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Abstract. We introduce the notion of the modulus of dentability defined for any point of the
unit sphere S(X) of a Banach space X. We calculate effectively this modulus for denting points
of the unit ball of the classical interpolation space L' 4+ L°°. Moreover, a criterion for denting
points of the unit ball in this space is given. We also show that no denting point of the unit ball
of L' + L™ is a LUR-point. Consequently, the set of LUR-points of the unit ball of L' + L* is
empty.

1. Introduction. Let S(X) (resp. B(X), B(X)?) be the unit sphere (resp. the closed
unit ball, the open unit ball) of a real Banach space (X, || - ||x)-
A point z € S(X) is called

a) an extreme point of B(X) (written x € 6.B(X)) if for any y, z € B(X) the equality
2z = y + z implies y = z.

b) a strongly extreme point of B(X) (written = € d5.B(X)) if for any sequences (y,,),
(zn) in B(X) we have |y, — z||x — 0 whenever ||y, + z, — 2z||x — 0.

c) a denting point of B(X) (written z € §4B(X)) if x ¢ co{ B(X)\[x + eB(X)°]} for
each € > 0.

d) a point of local uniform rotundity of B(X) (LUR-point for short, written = €
drurB(X)) if for each € > 0 there is §(x, ) > 0 such that for all y € B(X) the inequality
I~ yllx > e implies [z +5)/2]x <1 d(z,<).
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40 A. BOHONOS AND R. PLUCIENNIK

e) an H-point of S(X) (written x € 6 S(X)) if every sequence (z,,) in S(X) we have
|2, — x||x — 0 whenever x,, is weakly convergent to z (write z,, — ).

f) a point of continuity of S(X) (written z € 0,.5(X)) if the identity map from
(S(X), Tw) into (S(X), 7. ) (where 7, is the weak topology and 7., the norm topo-
logy) is continuous at x.

It is known (see [12]) that
04B(X) = 05¢B(X) N6, S(X).
Moreover,

OrurB(X) C 6qB(X) C §5eB(X) C 6.B(X), 04B(X) C 0pcS(X) CouS(X).  (1.1)

A Banach space X is said to have property R (resp. MLUR, G, LUR, H, PC)
if S(X) = §.B(X) (resp. S(X) = §:B(X), S(X) = §;B(X), S(X) = drvrB(X),
S(X) =6u5(X), S(X) = 6pe5(X)).

Given any = € S(X) a function d, : [0,1) — [0,1) defined for any € € [0, 1) by

3:(e) = mf{[lz -yl x : y € {B(X)\[z +eB(X)°]}}
is said to be the modulus of dentability of x. Clearly, x € §;B(X) if and only if §,(¢) > 0
for any € € [0,1).

It is worth mentioning that the Radon-Nikodym property (RNP), one of the most
important properties of Banach spaces, can be defined in terms of denting points. Namely,
H. B. Maynard [10] proved that a Banach space X has the RNP if and only if every non-
empty bounded closed set K in X has at least one denting point. It is also known that a

Banach space X has the RNP if and only if for any equivalent norm in X the respective
unit ball B(X) has a denting point (see, e.g., [2, p. 30]).

2. Some results in Kothe spaces. Let (T, X, 1) be a o-finite and complete measure
space and L° = L%(T) be the space of all u-equivalence classes of real valued measurable
functions defined on 7. The notation x < y for z,y € L° will mean that z(t) < y(t) p-a.e.
inT.

A Banach space E = (E, || - ||g) is said to be a Kithe space if E is a linear subspace
of LY and

(i) ifz € E,y € LY and |y| < |z| p-a.e., then y € E and |ly| g < ||z g;
(ii) there exists a function z in E that is positive on the whole T.
Every Kothe space is a Banach lattice under the obvious partial order (z > 0 if

x(t) > 0 for p-a.e. t € T'). The set B, = {x € E : x > 0} is called the positive cone of E.
For any subset A C E define Ay = AN FE,. For any z,y € E,

(z Vy)(t) = max{xz(t),y(t)}, (xAy)(t)=min{z(t),y(t)}
for p-a.e. t € T.
The next lemma is a generalization of Lemma 1 from [4].

