt.

b) This is more delicate, and we refer to [CoMcCl| pp. 147-148 for the details. =

The general necessary and sufficient condition (already mentioned in b) of The-
orem 1.4) was found by Shapiro [S1], in a beautiful way:
THEOREM 1.6. A necessary and sufficient condition for Cy : H> — H? to be compact is
that Ny(w) = o(log ﬁ) as |w| S 1. More precisely, we have

N, 1/2
IColle = Tm (&) ‘
|w|— logm

The characterization of compactness for composition operators on H? is thus seen to
be a significant result, although it is completely solved. The situation is not so satisfactory
with Dirichlet series, as we shall see in Section 4. Let us finish with the somewhat simpler
problems of invertibility or isometry on H2.

THEOREM 1.7 ([McCl]). For ¢ € H(D, D), the following are equivalent:

a) Cy is Fredholm;
b) Cy is invertible;
c) ¢ € Aut D.

Proof. a) = c). If ¢(a) = ¢(b) for some distinct a,b € D, the open mapping theorem
shows the existence of disjoint sequences (a,), (b,) of distinct points such that ¢(a,) =
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¢(by), with a,, — a, b, — b. Then, the functions K, — K3, are linearly independent and
in the kernel N of CF, so that dim N = oo, contradicting the Fredholm character of C',
and showing that ¢ is injective. If ¢ is not surjective, a connectedness argument shows
that the boundary of ¢(D) intersects D, and we can find v € D and a sequence (z,,) such
that |z,| — 1 and ¢(z,) — v. Set T' = C}, fn, = K., /|| K>, ||

Tfn = K/ 1Kz, || = 0,and f,, = 0.1f L, S are a compact and a bounded operator,
we have STf, = 0, whereas ||(I + L)f,|| — 1, preventing the relation ST = I + L, i.e.
preventing T to be invertible modulo compact operators, i.e. preventing [Ar] T to be
Fredholm. So ¢ is surjective, and we are done, since ¢c) = b) and b) = a) are trivial. m

As concerns isometries, we have
THEOREM 1.8. For ¢ € H(D, D), the following are equivalent:

a) Cy: H?> — H? is (similar to) an isometry.
b) ¢ is inner and fizes the origin.

Proof. b) = a) is an immediate consequence of (8). Conversely, if Cy is an isometry,
we have, using (8) and (7), ¢(0) = 0, and so 1 = ||Cy(2)||? = [ |¢*(e)|>Py(e?®)dm =
f |¢*(ei9)|2dm, implying that ¢ is inner. If we only assume that Cj is similar to an
isometry, things are slightly more complicated, and we refer to [J] or [B1]. =

2. The Wiener algebra A". We recall that AT is the Banach algebra of functions
f(z) = >0 anz™ which are analytic in D and have summable coefficients: ||f|| =
oo lan| < oo

A% is a commutative, unital, Banach algebra with spectrum D. In contrast to the
case of H?, if $ € H(D, D), it is not automatic that Cy is bounded on A", and we have
the following nice necessary and sufficient condition due to Newman [Ne].

THEOREM 2.1. The following are equivalent:

a) Cy maps A to itself;
b) ¢ € AT and ||¢"|| 4+ = O(1) as n — oo; this happens if and only if all mazimum
points Oy of |¢p(e')| are “ordinary points”, i.e. if and only if we have, ast — 0,

(15) log ¢(ei(9°+t)) =g +aont+ath +...,
where k > 1 and ay # 0 is not purely imaginary.

Newman used this theorem to give the following two non-trivial examples:

EXAMPLE 1. ¢(z) = % = Cy maps AT to AT, and [|¢[|o = 1.

Indeed, writing z € T under the form z = ¢+ is, ¢ = cost,s = sint, we have
14+2—2% = |Z24+1—2| = |1 —2is| = V1 + 452 < v/5. The maximum points are f = +7,
and they “pass” the criterion (15), see [Ne|, p. 39.

EXAMPLE 2. ¢(z) = % = C does not map A" to itself.
Indeed, ||¢pso|| =1 and 6y = 0 is the only maximum point, due to the identity

(16) |12 + 162 — 32%* + 36|z — 1|* = 625,
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for any z of modulus one. In fact, if we write z = ¢+ is, ¢ = cost, s = sint we have
112 + 162—32%% + 36|z — 1|* = 122 4+ 16 — 32|> + 36|z — 1|* = |9¢ + 16 — 15is|?
+ 144(c — 1)* = (9¢ + 16)? 4 22557 4 144(c — 1)* = (81 4 144)c?
+ 288¢ — 288¢ + 22552 + 256 + 144 = 225 + 256 + 144 = 625.
And 6y = 0 fails to pass (see [Ne] p. 40) the criterion (2.1).

Compactness was not studied by Newman, but we can easily [BFLQ1] prove the
following necessary and sufficient condition, similar to the result of [Sc] and [B2] for the
algebras H>® and H™.

THEOREM 2.2 ([BFLQI1|). For a non-constant analytic function ¢ : D — D inducing a
bounded Cy : At — A*, the following are equivalent: a) Cy is compact; b) ||¢]loc < 1.

Proof. 1t is easily seen that Cy is compact if and only if ||¢™| 4+ — 0; and we have, by
the spectral radius formula

ERT 1/n . 1/n
e = Jim 16717 = inf 0717,
giving the result. m

Newman proved that the composition operators on At are very poor in automor-
phisms (i.e. in invertible composition operators) since we have

THEOREM 2.3. For a bounded Cy : AT — AT, the following are equivalent:

a) Cy is invertible;

b) ¢ is a rotation: ¢(z) = Az, with |A\| = 1.
Proof. a) = b. As in the case of H?, it is easy to see that we must have ¢ € Aut D, i.e.
¢(z) =222 with A€ T and a € D.

l—az’

But here, a big difference with H? occurs:

LEMMA 2.4. Let ¢ € At, with ¢(e?) = €9, g being a real C2, non-affine function.
Then

(17) |¢™|a+ > 0v/n,  for some positive constant é.

This is proved in [Kal] p. 76, as a consequence of the van der Corput inequalities for
integrals, and is sharp: we also have ||¢"|| 4+ < Cy/n.

Now, if ¢(z) = )‘.1Z:aaz and if C, maps A" to itself, Theorem 2.1 shows that [|¢" || 4+ =
O(1), and since ¢(e') is unimodular, Lemma 2.4 shows that g has to be affine, so that

a = 0, which finishes the proof of Theorem 2.3. m

The composition operators on AT are also poor in isometries, and Harzallah (see the
book of [Kal| p. 144) obtained the following

THEOREM 2.5. For a bounded Cy : AT — AT, the following are equivalent:

a) Cy is isometric;

b) ¢ is a monomial ¢(z) = \z%, with |\| =1, and d € N.
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We have only to prove that a) = b); this is now a special case of a more general result,
which we shall prove in Section 5. We see in that section that, unlike the case of H2, the
main problem here is not compactness, but boundedness.

