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Abstract. A new set of sufficient conditions under which every sequence of independent iden-
tically distributed functions from a rearrangement invariant (r.i.) space on [0, 1] spans there a
Hilbertian subspace are given. We apply these results to resolve open problems of N. L. Carothers
and S. L. Dilworth, and of M. Sh. Braverman, concerning such sequences in concrete r.i. spaces.

1. Introduction. Let X be a r.i. space on [0,1], and let {f;}7°; C X be a sequence
of independent identically distributed random variables (i.i.d.r.v.’s). In this article, we
are concerned with the question under which conditions on the space X, there exists a
constant C' > 0 such that the inequality

Cl(;aﬁ)lﬂ < Héakfkux < C(;aﬁ)lﬂ (1.1)

holds for every n € N and {ax}}_; C R. It is convenient to recall first some relevant
results from [Br, Chapter 3|. Note that only the right inequality in (1.1) is of interest,
since the left inequality holds for an arbitrary r.i. X [Br, Lemma 1, p. 52]. The (easy) set
of conditions on X and f; necessary for (1.1) to hold is listed in [Br, p. 71] (all unexplained
notions from the Banach function space theory are defined in the next section, see also
[LT):
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(a) the Kothe bidual X** contains the Orlicz space Ly generated by the function
N(t) = et —1;
(b) f1 € Ly;
(c) Efy == fl fi(z)dz = 0.
0

To present a set of sufficient conditions for (1.1) to hold, we need first some notations
from [Br, Chapter 3|. For a sequence a = (a;)72, and a r.v. f on [0, 1], we set

Qaf(t) = D> Mse[0,1]: |anf(s)| >t} t>0, (1.2)
k=1

where ) is Lebesgue measure. The r.v. f is said to have the property As(X) (briefly,
f € Ay(X)) if for all a € I, the r.i. space X contains all r.v.’s g satisfying the condition
Ms € [0,1] = [g(s)] > t} < CQaf(t) (t > 0) for some C > 0. For the definition and
detailed discussion of the so-called Kruglov property, see next section.

THEOREM ([Br]). If X has the Kruglov property and {fi}7>, is a sequence of i.i.d.r.v.’s
such that f1 € As(X), f1 € Ly and Efy =0, then (1.1) holds.

The proof of this result given in [Br] is rather indirect and based on fine estimates of
infinitely divisible distributions in r.i. spaces. The novelty of our approach here is twofold.
Firstly, we observe that sequences { f}?° ; of independent mean zero r.v.’s in a r.i. space
X with the Kruglov property behave very similarly to the sequences of their disjoint
translates { fx(*) := fx(- —k+1)}32, in some r.i. space Z% on the semi-axis (0, 00) [AS3].
More precisely, in this case there exists a constant C' > 0 such that for every sequence of
r.v.’s {fx}%2, C X as above, we have

S DIIZ Y DOVE RS DI -
> 7 S > h L =C > f » (1.3)
k=1 k=1 k=1

Here, the r.i. space Z% consists of all measurable functions f on (0,00), such that
1l zz = 1LF*x.llx + 1" X[1,00) [ £a[1,00) < 00, (1.4)

where f*(s) is the non-increasing rearrangement of |f(s)| (see next section). The con-
nection of the Kruglov property with the estimates similar to (1.3) explained in detail
in [AS1, AS2, AS3] allows us to significantly straighten the arguments in the proof of
(1.1) and avoid using infinitely divisible distributions. It is fitting to mention that under
a somewhat stronger assumption that X D L, for p < oo, the inequality (1.3) had been
obtained earlier in [JS], where it is also shown that the left hand side inequality in (1.3)
holds in every r.i. space X.

To see that the theorem above is an easy corollary of the right hand side inequality
(1.3), let {fx}32, be a sequence of i.i.d.r.v.’s such that f; € A2(X), f1 € Ly and Ef; = 0.
A standard argument shows that (1.1) is an immediate corollary of the following impli-
cation: a = (ax)72q € lo = Y poy arfi € X. Now, if fo = Yooy ar fr, then we obtain
from the definition (1.2)

Qafi(t) = Ms >0 [fals)| > t} (t>0).
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Therefore, the assumption f; € Ao(X) implies f;X[o,1] € X and similarly the assumption
fi € Ly guarantees that f, € Ly(0,00) for every a = (ax)52, € l2. At last, the definition
of the space Z% (see (1.4)) yields f, € Z%, and due to (1.3), we conclude Y 72, ax fi € X.