LEMMA 1. Let x € 05¢B(E), x € E4 and (p,) be a sequence such that p, € E for every
n €N and p, —» z in E. If y, > p, and y, € B(E) for any n € N, then y,, — x in E.
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Proof. Since 1 = ||z|lg < |lpnlle < llynlle < 1, ||ynlle — 1. Define z, = 2p,, — y,, and
A, ={teT:z,(t) >0} for any n € N. Then, by the fact that p, < y,, we have

|20l = (2P0 — Yn)XA, + (Yn = 2Pn)XT A, < PrXA, T UnXT<A, < Yn-
Consequently, ||z.|lg < lynlle <1 and ||z.|lg > 12|l llE — |yl £| for any n € N, whence
1= lim [2pnlls — lynlls] < liminflzas < limsupllealls < 1,
n— 00 n—00 n—s 00
ie. lim, o ||2n]|g = 1. Moreover z,, + y, = 2p, — 2z in E. Therefore, by the fact that
x € ds¢ B(E), we conclude that y, -z in E. m
We use Lemma 1 to prove the following.

LEMMA 2. Let x € S(E) be such that |x| € 64B(E). Then for any e > 0 there is 6 > 0
such that

ly € E: |yl € B(E)\[|z| +eB(E)Yn{z€ E:|z| € [|z| + 6B(E)"]} = @.

Proof. If the lemma is not true, then there exist € > 0 and sequences (a!") and (zI") in
R, and X, respectively, such that
N(m)
> ar=1, [a]'| € B(E)\[la| +eB(E)"] (2.1)
i=1
forany me N, i=1,2,...,N(m) and
N(m)
n}gnoo‘ Z al*z™| = |z|. (2.2)
i=1

Since every denting point of B(F) is a strongly extreme point of B(E), by our assumptions
|z| € dseB(E). Define y,, = va(lm) a™|z?"|. Clearly, by the triangle inequality for the
norm, ||y ||g < 1. Moreover

Nm N(m)
_ mlxm‘ > ‘ Z

for every m € N. Hence, in virtue of Lemma 1, we have

lim Ym = ‘.’E|,
m—0

which is impossible, because |z| is a denting point and y,, is a convex combination of
points from the set B(E)\[|z| + ¢B(E)]. This contradiction finishes the proof. m

REMARK 1. Lemma 2 is a special case of Lemma 4.2.2 from [11], but our method of proof
is much simpler. Moreover, Lemma 4.2.2 from [11] can be proved in the same way also.

PROPOSITION 1. Let E be a Kithe space. Then 6.(c) = 0jy|(c) for any v € S(E) and
e €[0,1). In particular, x € 64B(F) if and only if |z| € §;B(E).

Proof. Take x € S(F) and € € [0,1). Then there are sequences (a?*) and (y") in R4

K3
and X, respectively, such that
N(m)

Yoar =1yl e BE\+eB(E))
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forany m e N, i=1,2,...,N(m) and

N(m)
o= Jim | 5 e —a,

Define zj* = y;" signx. Then

" = [zl = [Isignz(y;" — 2)|[z = [ly;" — 2|z >
and consequently 2™ € B(E)\[|z| + eB(E)°]. Moreover,
N(m)
= lim H Z altzi signx — :CHE = \signmt&i_r}noo H z_: al'zi — \SC|HE > Oz (e)-

m—00

Conversely, by the definition of §|4(¢), there are sequences (aj") and (z}*) in Ry and X,
respectively, such that

foranyme N, i=1,2,...,N(m) and

Defining ;" = x{" sign 2 and repeating the above argument, we prove that §,,(¢) > d.(¢).

Hence d.(¢) = J5((¢) and consequently x € dgB(FE) if and only if |z| € 04B(E). =

3. Denting points in L' + L>. Consider the classical interpolation space L' + L>
equipped with the norm

Izl roe = mf{llylls + 2l sy + 2 =2, y € L', 2 € L}
(see [1], [9]). It is well known that if u(T") > 1, then

1
g1z = / w(t)dt,
0

where z* is the nonincreasing rearrangement of = (see [9]). Recall that d, denotes the
distribution function of |z|, that is,

de(A) = p({t € [0, u(T)] : 2(t)] > A})
for all A > 0. The decreasing rearrangement of x is denoted by x* and is defined by
2*(t) = inf{\ > 0 : d,(\) < t}. We also know (see [7]) that L' + L is an Orlicz space
generated by the Orlicz function @ ; defined by the formula @ 1 (u) = max{0, |u| —1}.
Moreover, || - ||z110~ = || - ||%m71. The local geometry of L' + L> was considered e.g. in
[5], [6], [8]- We are going to characterize the denting points of the unit ball of this space.
To do it, we will start with the following