3. General facts about Dirichlet series. Recall that a Dirichlet series is a series of
the form

(18) A(s) = Zann_s, withs =0+ it € C.
1

The analogue of the radius of convergence for Taylor series is here the abscissa of
convergence, but one should bear in mind the fact that there are several such abscissas (see
e.g. [Q2]): the abscissa o, of simple convergence: (18) converges for Rs > o, diverges for
Rs < o; the abscissa o, of uniform convergence: (18) converges uniformly in Rs > o, +¢,
not in Rs > o, — &; the abscissa o, of absolute convergence: (18) converges absolutely
in Rs > 0, + €, not in RNs > o, — ¢; the abscissa o, of holomorphy: A has an analytic
extension to s > oj, not to Ns > oy, — €.

Those abscissas are related by oy, < 0. < 0, < 0,, and we have (see [Q2])

1
0 < 0y + 5 (optimal);
0o <o.+1 (optimal).

The difference o, — 0. can take any value between 0 and 1: indeed, if 0 < @ < 1 and

if a,, = ™", the Euler-Maclaurin summation formula shows that > oreq e~ ”1—;0 in®
so that o, =1 and 0. =1 — a.
The inequality o}, < 0. may be strict, whereas a Taylor series always has a singular

point on its circle of convergence; more precisely:

PROPOSITION 3.1. There exists a Dirichlet series > ;" ayn™* = A(s) such that o. = 0
and op = —00.

Proof. One possibility is to take the alternate Riemann series » |~ (—1)""!/n® =
(1 — 217%)¢(s); the zero of the first factor kills the unique pole of zeta at 1, so that
op = —o0, and clearly o, = 0; any L-function associated with a non-principal character
modulo ¢ > 3 has the same property; but perhaps the following example, shown to me by
J. Peyriére [P] some years ago, is the most elementary: let (&,,),>0 be the Morse sequence,
defined by €9 = 1, £9,, = €y, €241 = —Ep, for which

Zenz" =(1-2)1-2)1-2%... forzeD.
0
Consider the Dirichlet series A(s) =Y o e, /(n + 1)*. Since

1 1
I ps—lo—nt,—t gy
(n+1)s T(s) /0 c° » Rs>0,

we clearly have

1

19 A(s) = =— /00 ot 1—e 2"t e tdt, for Rs > 1.
(19) O=ri ), v e
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The RHS of (19) is an entire function, since the product in the integrand has a zero
of infinite order at t = 0; therefore, o, = —o0. If we set S,, = €9 + -+ + €5, we have
Sont1 = Dop—o(€2k + €2k41) = D po(er —€x) = 0, so that |S,| <1 for each n, and an
Abel summation by parts shows that g, = 0. =

In Section 4, we shall encounter f5-series A(s) = > [ a,n~* with square-summable

%, since we have by Cauchy-Schwarz: Y |°|a,n™*|
1/2 . . . .

< (ETO |an|2) / (2(1)0 n~27)1/2. The existence of “exotic” such series will be useful to us,

under the form of the following theorem, in which (g,) denotes a sequence of independent,

coefficients; for such series, o, <

symmetric, equidistributed, non-zero, square-integrable random variables defined on some
probability space 2.

THEOREM 3.2.  a) Let (by)n>1 = n~Y2(log(n +1))7! and A,(s) = 35 en(w)byn™*.
Then, we have almost surely that o.(A,) = 0 and that the line Rs = 0 is a natural
boundary for the lo-series A, .

b) There exists a ly-series A such that o, = % and that the line RNs = % is a natural
boundary for A.

Proof. a) Since > 1° b2n~"2% < oo if and only if ¢ > 0, the three series theorem [Re| shows
that o.(A,) = 0 almost surely; and since the variables X,, = e,b,, are independent and
symmetric, a general result [Ka2] or [LiQ] shows that the vertical line s = 0 is almost
surely a natural boundary for A,,.

b) Instead of using a probabilistic method as in a), we shall now use a topological
method, i.e. we shall apply the Baire category theorem to the compact space Q = {—1,1}1
of all choices of signs w = (e, (w))n>1, €n(w) = £1, equipped with its natural topology.

A subset E of Q will be said to be quasi-sure if F contains a dense Gy set of ). The
result will be a special case of the following theorem, where 0 < A\ < Ag < ... < A\, < ...,
A, — 00.

THEOREM 3.3. Let the general Dirichlet series Z;}O ane~** have the abscissa of absolute
convergence o, = «; then, the line s = « is quasi-surely a natural boundary for the series

fu(s) =2 en(w)aze %, w e .

Proof (see [Q1], which contains a slight mistake; replace o, by ¢,). Denote by @ the set
of rational numbers, by E the set of w €  for which Rs = « is not a natural boundary
for f,. We have

(20) E = UE“»T:N’ where a = a +it, t € Q, 7 € QT, Ninteger > 1,

and where F, ,. v is the set of w’s such that > 7" e, (w)a,e~*»* has an analytic extension
(still denoted by f,,) to D(a,r) = {s:|s —a| <r}, with |f,| < N for s € D(a,r).

A simple normal family argument shows that each E, , x is closed in ; let wy = (&,,)
be an interior point of E, . n, and M an integer such that ¢, (w) = ¢, for each n < M im-
pliesw € E, . n; if now w € Q, write f,(s) = [Ziw snane_’\"s—i—ZﬁH sn(w)ane_)‘”s] +
[Ziw(sn(w) —en)ane %] = [fur(s)] +[g(s)], where w’ € E,, v and where the Dirichlet
polynomial g is an entire function. So that f, can be analytically extended to D(a,r),
whith [£,,(s)| < N + 37 |a, e (0= & ¢
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Now, take 0 < p < %, so that D(a+ p,2p) C D(a,r). The Cauchy inequalities imply
(@t p)| _ [T anea(@)Mye 0| ¢
7! J! = (2p)7"

Since sup, _44 > enzn| > %2(1)0 |z | for any sequence (z,) of complex numbers
such that Y 7% |z,| < 0o, we get

i=0,1,...

o I\ p—An(a+p)
— J! (2p)7

Take p < R < 2p, multiply each term of () by R/, j =0,1,..., sum and permute to

get

00 B N [e ] R J
Z ap|e AnletP)eAnfl < QCZ <2p> < 0.

n=1 §=0

Or 3°%° | |ay|e *»(@+P=F) < o0, But this is impossible since o+ p — R < . This contra-
diction shows that F, , y is of empty interior; therefore, I is a dense G set, and this ends

the proof of Theorem 3.3. To derive b) of Theorem 3.2, start from > |° mn*;
en(

the choice a,, = \/moi(fﬂrl) will work for some w € € (chosen “topologically”, not “at
random” !) m

4. The Hardy-Dirichlet space 2. This is the Hilbert space of Dirichlet series f(s) =
S0 ann™%, with ||f||? = Y277 lan|? < oo; it was introduced by Hedenmalm, Lindqvist,
Seip [HLS] to study completeness problems in L?(0,1); an orthonormal basis of H? is
formed by the e,(s) = n™*,n = 1,2,..., so that the reproducing kernel K, of H? at
a € Cyypist Kq(s) = 30 en(s)en(a) = C(s + a), where ¢ denotes the Riemann zeta
function; this is enough to demonstrate that the functional properties of H? will be fairly
different from those of the Hardy space H? !