The second novelty of our approach is related to the study of the class of r.i. spaces
X such that (1.1) holds for every sequence of i.id.r.v.’s {fx}32; C X. To study the
question when f € As(X) for any given f € X, we employ interpolation methods. An
interpolation type assumption on X which we use here is very easy to verify in concrete
situations and, in fact, it allows us to completely eliminate from consideration a rather
vague condition f € Ay(X).

Our approach allows us to answer in full two open questions from [CD] and [Br]. The
negative answer to the question raised in [Br, p. 71] on whether the conditions (a)—(c)
are sufficient to guarantee that (1.1) holds is given in Corollary 3.6 below. There, we also
answer negatively the question [CD] whether an arbitrary i.i.d. sequence of r.v.’s spans a
Hilbertian subspace in the space L 4, 0 < ¢ < 2. We note that a negative answer to the
question of N. L. Carothers and S. J. Dilworth has been announced in [N], but the proof
given there is incomplete.

In view of the necessity of conditions (a)—(c) above, we shall assume below that
X C Ly and that the sequence {f;};2, consists of mean zero r.v.’s. The main result of
this article is Theorem 3.1 below.

2. Definitions and preliminaries

2.1. Rearrangement invariant spaces. A Banach space X of real-valued Lebesgue mea-
surable functions (with identification A-a.e.) on the interval J, where J = [0, 1] or [0, c0),
will be called rearrangement invariant (r.i.) if

(i) X is an ideal lattice, that is, if y € X, and if x is any measurable function on J
with 0 < |z| < |y| then z € X and ||z]|x < ||y|lx;
ii) if y € X, and if z is any measurable function on J with x* = y*, then x € X and
Y Y
zllx = llyllx-

Here, 2* denotes the non-increasing, right-continuous rearrangement of = given by
() = inf{r > 0:np, (1) <t}, >0,

where nj,(7) := XMs > 0: |z(s)| > 7}.
The Kothe dual X* of an r.i. space X on the interval J consists of all measurable
functions y for which

lyl|xx := sup { / z(®)yt)dt: ze€ X, |z||x < 1} < 00.
J

If X* denotes the Banach dual of X, it is known that X* C X* and X* = X* if and
only if X is separable. The norm || - |x on X is said to be a Fatou norm if the unit ball
of X is closed in E with respect to almost everywhere convergence. The norm on the r.i.
space X is a Fatou norm if and only if the natural embedding X < X** of X into its
Ko6the bidual is an isometry.
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An important characteristic of a r.i. space X is the so-called fundamental function
ox(t) = [[1¢0,4llx, where we denote by 1. the indicator function of a measurable set
e C [0, 00).

Every increasing concave function ¢ on [0, 1], ¢(0) = 0, generates the Lorentz space
A(p) endowed with the norm

el = / o (t)dip(t).

It is easy to check that () (t) = o(1).
We also recall the definition of the (Lorentz) spaces Ly, 4: © € Ly, 4 if and only if the

1 1/q
U [awrm) . a<,
0

|p7q =3P
sup z* (£)t1/, q= o0,

quasi-norm

2

is finite. L, ,-spaces play a significant role in the interpolation theory [KPS]|, [LT|. The
expression ||- ||, ¢ is anorm if 1 < ¢ < p and is equivalent to a (Banach) norm if ¢ > p > 1.

Let X be a r.i. space on [0, 1]. We shall also work with a r.i. space X (£, ) of r.v.’s
on a probability space (£2, u) given by

X p) ={f e Ll u): f* e X}, [fllx@mu =[x

Here, the decreasing rearrangement f* is calculated with respect to the measure p on €.
We denote by S(2) (= S(, ) the linear space of all measurable finite a.e. functions
on a given measure space ({2, 1) equipped with the topology of convergence locally in
measure.

For basic properties of rearrangement invariant spaces, we refer to the monographs

[KPS], [LT].