LEMMA 3. If1 < u(T) < oo, then the norms || - |1 and || - ||z14 = are equivalent and

[zllzrsre <zl < (T2l 4L
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for any x € L' + L. The equality ||z|; = u(T)||z||z1 1~ holds only in the case when

|z(t)| = exT p-a.e. in T for some real number ¢ > 0.

Proof. The left hand inequality is obvious in view of the definition of the norm ||-|| 14 p-

Take an arbitrary x € L' + L such that ||z||; = c. Denote
A={teT:|z@t)]>c/u(T)} and B={t € T : |x(t)| < ¢/u(T)}.

Then 2*(t) > ¢/u(T) for t € (0, u(A)), z*(t) = ¢/u(T) for t € (u(A), u(T \ B)) and

x*(t) < ¢/u(T) for t € (uW(T'\ B), u(T)). By our assumptions, we have

[ (o-gim)a- [ (o)

/O”(T) (x*(t)M(CT)>dt/OM(T)x*(t)dtc||:1:|1c0.

[0 [, i)

To prove the assertion, consider the following cases.

1) u(A) > 1. Then

Cewar= [ M - S Nars
fetarsn = [ a0 [ [ (w0 - i )@ iy
1) 0 < pu(A) <1 and pu(B) < u(T) — 1. Then

n(A) 1
] L1y o =/ z*(t) dt+/ o (t) dt
0 iz

(4)

- /oﬂ(A) (i + (=0 ) )+ /;m o

/Olﬁdt+/owl) (:c*(t)ﬁ>dt>ﬁ.

1) 0 < p(A) <1 and p(B) > u(T) — 1. Then, by the inequality (3.1), we get

w(A) w(T\B) 1
T / x*(t)dt+/ x*(t)dt—l—/ 2 (t) dt
0 w(A) w(T\B)

- /OMA) (i * (=0 ) e+ ﬁ?m sk
*A(T\B><%‘<ﬁ‘x*<t)))dt
1. w(A) . ¢
:/O mdu—/o (a: (t)—m) dt —

e w(T) c . p ¢
= T, <WT>““) i)

Hence

/;;T\B) (ﬁ - gfk(t)) “
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i) If p(A) =0, then u(B) =0 and

1 C C
71700 = ——dt = ——
el e / WM T W)

and consequently |z|; < u(T)||z| p14pe~ for any z € L' + L°°, which finishes the proof
of the lemma. m

LEMMA 4. If 1 < p(T) < o0, then
W(0) [ (ote)] = 1) v 0)d < [ (= [a(0)) v 0)d
T T
for any x € B(L' + L™).
Proof. Fix z € B(L' + L) and define
A={teT:|z(t)|—1>0}and B={teT: |z(t)| — 1 < 0}.

Then z*(t) > 1 for t € (0, u(A)), z*(t) = 1 for t € (u(A),u(T \ B)) and z*(t) < 1 for
t € (u(T\ B), (T)). We claim that u(A4) < 1 and p(B) > p(T) — 1. Indeed, supposing
that p(A) > 1, we get, by 2*(¢t) > 1 for ¢ € [0, u(4)],

el zoe = / (1+ (27() — 1)t > 1,

i.e. ¥ ¢ B(L'+L"). This contradiction proves that j(A) < 1. Further, if u(B) < u(T)—1,
then

p(A)
el gz = / (1+ (2 (t) - 1)t + /

p(A)

1 w(A)
dt:1+/ (z*(t) — 1)dt > 1
0

and consequently z ¢ B(L' 4+ L°°). This contradiction finishes the proof of the claim.
Notice that

n(A)
/ (J(5)] — 1) v 0)dp = / (a*(t) — 1) dt
T 0

and
w(T)
[a=w@vordn= [ a-w o
7 W(T\B)
Since
u(A) 1 1 1
/ (*(t) = 1)dt f/ (1= 2*(8))dt :/ s (1)t f/ dt = ||all gy g —1 <0,
0 w(T\B) 0 0
we have
1 n(A)
/ (1— " (8))dt > / (2" (t) — 1)dt. (3.2)
u(T\B) 0
Moreover, it is easy to see that
1
T < (1) <1 / (1— 2" (1)dt (3.3)
u(T\B)
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for all ¢ > 1. Finally, applying inequalities (3.2) and (3.3), we have