It will be convenient to introduce the space D of functions which are analytic in
Cy /2, and representable by a convergent Dirichlet series Z;’O ann~?° for Ns large enough
(a typical example is f(s) = W¥(s — a), where W(s) = (1 — 2'7%)((s); f is entire, and
representable by Y {°(—1)""!'nn~* for Rs > a).

If f €D, f(s) =57 a,n % wehave f(s) — a1 as Rs — oo, so that there are
analytic functions (s, e?,...) analytic on C, /o which do not belong to D.

This leads to a definition: An analytic function ¢ on C,/, will be called representable
if ¢(s) = cos + (), where ¢ is a non-negative integer and ¢ € D.

The following two results were proved in [GH]: Recall that Cy denotes the half-plane
Rs > 0, and that N={1,2,...} and Ny = NU{0}.

THEOREM 4.1. Let ¢ : Co — C be an analytic function such that k=% € D for k =
1,2,.... Then, ¢ is representable.

THEOREM 4.2. An analytic self-map ¢ : Cy3 — Cy/o induces a bounded composition
operator Cy : f +— fo¢ on H? if and only if
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a) ¢ is representable: ¢(s) = cos + p(s), with ¢ € Ng and ¢ € D.

b) ¢ is “extendable” with “controlled range”, namely ¢ has an analytic extension to
Cy, still denoted by ¢, and such that
i) gb((Co) C Cy if ¢ > 1.
ii) ¢(Co) C Cy 2 if co = 0.

Tt will be convenient to introduce also the set S of all completely multiplicative func-
tions x : N — T such that x(1) = 1; such a function is completely determined by the
sequence (x(p1), x(p2),...) € T of its values on prime numbers pq, ps, ..., so S may and
will be identified with T, equipped with its Haar measure m.

If f(s) =) 1" ann™° € H? and x € S, we write

(21) Ix(s) = Zanx(n)n_s.

The following result is due to Helson [He]. Using a theorem of Menchoff [Al], one can
give a simplified proof [B3].

THEOREM 4.3. Let f(s) = > " a,n~* € H?. Then, for almost all x € S, f, has an
analytic extension to Cy.

Proof. Set fn(x) = x(n). The functions f, : S — C are not independent random vari-
ables, but they form an orthonormal system. For such a system, the theorem of Menchoff
reads:

(*) If ¢1,...,¢p... are complex numbers such that 3°7°|c,|?log’n < oo, then
17 enfulx) converges for almost all .

Applying (x) with ¢, = a,n"% s € Cg, and letting s take the values %, %, ..., We
immediately get Theorem 4.3. m

In Section 2, the integral representations for the norm (e.g. the Littlewood-Paley
identity) played an important role; such representations are more difficult to obtain here,
but we still have (see [GH] and [B2]):

PROPOSITION 4.4. a) Let u € LY(R), with u > 0 and |jul|; = 1. Set u,(t) = a tu(ta™?),
a>0.If f(s)=>am *€ H2, the series being uniformly convergent in Co, we have

o0

(22) 1712 =3 lanl® = tm [ |7(0)Pug(t)dt.
1

b) For any f € H? and any Borel probability measure i on R, we have

(23) 112 = [f(o0)? + / h / / ol fL(o + it) Pdodpu(t)dm(x).

We can now sketch the proof of Theorem 4.2.
We first show that the conditions on ¢ are sufficient. If ¢y > 1, for a > 0, denote by

s—a
s+a

ey dt on R, for which one easily checks that A, = U-1(m), m being the Haar measure

of T.

W, the conformal mapping s — of Cy onto D, and by A, the probability measure
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Now, let f(s) = Zf[ a,n~° be a Dirichlet polynomial, and a,b > 0; we have from
b) that w = U000 ¥, ! € H(D,D) and F = fo \Ilb_1 € H?, the Hardy space (F is
bounded); by (1.9) of Section 1, we have

1
/|Fow|2deW/‘F‘2dm,

|w(0)]
equivalently
FIom
(24) [1ro0pan, < ";i‘;“b' JRe
o

Observe (this is due to a)) that ¢(a) ~ cpa as a — +00, then take b = ¢pa, let a — oo
and apply a) of Proposition 4.4 to u(t) = to get (|| || denoting the norm in 7?)

from (24): || f o ¢ < ||£]*.

This shows that Cj : H? — H? is even a contraction.

1
w(1+t2)

If ¢g = 0, things are slightly more complicated. We use the inequality

a-+1 N 2
(25) / ‘ 3 an
a 1

where o € R and C'is a numerical constant, which is an easy consequence of the weighted
Hilbert inequality [MVau]|, [MVaal, in which Ay,..., Ay denote distinct real numbers and
5n = infm¢n |)\m — )\n|:

n|an|2,

aman |an|?
< C .
Zsar
One easily derives from (25) that
1
(26) /|f(a +it)[2dAa(t) < C||f|I?, Vf € H? Va>0,Yo > 3
In fact, with obvious notations,
) k+1 a
/|fo+zt|d>\ <<Z/ flo+it)? Tt
kEZ
k+1
20 2
<<k%a2+k2 /k \f(o—i—zt|olt<<kz:EZ 2+k22nn |an|

(by (25) applied to f(o +it) = > a,n"n"%)
a dt
<Y P <P | S < I,

2 2
a t
keZ +

We now argue as in the case ¢g > 1, but we take w = U070 0¥, 1, F = forflo\Ilb_l,
where ¢.(s) = ¢(s + €), € > 0, and where 7(s) = s — 1/2. We get, using the inequality

1
/|Fow|2dm < M/\F\Qdm,
1 —|w(0)]

the facts that Fow = fog. oW1, A\, = ¥ 1 (m), \y = ¥, '(m), and finally (26) (where
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we let o tend to % when f is a Dirichlet polynomial), that
1+ |w(0)]

[irooinpano < =20 (5 +zt) e mOiUe

Write fod(s) = > 0 bpn™*; f o¢ is bounded in Cy, so by a famous theorem of Bohr
[Bo], the series ) [ b,n~* converges uniformly in each half-plane C.; so that if we let
a — oo (keeping ¢ and b fixed) above, we get from (22), since w(0) = Wy[p(a+¢) — 3] —
Uy(cr — %) =z, €D,

dp(t) < C

- 2 —2¢ 1+ [z 2 2
D b2 < O IFIP = Gl fI1.
N — |z
Now, let £ tend to zero to get ||f o @||> = .77 |bu]? < Cp||f||®. Once again, Cy is
bounded.
We now show that the conditions on ¢ are necessary. We shall use the following facts

(see [GH]); “extension” will always mean “analytic extension”.

Fact 1 (|[GH] 1.2 p. 315). If ¢(s) = cos + ¢(s), with ¢y € N and ¢ € D, maps Cy to C,,
and if ¢y (s) = cos + ¢y (s), x €S, then ¢, extends to a map: Cy — C,.

