PERSPECTIVES IN OPERATOR THEORY
BANACH CENTER PUBLICATIONS, VOLUME 75
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2007

POWERS OF OPERATORS

JAROSLAV ZEMÁNEK

Institute of Mathematics, Polish Academy of Sciences
P.O. Box 21, 00-956 Warszawa, Poland
E-mail: zemanek@impan.gov.pl

Let T be a bounded linear operator on a Banach space, with the *single-point spectrum* $\{1\}$. Suppose that

$$||T^n - T^{n+1}|| \le \frac{\text{const}}{n^{\frac{1}{2} + \epsilon}} \tag{1}$$

for a fixed $0 < \epsilon < \frac{1}{2}$ and all $n \in \mathbb{N}$. Does it follow that, actually,

$$||T^n - T^{n+1}|| \le \frac{\text{const}}{n}$$

for all $n \in \mathbb{N}$? (This implication is not true for $\epsilon = 0$, see e.g. [4, Theorem 2.5 with p = 2].) It is possible that (1), with $0 \le \varepsilon \le 1/2$, implies that

$$||T^n|| \le \text{const}$$

for all $n \in \mathbb{N}$? See [4, Theorems 2.5 and 2.2].

The above questions are motivated by the papers [2], [3], [4], [5], [7], [8], [9]. See also [1, Lemma 2.1], [6, Theorem 4.5.3] and [10, p. 373].

References

- [1] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, Proc. Amer. Math. Soc. 38 (1973), 325–330.
- [2] N. Kalton, S. Montgomery-Smith, K. Oleszkiewicz and Yu. Tomilov, Power-bounded operators and related norm estimates, J. London Math. Soc. 70 (2004), 463-478.
- [3] Yu. Lyubich, The single-point spectrum operators satisfying Ritt's resolvent condition, Studia Math. 145 (2001), 135–142.
- [4] A. Montes-Rodríguez, J. Sánchez-Álvarez and J. Zemánek, Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. 91 (2005), 761–788.
- [5] B. Nagy and J. Zemánek, A resolvent condition implying power boundedness, Studia Math. 134 (1999), 143–151.

328 J. ZEMÁNEK

- [6] O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 1993.
- [7] O. Nevanlinna, Resolvent conditions and powers of operators, Studia Math. 145 (2001), 113–134.
- [8] Yu. Tomilov and J. Zemánek, A new way of constructing examples in operator ergodic theory, Math. Proc. Cambridge Philos. Soc. 137 (2004), 209–225.
- [9] D. Tsedenbayar, On the power boundedness of certain Volterra operator pencils, Studia Math. 156 (2003), 59–66.
- [10] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369–385.