1 w(T)
J=ropvoa= [ a-a@ar [ 0-a @

w(T\B)

w(A) w(T)
/ (z*(t) — 1)dt + / (1 —a*(1))dt
0 1

v

(@*(t) = Dt + (u(T) = 1)(1 — 2"(1))

u(T\B)

|
> / "t ) - v+ (w1 / RO
|

n(A)
(@) =Dt + (D) = 1) [ @ () = D

—~

p(A)
() [ )= Dt = T [ (el = 1) v 0y,

so the conclusion of the lemma follows. m

THEOREM 1. a) The set 64B(L' + L) is non-empty if and only if 1 < pu(T) < oo.
b) Let 1 < u(T) < oco. A point x € S(L* + L*) is a denting point if and only if
|z| = x1. Moreover, for any ¢ € (0,1) and any z € 64B(L' + L) we have

(WT)—1e ¢ }
2u(T) " p(T) )

Proof. By Corollary 5 from [5], the set of strongly extreme points of B(L! + L) is
empty whenever p(7) < 1. Since every denting point of the unit ball B(X) is a strongly
extreme point of B(X) for any Banach X, the unit ball B(L' + L) has no denting points
if u(T) < 1. By Theorem 2.5 from [8], none of extreme points is an H-point provided
w(T) = oo. Hence if u(T) = oo, the set of denting points of B(L! + L>) is also empty
because any denting point is always an H-point. Therefore denting points of B(L! + L)
can exist only in the case when 1 < u(T) < oco. By Corollary 5 from [5], = is a strongly
extreme point of B(L' + L>) if and only if |z(¢)| = 1 for p-a.e. t € T. Hence, to finish
the proof of both assertions, it is enough to show that a point = such that |z| = xr is a
denting point of B(L' + L*). But, by Proposition 1, we can reduce our considerations
to the case z = y7. Fix € > 0, take z € B(L! + L*) such that || x7 — 2|14~ > € and
denote v = [1.((|z(t)] — 1) V 0)dp. Defining A = {t € T : |z(t)| — 1 > 0} and taking into
account that z € B(L! + L*°), similarly to the beginning of the proof of Lemma 4, we
conclude that p(A) < 1. Then

3,() = min {

w(A) u(A) 1
a:/ (+*(t) — 1)dt</ z*(t)dtg/ At = 2l prape < 1,
0 0 0

whence a € [0, 1). Define the function

Fo) = [ (= 1=0) v 0du= [ (=01 = 1) v 0y = [ (1= [=(0) v 0)d

T T
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Then, by Lemma 4, we have

F.(a) > u(T) /T ((J2(8)] = 1) V 0)ds — @ = a(u(T) - 1). (3.4)

Since z € B(L' + L), we have

1 1
0<1— |2 prs e :/0 dt 7/0 ()t
:/0 (@ —z*(t))\/O)dt—/O ((=*(t) — 1) v 0)dt :/0 (1= (1)) v 0)dt — a.
This implies that
/ (1= (1) v 0)dt > . (3.5)
0
Hence . )
1) =1 _/O (1—2"(1))dt < 1 —/0 (1—2@)VOdt<1—a.  (3.6)

Assume additionally that oo < £ and consider the following two cases.

1. Suppose that u(T) > 2. Then we have
1
e < e = #lase = [ (v =) (00
0
n(A) w(T) w(T)
< / (z"(t) — 1)dt Jr/ (1—2"(t))dt =« +/ (1—2"(t))dt,
0 M Iz

(T)-1 (-1

whence

w(T)
/ (1= 2 (8)dt > e — a

u(T)—1
Moreover, by (3.5) and (3.6), we obtain

w(T)—1 1 w(T)—1
/0 (- = (t))\/O)dt:/O (12 (t))\/O)dH—/l (1= 2*(0)dt

>a+ /H(T)_l(l — 2*(1))dt
= a+a(uT) —2) =a(u(T) - 1).
Therefore

w(T)
F.(a) = /T«l — |=(®)]) v 0)dp — a =/0 ((1— 2"(8)) v 0)dt — o

wT)—1 w(T)