Just use the property that ¢, (s) = limy_.o @(s + ity), for some sequence (ty) of
real numbers.

Fact 2 ([GH] Prop. 4.3, p. 321). If ¢ is representable and maps Cy to (C%, then
(fo (b)x(s) = fx¢o O¢x(5)7 VfeH? VxeS.

Fact 3 (|GH| Prop. 5.1, p. 322). If Cy: H?> — H? (with ¢ : Ci— (C%), then for almost
every X € S, ¢y has an analytic extension to Cy.

We know that ¢ is representable by Theorem 4.1; for each integer n > 2, (nf‘ﬁ)x
can be almost surely extended to Cy, by Helson’s theorem 4.3; and we have (nf‘zb)x =
x(n)n=9x. It follows that ¢, itself has almost surely an extension to Cy.

Now, suppose first that ¢y > 1. We know from Fact 3 that ¢, can almost surely be
extended to Cy, and the main point is that ¢, (Cy) C Cy; if this were not so, we would
find 5o € Co with R¢, (so) = 0 and ¢ (so) # 0, and Fact 2 would imply that the formula
fxco=(fod)yo gb;l gives an extension of f,cy across a small segment of the imaginary
axis Rs = 0; since f, and f,co have the same measure distribution, we see that, for
each f € H2, the axis #s = 0 is not a boundary for fx» with positive probability; but
if we take f(s) = Zp NG ﬁogppfs € 'H?, p running over primes, the variables y(p) are

symmetric and independent, and the conclusion a) of Theorem 3.2 is contradicted. We
thus have ¢, : Cy — Cyp, and Fact 1 shows that ¢ = (¢, )5 has an extension to Cy, with
$(Co) C Co.

If ¢cg = 0, Fact 2 gives (f o ¢), = f o ¢y, for any f € H. If ¢, does not map Cy
to (C%, the same reasoning shows that f can be extended across a small segment of the
axis s = % Now, take f as in b) of Theorem 3.2 to get a contradiction. m

Having seen that boundedness of composition operators Cy, on ‘H? is far from being

automatic (although a complete description of the picture is available through Theo-
rem 4.2), in contrast with the case of the Hardy space H?, we now turn to the problem
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of compactness. Here, the situation is not yet fully understood, and to the best of my
knowledge there are only two papers (|B2], [FQV]) giving partial answers to the question.
One natural thing is to try to take advantage of the integral representation 23 to extend
the result of J. Shapiro for H2. This was partially done by Bayart [B2] who introduced
the new counting function

(27) Ny(s) = Z Rw if s € ¢(Cp), Ng(s) =0 otherwise.
wEP~1(s)

This counting function seems to be appropriate when ¢y > 1. In fact, we have

THEOREM 4.5 ([B2]). Let ¢ : Co — Co, ¢(s) = cos+ ¢(s), co > 1. Then

Ny(s) < lﬂ?s for all s € Cy.
co

This is the analogue of Littlewood’s inequality (14), where ¢(0) = 0 becomes
@(00) = oo.
THEOREM 4.6 ([B2]). Let ¢ : Co — Cy, ¢(s) = cos + ¢(s), co > 1. Suppose that:

a) Sy is bounded on Cy;

b) Ny(s) = o(Rs) if Rs = 0.
Then, Cy is compact on H2.

We do not know whether the converse is true; the equivalent of a) in Theorem 1.4

becomes (using the properties of the reproducing kernel of H?):

(%) If Cy:H* — H?is compact, Rp(a) > % for s =

DN | =

But this has no interest: if ¢(s) # s+ i1, one can show that ¢(C,5) C C%+E for some
e >0, and if ¢(s) = s+ i7, Cy is clearly not compact! At the end of this section, we will
restrict ourselves to symbols ¢ : C;/; — Cy /5 of the following type:

d
(28) ¢(S) =cps+c1 + Z qu q;57 cqj 75 0,
j=1
where 2 < ¢1 < ... < qq are “multiplicatively independent”, i.e. each integer n can be
written as n = ¢i'' ... ¢5*, a; € N, in at most one way (e.g. ¢1 =2, g2 = 6, g3 = 30).
In that case, the real numbers loggq,...,logq, are rationally independent, and the
Kronecker approximation theorem implies that
d
iItlf R (o +it) = coo + Rey — Z leg;lq; 7, for each o > 0.
j=1
So that the boundedness condition of Theorem 4.2 reads:
(29) If ¢y >1,C4 is bounded iff Req > [eg, |+ -+ + |eg, |-
1
(30) If ¢y =0,Cyis bounded iff Re; > 5 +leq, |+ -+ Jegyl-

A natural guess would be that Cy is compact if and only if the inequalities in (29)
and (30) are strict; this is not quite the case, and big differences between the cases ¢g > 1,
co = 0 appear; we have the following results:
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THEOREM 4.7 (|B2]). Suppose that ¢y > 1. Then, the following are equivalent:

a) Rey > feg |+ + leg, s
d) ¢(Cyp) C C. for some e > 0;
c) Cy is compact.

One only has to prove that ¢) = a). Improving the useless (), one shows that the

compactness of C implies: limgps_.o %;;is) = 400, and this easily implies a). m

If ¢y = 0, the integer d plays a crucial role, comparable to the role which it plays in
a famous theorem of Pélya: let eg,...,eq be the canonical basis of R?, X be a random
variable such that P(X = +e;) = 55, 1 < j < d, and (S,) be the random walk on Z<
associated to X, i.e. S, = Xy + -+ X,,, where the X/ s are independent copies of X;

then
THEOREM 4.8 (|Re|). Let (S,,) be the above random walk on Z2. Then:

a) If d=1 or 2, (S,) is almost surely recurrent, i.e. lim||S,|| =0 a.s.
b) If d >3, (Sy) is almost surely transient, i.e. lim||S, || = co a.s.

In fact, Y P(S, = 0) = 0o iff d < 2. The analogue here will be the series Y [|Cy(n %2
and the Hilbert-Schmidt character of Cy according to the values of d. We have more
precisely the following statements:

THEOREM 4.9 ([FQV]). Suppose that d =1 and co = 0. Then, the following are equiva-
lent:

a) Rey > e, | + %;

b) #(Cy) C Ceyy for somee > 0;
c) Cy is compact;

d) Cy is Hilbert-Schmidt.

By analyzing CyC%, if Rer = |eg, |+ % one is led to the equivalent study of C' : H?> —
H? given by

PN N U ) LN
Clz) =), i 27,
=5 !
and we see that C = MC),, where M : H> — H? is the multiplication operator by the
H*°-function
(1 - 2/2)715
and h: D — D is given by h(z) = 5. We have lim o 1-h(r)

2—z" 1 1—nr
Theorem 1.4) C}, and hence C are not compact; the assertion d) will be proved later.

