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Abstract. We consider an embedding of the group of invertible transformations of [0, 1] into
the algebra of bounded linear operators on an Orlicz space. We show that if this embedding
preserves the group action then the Orlicz space is an LP-space for some 1 < p < co.

1. Introduction. Let us denote the Lebesgue measure on the og-algebra of Borel subsets
of [0, 1] by m. We call a Borel mesurable function 7 : [0, 1] — [0, 1] a transformation if it is
nonsingular, that is, if m(A) = 0 implies m(771(A4)) = 0. Transformations equal almost
everywhere are identified. A transformation is called invertible if it is injective, onto [0, 1]
and its inverse, which is Borel measurable (see [4], § 39, V, Theorem 1), is nonsingular.
We denote by G the group of all invertible transformations.

Let ¢ : [0,00) — [0, 00) be convex, ¢(x) = 0 iff z = 0, and let ¢ satisfy the condition A’
globally (which means that there exists ¢ > 0 such that ¢(zy) < cp(z)¢(y) for z,y > 0).
It is shown in [2], Proposition 2.1, that if 7 € G and w, stands for the Radon—Nikodym
derivative of the measure m o 7—! with respect to m then the formula

()= (for (@ ow)
defines a bounded linear operator T on the Orlicz space L?(m) (for information on
Orlicz spaces see, for example, [5]). This is a generalization of a similar formula for
LP-spaces (compare [3], § 5).

If ¢(z) = AzP for z € [0, 00), where A > 0 and p > 1 (the case of (L?(m), A||-||,)), then
the embedding 7 — T¢*) of G into L(L?(m)) preserves the group action with constant
A. This is a consequence of the formulas given at the beginning of the proof below. The
embedding in question need not preserve the group action for Orlicz spaces in general
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(for an example see [2], Remark 2.3.4). We are going to show that the preservation of the
group action characterizes, in fact, LP-spaces.

2. The characterization. We write x x for the characteristic function of a subset X of
[0, 1]. As usual, the set of non-negative integers is denoted by N. The symbol |PQ| stands
for the length of the interval PQ, where P,(Q € R2.

Let p,,qn € (0,00) be chosen so that the set {(p,,q,) : n € N} is dense in (0, 00)2.
Choose P, = (2, Yn), Qn = (Yn,2n) in [0,1]? with the following properties:

(a‘) PO = QO = (an)v

(b) 0 < |PyPy1| <1/27 and 0 < [Q,Qni1] < 1/27F! for n € N,

(¢) tan<t(OX, P,P,11) = p, and tan<(OX, QnQpni1) = qn for n € N.
Set aoo = lim,, .o ay, for a convergent sequence (ay,) in R or in R?.

Define 7, p : [0,1] — [0, 1] by the following conditions:

1. the graph of 7~! consists of the intervals P, P, and of the interval P, ( 1),

2. the graph of p~! consists of the intervals Q,,Q,,1 and of the interval QOO( 1).

Clearly, 7, p € G.
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Fig. 1. Transformation 7~ tan Gn = Pn Fig. 2. Transformation pfl: tan ¥, = qn

LEMMA. Let 7, p be as defined above and 0 < A < co. If ¢ : [0,00) — [0,00) is convet,
d(x) = 0 iff x = 0, and ¢ satisfies the condition A’ globally then the following two
conditions are equivalent:

L. Tégz(X[O,u) =T o T;§¢)(X[o,1]);
2. there exists 1 < p < 0o such that ¢(x) = \aP for x € [0, 00).

Proof. We show that (1) implies (2). For f € L?(m) and arbitrary 7,0 € G we have
T8 () = (foo ™t or™ e o (w07 wr),
T oTO (f)=(foo tor o towsor NP ow,).
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Hence
T(¢>)

TOU(X[O,I]) = ¢71 © ((wa o Tﬁl)wT)
and
T o T (xpo,1) = (¢ owg 0 77 1) (¢ 0wy ).

Let now 7 = 7 and 0 = p. We obtain

Tf(rfzy (X[0,1]) = Z Xz )@ (Pntn) + aX (2 1)
n=0

and -
NI o TS (X0,11) = A D X(wmans )@ (n)E ™ (@n) + DX (o .1)
n=0

for some a,b € R. This gives

¢71(pnqn) = A¢71(pn)¢71(qn)
for every n € N.
Since {(pn,qn) : n € N} is dense in (0,00)? and ¢ is continuous and increasing, there
exists 0 < p < oo such that ¢~ 1(t) = t*/? /X for t € (0,00) (compare [1], 2.1.2). By the
convexity of ¢, we have 1 <p < oo. m

In particular, when A = 1 and all invertible transformations are considered, we obtain
the following theorem.

THEOREM. Let ¢ : [0,00) — [0,00) be convez, ¢(x) = 0 iff x = 0, and let ¢ satisfy the
condition A’ globally. Then the following two conditions are equivalent:

1. the embedding T — T of G into L(L?(m)) preserves the group action (with
constant 1);
2. there exists 1 < p < oo such that ¢(z) = P for x € [0,00). m

Acknowledgments. The author whould like to thank Professor Zbigniew Lipecki for
many helpful remarks which have improved the text significantly.

References

[1] J. Aczel, Vorlesungen iber Funktionalgleichungen und ihre Anwendungen, Berlin, 1961.

[2] M. Burnecki, Invertible transformations acting on Orlicz spaces, Arch. Math. (Basel) 70
(1998), 319-330.

[3] J. R. Choksi and S. Kakutani, Residuality of ergodic measurable transformations and of
ergodic transformations which preserve an infinite measure, Indiana Univ. Math. J. 28
(1979), 453-469.

[4] K. Kuratowski, Topology, Vol. 1, PWN, Warszawa, 1966.

[5] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.