= ((1— 2* () V 0)dt + / (1= 2*(t))dt — a

0 n(T)—1
>a((T)—1)+e—2a=c+ a(u(T) - 3).
Combining the last inequality with inequality (3.4) we get the system of inequalities

{ F.(a) >e+a(u(T) - 3),
F.(a) > a(u(T) - 1).
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If u(T) > 3, then the smallest number F,(«) corresponds to aw = 0. Hence
F.(a) >¢ (3.7)

for any o € [0,¢). If 2 < p(T) < 3, then the slopes p(T) — 3 and u(T) — 1 have opposite
signs, and the smallest number F(«) is attained for a = 5. We can find it by solving the
equation

e+ a(u(T) - 3) = a(u(T) — 1).
Hence
F.(a) > S(u(T) = 1) (3.8)

for any « € [0,¢), whenever 2 < p(T') < 3.

2. Now suppose that 1 < p(7T) < 2. As in the previous case, it can be proved that

w(T)

/((1— |z(t)|)\/0)du2/ (1= 2(1)) V 0)dt > = — o (3.9)
T

w(T)—1

Ifa< 52 ”gg, then

Fla)> (e—a)—a>ec— 25§_ZE§§ = E'g(TL(_Ti > g(u(T) —1).
w(T)

Now suppose that o > 5§:M(T)' This inequality is equivalent to
(e—a)(2—u(T)) <o

Since the function (1 — 2*(¢)) V 0 is non-decreasing, by (3.9), we obtain

1 w(T)
/((1—\z(t)\)\/0)du2/ (1— 2t dt+/ (1— (1))t
T 0 1
> o+ (u(T) — 1) — a)
Hence
F.(a) = (u(T) — 1)( - a).
Combining the last inequality with inequality (3.4), we get again the system of inequalities
{ Foa) 2 e(u(T) = 1) — a(u(T) — 1),
F.(a) > a(u(T) - 1).

Solving the equation

e(u(T) = 1) —a(u(T) = 1) = a(p(T) — 1),

we conclude that the smallest number F.(a) is attained at a = 5. It leads again to
inequality (3.8) for any a € [0,¢), whenever 1 < p(T) < 2.

Summing up, we have

F.(a) > {E(M(T) —1)if 1 < pu(T) <3, (3.10)
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If « > ¢, then ||x7—2|| L1411 > 2a > 2¢ > €. Moreover, by (3.4), the smallest number
F, () is taken for a = €. Hence

Fe(a) 2 e(u(T) - 1)

for any o € [e,1). But
. 13
£(uT) - 1) 2 min { 5u) - 1) .

o (3.10) is satisfied for any « € [0, 1).

Now, we will show that = xr is a denting point. Take a finite sequence (z;)7; in
the unit ball B(L' + L*°) such that ||x7 — zi||p14p0 > ¢ fori=1,2,...,m, and a finite
sequence of positive numbers (a;)"; such that >, a; = 1. Set a;; = fT |zl 1)V0)du
for i =1,2,...,m. Then, by Lemma 3 and the inequality (3.10), we have

m m
er =3 ais], = = - ZWZ a0y 0 = ez ofan

= ﬁ/Tzai(xT(t) — zi(t))du
1 m
_ M—T); /T(XT( ) — zi(t))du
1 m
> (D) ;az(/r((l — |zi(t)]) vV 0)dp — /T((|zz(t)| Y O)du)
1 <& 1 >
= m ;azel(az) > LL(—T ;ai mln{—(u(T) _ 1)75}
Zmin{(‘u(T)_l)5 € }
2u(T) (1))

Consequently, by Proposition 1, every x € L' + L* such that |z| = xr is a denting point

of B(L* + L*) and
T -De e
dz(e) > mln{ (@) (D) } (3.11)

Now, we will show the converse inequality by considering two cases.