2.2. Interpolation functors. Throughout this paper, we denote by X = (Xo,X1) a (com-
patible) Banach couple [KPS], [LT], [BK]. The sum X+ X; and the intersection XoNX;
are equipped with the usual norms:

Hx”XUJer = inf{HxOHXo + ”xl”Xl T = 1'0 + 1'1’ xO € XOv 1'1 € Xl}a
2] xonx, = max{[[z]|x,, [|lz]x,}

Let X = (Xo0,X1) and X be a Banach space such that XoNX; C X C Xy + X;. We
say that X is an interpolation space between Xy and X; if any bounded linear operator
A Xo+ X1 — Xo+ X; which maps X; boundedly into X; (i = 0,1) also maps X
boundedly into X. The set of all interpolation spaces between Xy and X; will be denoted
by IIlt(Xo, Xl)

The K-functional K (t,x; ?) is defined for z € Xy + X; and ¢t > 0 by setting

N
K(t,r; X) = inf{||2"| x, +t]|z']|x, : =2 +2', 2° ¢ X, 2' € X1}

Let ® be a Banach lattice over ((0,00), %) satisfying the condition min(1,t) € ®.

Denote by (Xo, X1)X the set of all elements x € X + X; such that K(t,z, Xy, X1) € ®
—
endowed with the norm ||zf|x, x,)x = [[K(t, z; X)][a.
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It is well known that the map (X, X1) — (Xo, X1)¥ is an interpolation functor (see
e.g. |BK, 3.3.12]). The latter means, in particular, that if X = (Xo0,X1) is a Banach
couple, then the space (Xg, X1)X € Int(Xy, X;). This interpolation method is called the
K-method and the lattice ® is called the parameter of the K-method.

A couple of Banach spaces X = (X0, X1) is said to be a K-monotone couple if there
exists a constant C' > 0 such that for any z,y € Xo + X7 with K(¢, ; )_()) < K(t,y; )_5),

€ (0,00), there exists a linear operator A : Xy + X7 — Xy + X; such that = Ay and

2.3. The Kruglov property and the operator K in r.i. spaces. Let f be ar.v. on [0,1] and
let F; be its distribution function. By 7 (f) we denote any r.v. on [0, 1] whose characteristic

eei 0 =esp ([ (e = 1ars(o))

or, equivalently a r.v. Zf\il fi, where f;’s are independent copies of f and N is a Poisson

function is given by

random variable with parameter 1 independent of the sequence { f;}.

DEFINITION. An r.i. space X is said to have the Kruglov property (we write: X € K) if
and only if f € X & 7n(f) € X.

This property has been studied and extensively used by M. Sh. Braverman [Br]|, who
noted, in particular, that only the implication f € X = = (f) € X is non-trivial, since
the implication 7(f) € X = f € X is always satisfied [Br, p. 11]. Note that an r.i. space
X eKif X D L, for some p < oo [Br, Theorem 2, p. 16]. Moreover, Kruglov’s theorem
[K] gives that exponentlal Orlicz spaces Ly,, where Ny(u) is equivalent to the function

— 1 for sufficiently large u > 0, also possess this property if 0 < p < 1.

In [AS2] (see also [AS1]) we defined the operator K on S([0,1],\) which is closely
linked with the Kruglov property. From a technical viewpoint, it is more convenient to
assume that this operator takes its values in S(Q2,P) , where (Q,P) := [o—,([0,1], A)
(here, Ay is Lebesgue measure on [0,1] for every k > 0). Let {E,} be a sequence of
pairwise disjoint subsets of [0,1], m(E,) = -1, n € N. For a given f € S([0,1], ), we
set

Kf(wo,wi,wa,...) ZZ wk)XE, (wo)-
n=1k=1
Let also 6 : (2,P) — ([0,1],\) be a measure preserving isomorphism. For every g €
S(9,P), weset T(g)(x) := g(6~1x), z € [0,1]. Note that T is a rearrangement-preserving
mapping between S(92,P) and S([0,1], ). So, the distribution function of TKf is the
same as the distribution function of Kf. The operator T/ acts on S([0, 1], A) and, by an
abuse of language, we shall refer to the latter operator as K.