= 1 < oo, therefore (see

THEOREM 4.10 ([FQV]). Suppose that d =2 and ¢y = 0. Then:

a) Cy is always compact;
b) Cy is Hilbert-Schmidt if and only if Rer > 5 + [cqy| + |cg, |;
c) There are composition operators on H? which are compact and not Hilbert-Schmidt.
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The most difficult point is a); by analyzing C,C3, if ey = % + |cq,| + |eg,|, one is
led to the equivalent study of an operator C' : H?(T?) — H?(T?) which is no longer a
composition operator as in Theorem 4.9, but the operator f — [ C(u,v;z,y)f(u,v)du dv
associated with the kernel

1
4 —a(et® + e~) — b(e + )

C(u,v;2,y) =

on T4, with a,b > 0 and a + b = 2. One shows that C € L?(T*), so that the associated

operator C is Hilbert-Schmidt, which implies that Cy is in the Schatten class Sy, and a
342704377,
2 2

fortiori is compact; b) is proved later; an example for ¢) is provided by ¢(s) = ;

it is interesting to compare with b) of corollary 1.5.
THEOREM 4.11 ([FQV]). Suppose that d > 3. Then

a) If co > 1, Cy is Hilbert-Schmidt if and only if Req > % + ijl |cg; |-

b) If ¢ =0, Cy is Hilbert-Schmidt if and only if Cy is bounded. In particular there
are composition operators Cy, on H?, with co = 0 and infgrssoR(s) = , which
are Hilbert-Schmidt.

The proof uses the following:

LEMMA 4.12. Let d be an integer >, d1,...,04 >0, n > 1, and

n .
= ) 785
> 2 (il' ! > ¢

14 Hig=n

be the sum of the squares of the multinomial coefficients. Then, as n — 0o:
(31) S~ AT T (6 4 - A+ 0)?,
where X > 0 is a constant independent from n.

Proof. For equal 5j’s, this is nothing but Pélya’s theorem, and the general case is similar;

of R?% and set

we can assume 01 + --- + g = 1; denote by @4 the unit cube [ 5 2}

e(z) = €™ c(x) = cos2mx, s(x) = sinwz. Parseval’s relation gives

(*) Sp = / |516(01) +---+ 5d€(0d)‘2nd91 ...dly.
Now, we have
d d
\Z@e( \ =342 Y 88kl - 01)
Jj=1 j=1 1<j<k<d
d

=3 07+2 > 60 —-2 Y 60k(1—c(6; —6k))

j=1 1<j<k<d 1<j<k<d

=1-4 > 5;008(0; — 1)

1<j<k<d
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Make the change of variable 8, —0; = ¢, 2 < k < d, and use the translation-invariance

to get
Sp :/ (1—4 Z 515ks (¢r) Z 0 5k5 ‘Pk)) dps . ..dpg
d—1 2<k<d 2<j<k<d
= n_% ( Z 515k3 < ) 426 5k3 < \I]k>>nd\112 dv,
VnQa—1 2<k<d vn

(Where Z is an abbreviation for Z

2<j<k<d
d—1

=: n_T/ fo(Woy ..., W) dPs ... dTy,,
Rd—l
where we have

ngn(\lfg,...,\lfd)gexp( 4n(5126k5 ( ))1\/_Qd 1(\P2,...7\Ifd)

d
< exp( — 16251%‘1’2), because |s(x)| > 2|z| for |z| <
k=2

N | =

Moreover, f,(¥q,...,¥y) — g(Vq,...,VU,) as n — oo, with
g(Uy,..., U —exp( 42516k\1’k 4 Z 3,0, (T ))
2<j<k<d

Lebesgue’s dominated convergence theorem now shows that S, ~ )\TF%, with A =
fRd,I g(\IIQ, ey ‘Ifd)d\llg e d‘l’d >0. m

It is now easy to complete the proofs of Theorems 4.9, 4.10, 4.11 with the help of the
following simple lemma:

LEMMA 4.13. Let b > 1 be fized, and let a > 0 tend to infinity. Then

(log k)* * (logt)® I(a+1)
2 N/l g = e

E>1
where T" is the Fuler gamma function.
Regardless of the value of ¢y, and using the independence of the ¢;’s, we get
2iy (i1+-+ia)

> . 5y (1
ICAONIEND I = 22 logmf 22—,

0150058020

where 71 = Rey and 0; = |eg;|. So that, using Lemmas 4.12 and 4.13, we get with obvious
notations:
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2.

oo 2; . .

_ TR S (221+"'+22d)!
e (e | ¢ .
n=1

i1 yeeyia >0 (1! dgl)? (291 — 1)2(FFia)

(! U\ o
< (2 — 1)2(11)? 2 il ig! o0

1. Fig=l

Il
Mg i Mg i M

1
—= =S~ Si4...+84)%
(2,71_12l Z\/—2Vl712lld1(l+ +da)

ld/g( (51+.‘.+5d)>

2')/1—1

I
-

Now, if d = 1 or 2, the last series converges if and only if 2y; — 1 > 2(d; +...+ d4), while
if d > 3, it converges if and only if 2 — 1 > 2(61 4 ...+ d4). This ﬁnlshes the proof. m

Let us mention (see [FQV]) that Theorem 4.11 holds for more general symbols ¢(s) =
cos +c1+ D52 ¢q,q; ° where 30|y, | < 00, ¢g; # 0, and at least three of the g;’s are
independent; Cy is Hilbert-Schmidt as soon as it is bounded. Nevertheless, the general
picture for compactness is not clear, in spite of Theorem 4.6, all the more as ¢ is never
injective if ¢y = 0 [Fa]. We hope to come back to this problem of compactness in another
work.

In contrast with the case of the unit disk, there are very few invertible or isometric
composition operators on H?2. Indeed we have |B1]:

THEOREM 4.14. Let Cy : H? — H? be bounded. Then, the following are equivalent:

a) Cy is invertible;
b) Cy is Fredholm;
¢) ¢(s) = s+ ir, where T € R.

THEOREM 4.15. Let Cy : H?> — H? be bounded, with ¢(s) = cos+ p(s). Assume that the
Dirichlet series of ¢ converges uniformly on Cy. Then, the following are equivalent:

a) Cy is isometric;
b) Cy is similar to an isometry;
¢) ¢(s) = cos + iT, where cg > 1 and 7 € R.