1. Let 1 < pu(T) < 3. Take € € (0,1). Define A7 = [=L4(T), L (7)) and

o7 = (g + 1)+ (1 g gy e

forn=6,7,...and i =1,2,...,n. Then

MMUHm=%Mﬂ<;Zyﬂ)+0—%Mﬂ>@‘ﬂ?§kﬂQ
e
2

+

SIH

uT) + T
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for any integer n > 6 and ¢ = 1,2,...,n. Moreover,
n ne ne
i — xrllLisr= = HMT)XA;L - mXT\A? iy
T ne 1 ne
= g+ (1 e ) gy =
for any integer n > 6 and ¢ = 1,2,...,n. Now, for any n > 6 we consider the convex
linear combination with coefficients a}' = % fori=1,2,...,n, namely

22%%””:%<Z%ﬁ*”)+nn1<“‘%nflT»)

€ +l+n71_ (n—1)e
@ Tt Th T A (@)
et (n—1)e

2u(T)  2(n—u(T))

for any n > 6 and ¢ € [0, u(7T")). Hence

n
n,..n
H E a; T; _XT‘
i=1

u+Lw::H(l*'ij>"%S{fizin)XT"XT

L14 Lo
:‘ e (n-1) ‘||XT||1 o (n—le ¢
2T 2 — () | XTI = 50Ty T 2T

for any n > 6. Consequently,

. (n—1) e € e (T)—1)
PO S w2 wm )

2. Let pu(T) > 3. Take € € (0,1) and denote by [u(T')] the greatest integer not bigger
than p(T). For any n > 2 define k(n) € {0,1,...,n — 1} such that

M) <y - ey < ML

- - (3.13)

For any integer n > 2 and i = 1,2,... n[u(T)] + k(n), let

i, misd) it w1 < (7,
B =412 nium)]+kn) nbiclon[u(T)] k()] sp nbiol —
[T’ n ] U [Oa n } if n > ,U(T)a

and define
T} = XT — EXBr-

Notice that
1 1
oy poe = / (a2)* (t)dt = / di=1
0 0

and

7 = xrllLr e = elixpyp L= =€
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for any integer n > 2 and ¢ = 1,2,...,n[u(T)] + k(n). Taking al* = m, we get
n[w(T)]+k(n) BaB() = n (1-o)+ n[u(T)] + k(n) —n
= nlu(T)] + k(n) n[u(T)] + k(n)
. n
n[u(T)] + k(n)
for any integer n > 2 and ¢ € [0, u(7)]. Hence
n[pu(T)]+k(n) ne
n, .n
L ={1- - _
H Z ot XT‘ L4 H( nfu(T)] + k‘(n)>XT M e
ne e ne
- X 1 o =
n[u(T)] + k(n) T T nu(T)] + k(n)
for any integer n > 2. Notice that
ne B €
n[p(T)]+k(n)  [u(T)] + H
whence, by (3.13),
e €
w(T) (D)) + (u(T) = [u(T)])
€ €
S =
()] + 52 ()] + B
< € B €
T D)+ (W) = (D) =5 WD)~
for any n > 2. Hence, by the Sandwich Theorem for infinite sequences, we get
5,(e) < lim e = (3.14)

A ATl R) D)
Combining inequalities (3.12) and (3.14), we have
) =D e
o0 < i {0 i

whence, by (3.12), we obtain the desired conclusion. m

COROLLARY 1. The set 6ryrB(L' + L) is empty.

Proof. Since for any Banach X every LUR-point of B(X) is a denting point of B(X),
the unit ball B(L' + L*°) has no LUR-points whenever u(T) < 1 or u(T) = oo. If
1 < u(T) < oo, by Theorem 1, every @ € S(L'+ L) such that |z| = xr is a denting point
of B(L'+ L*°). Therefore, if 1 < u(T) < oo, the only LUR-points of B(L'+ L) are those
x € LY with |x| = x7. Take z € L' 4+ L such that |z(t)| = 1 for p-a.e. t € T.Let ACT
be a set such that u(A) = 1 and define y = xx4. Obviously, ||| L1ir~ = ||lYllLrone = 1.
Moreover, for any positive e < min{1, u(7T\A)} we have

llz — y||L1+L°° = ||3UXT\A||/;1+L°o = ||XT\A||L1+L°° = min{l,M(T\A)} > €.
On the other hand

1
lo + ylzisoe = 12xa + xovall sz = / 2dpi = 2.
0

Hence z ¢ dpyrB(L' + L>°) and consequently d,ypB(L' + L®) = 2. u
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