It is important to note that the operator K (= TK) maps an r.i. space X boundedly
into itself if and only if X has the Kruglov property [AS2, Lemma 3.3]. In [AS2], the
action of the linear operator I on various classes of r.i. spaces is studied. In [AS3],
we have studied series of independent mean zero r.v.’s in r.i. spaces with the Kruglov

property.
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3. Results and proofs. Our main results are the following.
THEOREM 3.1. If X is a r.i. space on [0,1] such that X € Int(La, Lo) and either

(i) K: X =X, or
(ii) X has Fatou norm and K : X — X**,

then there exists ¢ > 0 such that for any i.i.d. mean zero sequence {fr}7>, C X and for
every a = (ax)3>, € l2, the following inequality holds:

> || <ellfillxlall (3.1)
k=1

Proof. For any given a = (ax)52 € la2, we define a linear operator T, : S(0,1) — S(0, o0)
by setting

Tof(8) =D arf(t —k+ 1141 .-

k=1
Noting, that for every f € Lo (respectively, f € L) we have

1/2
= (a2 krnar) = okl
k=1 (3-2)
(respectively, || 74 f|lco = Sllip|ak|||f\|oo < llall2ll fllse)
we conclude that T, acts boundedly from L5(0,1) into Z%z (= L2(0,00)) (respectively,
from Lo (0,1) into Lo (0,00)). Combining the inequality
||9||ng < 2[191 Lo (0,00)" L2 (0,00)
(in fact, Z7 = Loo(0,00) N Ly(0,00)) with (3.2), we obtain:
ITafllzz_ <2lall2llfllsc: V. € Loo(0,1), (3.3)

i.e. Ty, acts boundedly from L., (0, 1) into Z%OO. In order to “interpolate” inequalities (3.2)
and (3.3) and extend them to an arbitrary r.i. space X € Int(Lg, L), we will need the
following auxiliary lemmas, the first of them is proved in [A, Lemma 4].

LEMMA 3.2. For any Banach couple (Xo,X1) and an arbitrary parameter ® of the
K -method the following equality holds:

(X0, XoN XK = (X0, X1)E N Xo.

Since the couple (Lg, Loo) is K-monotone [LS] and since X € Int(Lo, L), we have
by [BK, Theorem 3.3.20] that there exists a parameter ® of the K-method such that

X = (Ly, L) ¥ (3.4)
LEMMA 3.3. If the parameter ® is such that (3.4) holds, then
25(0,00) = (L2(0,00), Lo (0,00)) N L2(0,00)
up to norm equivalence.

Proof. Set
V := (L3(0,00), Loo(0,00))E and W :=V N Ly(0, c0).
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The projection Pf(t) = f1j0,1)(t), f € S(0,00) acts from L,(0,00) onto L, with norm 1,
for every 1 < p < co. Hence, for every f € W, we have || flw > || f*1j0,1llv = [|/* L0, x-
This yields immediately || f|lw > 2*1Hf||Z§(.
In order to prove the converse inequality, we note first that X C Ly (by assumption)
and so for some ¢ > 1, we have ||f]2 < ¢||f]lx, Vf € X. Hence,
1112 (0,00) < €l Lol + 1 00y 2 < el fllz,
and
11V < 1 Loy llx + 11 100) l22n20) 0,000
< 1 Lo llx + (1) + 11/ 11,000 [ 221,00
< (1 + 11 X1 Lopllx + 1 11,00) 22 (1,00)
-1
< (A +ex(D) )Ifllz,
where ¢ x (u) is the fundamental function of X. Finally, we have
[fllw < max(e, 1+ ¢x (1) fllz2
and the lemma is proved. m
We continue the proof of Theorem 3.1. Combining (3.2), (3.3) and Lemmas 3.2 and
3.3, we see that there exists ¢; > 0 depending only on the space X such that
ITafllzz < callal2lfllx, VfeX, acl. (3.5)

On the other hand, the assumptions on the space X made in Theorem 3.1 allow us to
use [AS3, Theorem 1|. In particular, for any sequence {fx}}_; C X of i.i.d. mean zero
r.v.’s and for any n € N, we have

n n
H;akkaX < CzH;akkaziv Vay,az,...,a, € R. (3-6)

Since the functions fi, k = 1,2... are identically distributed the same holds also for the
functions Y, _ ax fi and Tyn f1, where a = (a}), af = aj, (k <n) and a} =0 (k > n).
So (3.5) and (3.6) yield the following inequality

n
HZakkaX < cieallfillxllallz, n=1,2,....
k=1

Since the last inequality is equivalent to (3.1), the theorem is proved. m

The condition that (1.1) holds for an arbitrary sequence {f}72, C X of i.i.d. mean
zero r.v.’s is formally weaker than the assertion of of Theorem 3.1. Nevertheless, the
following result holds.