5. The Wiener-Dirichlet algebra A™. This is the Banach algebra of Dirichlet series
f(s) = > ann™*, with ||f]| = 37 |an| < cco. This algebra is commutative and unital,
and can be interpreted as a space of analytic functions on Cy; as we already mentioned in
Section 4, the study of function spaces formed by Dirichlet series has been the subject of
some recent interest (see [B1], [B2], [FQ], [FQV], [HLS], [GH], [McCa] for example). Now,
a method due to Bohr (see [Q2| for other applications) identifies the algebra A1 with
the algebra AT (T*) formed by absolutely convergent Taylor series in countably many
variables (this allows one to identify the spectrum of A+ as D). Let us recall the way
this identification is carried out. Let (p;);>1 be the increasing sequence of prime numbers
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(p1 =2,p2 = 3,...). A function f in AT(T) can be written as
f)= > aaz®, with |fllase) =Y laal < oo,
aGN(OOO) @

— a . 0 Qg —
where, as usual, we set @ = (a1,...,0,,0,0,...) and 2% = 2" ... 22" for 2z = (Zj)jZI-

Then A : AT — AT(T*) is defined by

o0 oo
(32) A( Z ann_s) = Z a2yt .oz, n=pit.pdr.
n=1 n=1
A is an isometric isomorphism; for s € Cq, f € AT, g € AT(T*), we set
A= (p7%)j21 € D% | fllse = sup [£(s)]; glloe = sup |g(2)].
se€Co z€D>

With those notations, A has the two following properties (see [B2]):
(33) Af(z)) = f(s), forany f € AT and any s € Cy;

(34) [Aflloc = lIfllce; ~ for each f € AT

When we study composition operators Cy : AT — A" associated with an analytic
¢ : Cy — Cy, Theorem 4.1 indicates that ¢ has to be representable, which we assume once
and for all in the sequel (as well as the fact that ¢ is non-constant, to avoid trivialities).
A big difference with the case of the Wiener algebra at once appears: in the latter case,
the identity function z € A*, so that if we want Cy to map A" to itself, we have to
assume that ¢ itself belongs to A™"; here, the identity function s does not belong to AT,
and in fact we do not know if the condition ¢ € A" is necessary for Cy to map A* to
itself; we have the following Theorems 5.1 and 5.2, which may be viewed as analogues of
Theorems 2.1 and 2.2 respectively, with ¢" being replaced by n=? (see [BFLQ1|):

THEOREM 5.1. Let ¢ : Co — Cy. Then

a) Cp maps AT to itself if and only if n=% € A* forn € N, and |[n=?| < C for each
n € N.

b) If ¢(s) = cos+ Y 1 can™* with Y " |cn| < 00, then Cy maps A to itself as soon
as Rey > D5 |enl, regardless of the value of cq.

THEOREM 5.2. Let ¢ : Cy — Cy. Then
a) Cp: AT — AT is compact if and only if [n=?| — 0 as n — oo.

b) If Cy is compact, we have ¢(Cqy) C Cs for some § > 0. The converse is true if
(8) = cos + (s), with p € AT.

a) is proved exactly as Theorem 2.2. The existence of § in b) is easy: set 6 =
inf.ec, Ro(s); we have n™% = ||n"?||oc < |[n"?||, so n™° — 0 by a), and § is positive;
conversely, if § > 0 and ¢ € AT, we use the following facts:

Facrt 1. If ¢(s) = cos + ¢(s) maps Cy to C; and ¢ is non-constant, © maps Cy to
Cr—coo (IGH]).

Fact 2. If v € At and r > 1, then r=% € At, and |r—7| < rlvl.
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This is a simple and well-known property of the norm in a Banach algebra. Now, let
B(s) = cos + p(s), with ¢(Co) C Cs and ¢ € AT. We have ¢(Cy) C Cs by Fact 1, and
if & = 27%, the spectral radius formula and Bohr’s method (see the beginning of this
section) give

jlin010||\1vj\|1/j = sup |h(¥)| = sup [¥(s)| <277,

heSpA+ s€Co
and in particular ||U7| — 0; any integer n > 2 can be written as n = 2/r, j € N,
1 <r <2, so that
In=?) = [In=%[| = 2797 < [|W|[[lr—|| < [[@7[j20¢],

using Fact 2 and r < 2. Therefore, |[n=?|| — 0, and C is compact by Part a) of the
Theorem.

Note that the assumption ¢(Cg) C Cs holds if Rey > D57 |cp|. m

However, conditions like > 5" |¢,| < Req (or < Req) are not necessary to have bound-
edness or compactness, as shown by the following examples,

THEOREM 5.3. Let ¢(s) = cos + ¢1 + ¢~ % + cp2r 2%, where r > 2, and ¢, c,2 > 0.

a) If

(Cr)2
35 R AUV
( ) c1 > 80r2 + cp2,
then Cy : AT — AT is compact.
b) If Cy : AT — AT is bounded (resp. compact) and moreover ¢, < 4c,2, we must

have fecp > (er)® | cp2 (resp. we must have (35)).

SCTQ

c) If Rey = (Sccfr)j + ¢,2, then Cy maps AT to itself if and only if ¢, # 4c,=.

Proof. W.l.o.g., we assume r = 2. It is easy to check that

02

(36) If ¢y < 4cy (resp. > 4cy), we have inf Ro(s) = Rey — —= — ¢4
seCo 8cy
(resp. inf... = Rey + ¢4 — ¢3). Therefore, a) and b) follow from Theorem 5.2, since
2
8%24 4+ ¢4 > co — ¢4 if cg > 4cy. But, one may give a more informative proof, which has

other applications (see Section 6).

Let Hy, Hy, ... be the sequence of Hermite polynomials, whose generating function is
o0
Hi (A
Z %xk = exp(2\z — z?).
k=0 ’

It is possible to show [BFLQ1]| that putting o = $eq — G _ ¢4, we have:

Cq

o0
H
(37) Z %xk < C(1+42)Y?exp(z® + A2/2),  where C is a constant;
k=0 '
- “er o [Hi(An)| -
(38) = = e S0 ot rog /e,

k=0
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where x, = /cqlogn, and A, = f%\/log n;
(39) If ¢o < 4dey, ||n7¢|| >n"*forn > 1.

And those estimates clearly give an alternative proof of a) and b).
For c), if co > 4c¢yq, we have infsec, Rp(s) > 0 by (36), and we are done. If ¢y < 4ey,
we have
12779 4+ = 197 [ 4+ (1),

where W(2) = exp|—(c1 + c22 + ¢422) log 2], and || ¥/ = 1.

We then apply to ¥ the Newman criterion (15) on ordinary points: if [¢(e?%)| = 1,
the coefficient ap of t2 in the Taylor expansion of log ¥ (e*(%0+1)) is ay = %ewo + 2¢4e%%0
so that

Ray = %2 cos Oy + 2¢4(2cos? Oy — 1).

—c
4cy ?

2 .
Now, since fc; = 8% + ¢4, one easily checks that |W(e?%)| = 1 implies cosfy = S0

that
2

Raoy = 2 2¢y.
8C4

Now, if ¢y # 4cq, Rag # 0, O is an ordinary point, ||¥/]| 4+ is bounded, [|277¢|| and
therefore ||n~?|| (see the proof of Theorem 5.2) are bounded, and Cj itself is bounded.
If ¢y = 4cy, we have 0y = m(mod2r), log W(e!%+)) = dy + dit +0- 1> + ast® + ..., with
a3 = (ilog2)2% # 0 and Raz = 0, so that 6y is not an ordinary point, and ||277¢,
|[n=?|| are not bounded. In particular, ¢(s) = ia + c(3 + 4.27% +47%), with a € R and
¢ > 0, provides an example of a symbol ¢ such that Y |c,| < oo and ¢(Cy) C Cy, but
Cy is not bounded on A'. =

This shows that the situation as concerns boundedness and compactness is not yet
fully understood. Let us now turn to the automorphisms and isometries; we first study
the case of the algebras A+ (T*), 1 <k < oo, or A*(T*).