THEOREM 3.4. Let X be a r.i. space on [0, 1]. Any sequence { fr}3>, C X of i.i.d. mean
zero r.v.’s spans a Hilbertian subspace in X if and only if the inequality (3.1) holds for
any such sequence and some constant ¢ > 0, which depends only on X.

Proof. We only need to show that if X is a r.i. space such that any sequence {f;}72, C X
of i.i.d. mean zero r.v.’s spans a Hilbertian subspace in X, then we have the inequality
(3.1). Following [N], we define the set A(X) of all sequences a = (ax);>; such that the
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series Zzilakfk converges in X for any sequence {f}72, C X of .i.d. mean zeror.v.’s.
Note that the set Xy :={f € X : fol f(z)dx = 0} is a closed subspace in X.

For any a = (ax)y>, € A(X), we define a linear operator T : Xo — X(Q,p) by
setting

T;Lf(wlaWQa e ) = Zakf(wk), n € N.
k=1

Here, Q = [0,1]™ and p = [];2; Ak- Since || T2 fllx (0. < Dpeilarlllflx, the operator
T is bounded for every n € N. Moreover, by the definition of A(X) we have

sup |7, fll x (o,u) < o0, Vf € Xo.

Therefore, applying the Banach-Steinhaus principle, we obtain

n

sup sup HZakf(wk)H < 00
feXo,llfllx<1neN = X,
for all @ € A(X), or equivalently
o0
sup HZakka < 00, (3.7)
A lialix<t X

where {f;}}_, is an arbitrary i.i.d. mean zero sequence of r.v.’s from X. Now, if we
define [|a| 4(x) to be equal to the supremum in (3.7), then

> ansi|| < llallaco I A1llx- (3.8)
k=1

Using standard arguments it is not hard to show that (A(X), |- ||4(x)) is a Banach
space. Moreover, it is easy to see that convergence in A(X) implies pointwise convergence.
Applying the Closed Graph Theorem, we may conclude that the embedding Iy C A(X)
given by the assumption on of the theorem is continuous, in other words, ||lal|4(x) < c|lal|2
(Va € l3). Now, inequality (3.1) follows directly from (3.8). The theorem is proved. m

COROLLARY 3.5. Let X be a r.i. space on [0,1] such that inequality (1.1) holds for any
sequence {fr}72, C X of i.i.d. mean zero r.v.’s. Then there exists ¢ > 0 such that
for any n € N, any sequence of disjointly supported and identically distributed functions
{96} € X, |laallx =1 and any ar, € R, k=1,2,...,n the following inequality holds:

n n 1/2
< 2) ) .
|> o <e(>oat (3.9)
k=1 k=1

In particular,

n
Hzakl[ﬂ,ﬂ
2

where px s the fundamental function of the r.1. space X.

\X < cpx(1/n) (zn:az)l/2, (3.10)
k=1

Proof. It is easy to see that there are sets {91—:}2:1 and {g, }}_; of identically distributed
r.v.’s such that |gx| = g + g5, 9795 = 0 and folg,j(x)dx = folg;(x)dw for any k =
1,2,...,n. Setting g, = g,j — s, k =1,2,...,n we obtain an identically distributed
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sequence of mean zero r.v.’s. Let {f;}7_, be a sequence of independent copies of g;,. We
have || f1]lx = |lg1llx = |lg1llx = 1, and by Theorem 3.4

n n 1/2
HZakka Sc(Zai) , Yai,ao,...,a, €R, (3.11)
k=1 X k=1

with some constant ¢ > 0 independent of {gx}}_,. We now note that the proof of the
left hand side inequality (3) in by [JS, Theorem 1] does not use the assumption that an
embedding L, C X holds for some p < co (see also [Br, Lemma 5, p.14-15]). Therefore,
applying this inequality to the sequence {f;}7_, of i.i.d. mean zero r.v.’s, we have

1
[t = 5w, = 5wer], (312
Inequality (3.9) follows from (3.11) and (3.12), and inequality (3.10) is a consequence
of (3.9). =

COROLLARY 3.6. If a 7.i. space X 7C¢ Ly and ¢x(u) = u'/?, then there exists an i.i.d.
mean zero sequence { f,}72, C X spanning a subspace in X which is not isomorphic to ly.

Proof. 1f every i.i.d. mean zero sequence of r.v.’s { f;}72,; C X spans a subspace isomor-
phic to l2, then by the preceding corollary, the inequality (3.10) would hold. In this case
(3.10) may be equivalently re-written as

Hgaklklk

for any n € N and any ax € R, £k = 1,2,...,n. This immediately yields that L, C X,
and invoking the assumption, we conclude that X = Lo, which is not the case, since by

the same assumption X # Ly. The corollary is proved. =

REMARK 3.7. In particular, if X = Ly 4, 1 < ¢ < 2, then it follows from Corollary 3.6
that there exists an i.i.d. mean zero sequence {f}3>,; C L2, spanning a subspace in
Lo 4 which is not isomorphic to 3. This answers in the negative a question from [CD,
p. 157]. The same answer was earlier stated in [N]; however, the proof there is incomplete.
Similarly, the same example also demonstrates that the conditions (a)—(c) on a r.i. space
X stated in the Introduction are not sufficient to guarantee that (1.1) holds for every

ii.d. mean zero sequence {f}72, C X of r.v.’s. This answers in the negative a question
in [Br, p. 71].

COROLLARY 3.8. If a r.i. space X has a Fatou norm, X G Ly and ¢x(u) = u/2, then
X ¢ Int(Lo, Loo). In particular, Lo 4 ¢ Int(Lg, Ls) for every 1 < g < 2.

Proof. Since X D Loy D L., r > 2, then by [AS2, Corollary 5.4, the operator K :
X — X% is bounded. Therefore, if X € Int(Ls, L) then, by Theorem 3.4, every i.i.d.
mean zero sequence {f;}72,; C X of r.v.’s would span a Hilbertian subspace in X. This
contradicts the assertion of Corollary 3.6. =

REMARK 3.9. A proof of a similar result to that of the preceding corollary by a different
method may be found also in [MM, Theorem 5].
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COROLLARY 3.10. Let ¢ be an increasing and concave function on [0,1] such that tz <
Ci-o(t),0<t <1 and

0 k

e <Z'> < Cop(t), 0<t<1, (3.13)

k=1

for some constants C; and Cs. Then every i.i.d. mean zero sequence of r.v.’s from the
Lorentz space A(p) spans in A(p) a Hilbertian subspace if and only if there exists a
constant C5 > 0 such that

(é(@(é)—w(kn1>>2>1/2§03s0(%>, neN. (3.14)

Proof. First, we suppose that every i.i.d. mean zero sequence of r.v.’s from the Lorentz

space A(p) spans in A(p) a Hilbertian subspace. By the definition of the norm in the
Lorentz space A(y), we have

- — k E—1
el =2 (4(5) -+ (57))
k=1 k=1

where {a} }7_, is the decreasing rearrangement of the sequence {|ax|}}_,. Thus, it follows

from (3.10) that
Yo (o) -+ (55) = (2) ()

for any n € N and a; € R, £ = 1,2,...,n. It is obvious that the last inequality is
equivalent to (3.14).

Conversely, suppose that (3.14) holds. Since (3.13) means that the operator K sends
A(p) into itself [AS2, Theorem 5.1], it follows from the proof of Theorem 3.1 that it is
sufficient to verify that for every sequence a = (ax)32, € l2, the operator

T.f(t) = Z arpf(t —k+ 11411

k=1

is bounded from A(y) into Z3 )- Fix n € N. By the assumption and (3.14), we have

Alp) H Z e

k=n-+1

D)6 kiﬁa@?f
N

5

n
1Tt llzz,, = || D2 @it s,

L2(1,00)

I
=~
I M:
—
Q
%
/N
©
/ 7N

1
< (€1 + Capo( 1 )l

If h € (0,1), then there exists n € N such that (n+1)~! < h < n~!. Using the argument
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above, we set

HTal[O,h]HZ/?\(w) < ”Tal[o’%]”Z;‘{(w)

1
< (C1+ Co)p(5 llall, < 2(Cr+ Ca)p(h) all.

Combining this inequality with Corollary 1 to Lemma I1.5.2 in [KPS], we see that T, acts
boundedly from A(yp) into ij\(@) with the norm less or equal to 4(Cy + C3)||al|;,. =

[A]

[AS1]
[AS2]
[AS3)]
[BK]
[Bx]
[CD]
s
IK]
[KPS]
L]
[Ls]
MM

[N]
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