THEOREM 5.4 (|[BFLQ1]). Assume that the map ¢ : D¥ — D* induces a bounded op-
erator Cy : AT (TF) — A*(TF). Then, Cy is an automorphism if and only if ¢(z) =
(€120(1)s -+ 1 ERZa(k)) for some permutation o of {1,...,k} and some complex signs
E1y--+-,Ek-

Proof. Suppose that Cy is an automorphism; ¢; = Cy(z;) € AT(T*), for 1 < j < k,
therefore ¢ has a continuous extension ¢ : D¥ — DF; C4 being surjective, ¢ is injective;
Osgood’s Theorem [Na] implies that det ¢/(z) # 0 Vz € DF, therefore ¢ is an open
mapping on DF, and (b(Dk) C DF¥: it is easy to check that ¢ : D¥ — D¥ is onto, therefore
#(D¥) = D*, and ¢ is an analytic automorphism of D*. Therefore, we know that [Na] ¢
separates the variables:

Fo(j) — 4y
(40) 8(z) = ( e~ )
71— AjZo(5) / 1<j<k

where a; € D, |e;| =1, and o is a permutation of {1,... k}.
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z — aj "

and this implies, as in the proof of Theorem 2.3, that a; = 0, which finishes the proof. m

We conjecture that the same result holds for AT (T), but we are only able to prove
the following (which will yet be sufficient for the case of A™"): it is convenient to denote
by B = D> N ¢y the open unit ball of the Banach space cg; then we have:

THEOREM 5.5. Let ¢ = (¢;); : B — B be an analytic map such that Cy maps At (T*)
to itself. Assume that Cy is an automorphism, and that moreover we have for each k :
or(2) = 2 up(2), where dy is a integer > 1 and ux(0) # 0; then, ¢(2) = (g,24);, for
some sequence of complex signs €;.

Proof (see [BFLQI1|). Let K = D>; ¢ is a homeomorphism of K, and the assumptions
allow us to show that ¥ = ¢! maps B to B; ¢ is thus an analytic automorphism of B,

and a theorem due to Harris [Hal, the so-called analytic Banach-Stone Theorem shows
that the analogue of (40) holds, namely

Fo(j) — 9j
w s - (572055)
71— AjZo(5) /) j>1

where (a;) € B, |¢;| =1, and o is a permutation of N.
As before, we must have a; = 0 for each j, and finally the assumption ¢y (z) = zg’“ ug(2)
implies that o is the identity. =

The case of isometries goes as follows (see [BFLQ1]:
THEOREM 5.6. Assume that ¢ = (¢;) : DF — DF induces a composition operator Cy :
A*(TF) — AT (T*). Then, Cy is an isometry if and only if there exists a square (k x k)
matriz A = (a;;), with a;; € Ny and det A # 0, and complez signs €1, . ..,ey such that
(42) Gi(2) =& 202, 1<i<k, z=(z1,...,2,) € D".

Proof. If a = (au,...,qp) € N, let ¢ = @5 ... 905 If f(2) = D anz® € AT (T™)
we write a, = f(«) and denote by Sp f (the spectrum of f) the set of a’s for which

f(a) # 0. One has the following facts:

Fact 1. Cy is an isometry if and only if:
a) ¢, = g F;, 1 < i < k, where |g;] = 1, F, > 0, and Fi(e) = 1 = ||Fi]|oo, with
e=(1,1,...,1);
b) if a,a’ € NE are distinct, the spectra of ¢* and gbo‘/ do not intersect.

Fact 2. if ¢ = (¢;) and if one of the ¢;’s is not a monomial, we can find distinct
elements o, o/ € N such that the spectra of ¢* and gba' intersect.

Fact 2 needs some arithmetical discussion, but once we have these facts, Theorem 5.6
is clear. m

In the case of AT(T*), we have no such pleasant statement: for example, if
Ii,...,Ip,,... are disjoint subsets of N with more than one element, ¢;; positive num-
bers such that 37, ; ¢;; = 1 for each ¢ > 1, and if the map ¢ = (¢;) is defined by
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¢i(2) = D jer, CijZjs then Cy is an isometry by Fact 1 (which holds for A™(T*)), and
yet no ¢; is a monomial. Under the additional assumption that ¢ maps T to itself, we
have a more satisfactory statement, namely

THEOREM 5.7. Let ¢ : D®° — D™ a map inducing a composition operator Cy : AT(T)
— AT(T*°), and such that moreover ¢(T>) C T°°. Then:

a) There exists a matric A = (a;j)i j>1, with a;; € Ny and Zj a;; < oo for each i,
and complex signs €; such that ¢ = (¢;) and

o0
(43) gilz) =& [[ 27, i=12,...
j=1

oo)'

b) Cy is an isometry if and only if A* = (aj;) is injective on Z(
The main point is the following group-theoretical property [R].

THEOREM 5.8 (Beurling-Helson). Let G be a discrete abelian group, with connected dual
group T'. Let ¢ € A(T'), the Wiener algebra of T, without zeros on T, and such that
6" |aqry < C for some constant C = (n = 0,%1,42,...). Then, ¢ is affine, i.e. there
exists a complex number a with |a| = 1 and an element x of G such that ¢(v) = ay(z)
for any v €T.

Recall that AT) = {¢: T — C: ¢(7) = 27" any(xn), with z, € G and > 77 |a,|
< oo}; we set [|¢flary = D7 |an|- What the lemma says is the following: take for example
G=7Z,T =T, ¢ € AT(T). The assumption ||¢"|| < C for n € N does not say too much
on ¢, as the example ¢(z) = % of Section 2 shows; but the assumption ||¢"| < C
for n € Z says much more; and precisely, if we assume that ¢ € AT (T) satisfies ||¢"| < C
for n € N and |¢(e')| = 1, we automatically have ||¢"|| < C for n € Z, since for n € N
we have ||¢p~"|| = ||¢"|| = [|¢"]|. Now, if we use this lemma with G = Z(°)  the direct
sum of countably many copies of Z, and I' = T°°, the complete direct sum of countably
many copies of T, we get (43).

b) follows easily, letting A and A* act on Z(>) by the formulas A(a) = B, A*(a) = v,
with 3; = Zj Qi 0, Y5 = Zz Qi OG-

We then have, if Cy is an isometry: Cy(z%) = ¢* = e2z47(@) " and we know from
the proof of Theorem 5.6 that the ¢*’s have disjoint supports, therefore the A*(«)’s are
distinct. m

If we combine both properties (automorphism, isometry), we get the following (recall
that B is the open unit ball of ¢;).

THEOREM 5.9. Let ¢ = (¢;) : B — B be an analytic function which induces a compo-
sition operator Cy on AT(T>). If Cy is an isometric automorphism of A*(T*), then
P(2) = (€525(j))j, for some permutation o of N and some sequence (¢;); of complex signs.

This follows from an inspection of the proof of Theorem 5.5; if ¥ = ¢~ ! does not map
B to B, we find distinct integers ji,jo such that the spectra of ¢; and ¢;, intersect,
which prevents Cj from being isometric. m
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Now, we return to the case of the Wiener-Dirichlet algebra A™, for which the state-
ments are more satisfactory than for A+ (T>).

THEOREM 5.10. Let Cy : AT — AT be a composition operator. The following are equiv-
alent:

a) ¢ is a vertical translation: ¢(s) = s +ir, 7 € R.

b) ¢ is a automorphism.
Proof. b) = a). We write ¢(s) = cos + ¢(s). Cy being surjective, ¢ is injective, and
co > 1, by a well-known result [Fa] of the theory of analytic, almost-periodic functions.

We will now use the transfer operator A introduced at the beginning of Section 5, by
setting fr(s) = p,;(b(s) € AT, ¢p = Afy and

(44) ¢ = (61,09,...).

We have from (33): ¢(21%) = (Afu(2)) = (fu(s)) = 29O, and [|gk[|oc = || filloo by
(34). Moreover, no ¢y, is constant, so the open mapping theorem implies that lor(2)] < 1
for z € B, ie. (bgz) € D> for z € B. Let us show that in fact ¢(z) € B. We have

Fi(s) = ppp 7 = p%gi(s), with lgillar = ICo(pp*)|lar < C. So that ¢ (2) =
2 Agr(z), and by (34),

9k (2)] < 26| Agklloo = |2k gk lloc < |2l gk lla+ < Clar]®.
Therefore, 5 maps B to B. Moreover, setting T = ACy,A™! : AT(T>®) — AT(T), one
easily checks that 7" is nothing but the composition operator C’$ associated with ¢. For

this 5, we are fortunately in a position to apply Theorem 5.5: indeed we have that T is
an automorphism and that

dr(2) = 2,0 Agk(2),
with
Agi (0) _ %Einooplztp(s) _ plzm £ 0,
and we know that ¢y > 1.

Theorem 5.5 now implies that ¢(z) = (€j2;);, for some sequence (g;) of complex signs.
If we test this equality at the points 2[5 = (p;*)js s € Co, and if we use (33), we get

pj_¢(3) =¢ep;°, s€Co, jeN.

Taking the moduli, we obtain R¢(s) = Rs. Since ¢(s) — s is analytic in the domain Cg
this implies ¢(s) — s =iT, with 7 € R. =

THEOREM 5.11. Let Cy : AT — AT be a composition operator. The following are equiv-
alent:

a) ¢(s) =cos+it, with cg € N and 7 € R.
b) Cy is an isometry.

Proof. b) = a). Here, we do not need the transfer operator A, but clearly the method of
proof of Theorem 5.5 works to show that

(45)  Tf m and n are distinct integers, the spectra of m~? and n~? are disjoint.
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This automatically implies ¢y # 0, otherwise 1 € Sp(n~=?) for each n. Now if ¢(s) =
cos + 1 +w(s), with w(s) = cr ° +¢p1(r+1)"° 4+ ..., 7 > 2 and ¢, # 0, one easily
checks that (nr)® € Sp(n=?)NSp(nr)~? for large n, contradicting (45). Therefore, w = 0
and we are done. m

The results of this section are mainly taken from [BFLQ1].

6. Concluding remarks and questions. 1) Let ¢ = (¢1,...,¢) : D¥ — D¥, non-
constant, with Cy, : AT (TF) — AT(T*). If k = 1, we must have ¢(D) C D, and this is
used implicitly in the proof of Theorem 2.2; but if & > 1, some component of ¢ (e.g.

d(21,22) = (%zl, 1)) might be a unimodular constant, and the analogue of Theorem 2.2 is

(46) If ¢ = (¢1,...,0%) : D¥ — DF induces a bounded operator Cy on A*(T*),
Cy is compact if and only if each component ¢; is either constant or such that
[¢illoc < 1.

2) Our knowledge of compact, or even Hilbert-Schmidt, composition operators Cy on
H? is far from being satisfactory. Bayart [B2| proved the following:

THEOREM 6.1. Let Cy : H2 — H? be bounded. Then:

a) If Cy is Hilbert-Schmidt, we must have $(Co) C Cy.
b) If ¢(Cy) C Ciyc for some e >0, then Cy is Hilbert-Schmidt.

We have already seen in Theorem 4.11 that the assumption of b) is not necessary, al-
though it is necessary (see Theorems 4.9, 4.10) for symbols ¢(s) = cos+c1+ 2?21 Cq; ;"
where ¢, ..., qq are independent and d = 1 or 2.

Using the properties of Hermite polynomials (see Section 5), we were able to prove

[BFLQ2]:

THEOREM 6.2. Let r € N, 7 > 2, and ¢(s) = cos+c1+cpr™ 5 +cp2r ™25, with ¢, ¢, > 0.
Then, the following are equivalent:

a) Cy: H? — H? is Hilbert-Schmidt.
b) #(Cy) C Ci,c for somee > 0.

3) An irritating question is the following: if ¢(s) = cos + ¢(s), with ¢ € D, and if we
know that Cy : AT — AT, is it true that p € AT?

Theorem 5.3 might indicate that this is not so; on the other hand, it would be in-
teresting, in this Theorem, to treat the case of complexr coefficients c,, c,2. Here, recent
estimates due to Rusev [Ru] might help.

4) The estimate ||¢™|| 4+ > d1/n of Lemma 2.4 is best possible. In fact (see |4], p. 76),
it is fairly easy to see that ||¢"|| 4+ < Cy/n if ¢ = €9 and g is C™ (say), and a similar
computation in dimension k (i.e. if we work with A+ (T*)) easily gives the estimate
" | a+ (rry < Cyrn¥/?. Conversely, if ¢ is not affine, we probably have 0" | a+ vy > /7.
When do we have the “best” minorization [|¢"|| o+ (px) > dn*/27 In general, it would be
interesting to have a precise quantitative version of Beurling-Helson’s lemma 5.8 when ¢
is not affine.

5) In the proof of Theorem 5.10, we used the fact that an analytic almost-periodic

function Y a,e~**, uniformly convergent in a strip a < Rs < b, is never injective on
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this strip. Now, can an almost-periodic function f : R — C be injective? (Of course,
if f is real-valued, this is impossible: if f is injective, it is monotonic, therefore not
almost-periodic).

6) The ugly Theorem 5.5 is yet sufficient to describe the composition automorphisms
of AT (observe in passing that Bayart’s direct approach for H? does not seem to work
here, which explains our “detour” through A*(T)). Is the natural statement true, i.e. is
it true that Cy is an automorphism of A™(T*) if and only if ¢(z) = (g;2,(;)); for some
permutation o of N and some sequence (¢;) of complex signs?

7) It is not true in general that the composition operator CQ; on AT (T*) corresponds
to a composition operator C, on A", in (44) of the proof of Theorem 5.10; for example,
if ¢ = (¢;), with

gbi(z):%%w, i 72,
the equation %(z[s]) = 2[¢()] would give

2 S
taking equivalents of both members as s — co would give that
¢(s) _ logpaia
—
5 log pai

—s + —s _
Paici TPai _ =o(s) ;19 .

and it is impossible to have that, even for one i, since @ —co € Np !
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