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Abstract. We review several results on interpolation of Banach algebras and factorization of
weakly compact homomorphisms. We also establish a new result on interpolation of multilinear
operators.

1. Introduction. A celebrated result of Davis, Figiel, Johnson and Pelczyniski
[15] shows that any weakly compact operator between Banach spaces can be factorized
through a reflexive Banach space. In 1992, Galé, Ransford and White [16] asked whether
or not the corresponding result holds in the setting of Banach algebras. The answer to
this question has been given recently by Blanco, Kaijser and Ransford [5], by using an
interpolation method of the type of the classical real method (-, -)g,, which, on one hand,
respects the Banach-algebra structure and, on the other hand, it produces reflexive spaces
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under suitable conditions. Previous results on interpolation of Banach algebras are due
to Bishop [4], A. P. Calderén [7], Zafran [27] and Kaijser [19].

In this paper we work mainly with the general real method (-, -)r, which is defined
similarly to (-, -)g,q but replacing the weighted ¢, norm by a more general sequence lattice
norm I' (see [25], [24] and [6]). We review a result of Astashkin [1] and Martinez and the
present authors [12] which shows a necessary and sufficient condition on T' for (-,-)p
to preserve the Banach-algebra structure. That is to say, for (Ag, A1)r to be a Banach
algebra provided that (Ap, A1) is a compatible couple of Banach algebras such that the
two multiplications agree on Ag N A;. That condition turns out to be that I is a Banach
algebra with multiplication defined as convolution. As a consequence of this result and
interpolation properties of weakly compact operators (see [23] and [10]), we shall recover
the result of Blanco, Kaijser and Ransford [5].

We shall also review other results of Astashkin [1] and the authors [9] on the relation-
ship between interpolation of Banach algebras and interpolation of bilinear operators.
Finally, we shall establish a new result on multilinear interpolation.

The organization of the paper is as follows. In Section 2 we describe the approach
of [12] to factorization of weakly compact homomorphisms. In Section 3 we review some
basic facts on the general real method (-,-)r. Section 4 is devoted to interpolation of
Banach algebras and, in the final Section 5, we deal with interpolation of multilinear
operators.

2. Factoring weakly compact homomorphisms. Let A be a Banach algebra, that
is, an algebra which is also a Banach space and such that there is a constant ¢4 > 0 such
that for all z,y € A we have

lzylla < callz| allylla-

Habitually it is required that c4 = 1 but this definition is equivalent to the usual one
(see [14], Exer. VII.1.1) and it is better for our aims.

Galé, Ransford and White asked in [16] whether or not every weakly compact ho-
momorphism between Banach algebras ® : A — B factors through a reflexive Banach
algebra W with Banach algebra homomorphisms ®;, ®5 as factors

P

A B

w

This problem is related to the well-known result of Davis, Figiel, Johnson and Pelczyn-
ski [15] on factorization of weakly compact operators through reflexive Banach spaces. It
is just the corresponding result in the setting of Banach algebras.

The answer was given only recently by Blanco, Kaijser and Ransford [5]. In order to
see the difficulties to establish this result, let us follow the approach given by Martinez
and the present authors [12] to the result of Blanco, Kaijser and Ransford.
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Given the homomorphism ® : A — B, let Ker(®) be its kernel and let ' = A/ Ker(®)
be the quotient Banach algebra. The quotient mapping Q(z) = [z] is a Banach algebra
homomorphism, as well as the map j : F — B defined by j([z]) = ®(z). Moreover, the
map j is one-to-one. Let Wy = j(Q(A)) = {®(z) : © € A} endowed with the norm

12(2)lwy = ll[z]llr = inf{]ly[la : (x) = @(y)}.

Then Wy is a Banach algebra, continuously embedded in W7 = B. Multiplication in W
is the same as in W;. Moreover, the open unit ball of W is contained in the image by ® of
the unit ball of A, so the embedding from Wy into W7 is weakly compact. The following
picture illustrates the situation:
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To establish the factorization result we only need to find a reflexive Banach algebra
W such that Wy <— W <— W, where < means continuous inclusion. This will yield the
wanted factorization by taking ®; = jo Q = ® and ®5 = I.

To construct W one might try to use some interpolation method. In the next two
sections we study this point.

3. Real interpolation. Let X = (X, X;) be a Banach couple, that is, two Banach
spaces X, j = 0,1, which are continuously embedded in some Hausdorff topological
vector space. Peetre’s K- and J-functionals are defined by

K(t,r) = K(t,z; X) = inf{||zol|x, + tllz1llx, : T =20+ 21, ¥; € X;}, € Xo+ Xy

and
J(t,z) = J(t,z; X) = max{||z| x,, tllz|]|x,}, =€ XoNX;.

Notice that the pair (W, W7) arising in Section 2 is a Banach couple. Indeed, we can
take W; as the Hausdorff topological vector space. This special case where Wy — W7 is
called an ordered couple. Note that Wy N Wy = Wy and Wy + Wy = Wh.

Let I' be a Banach lattice of real valued sequences with Z as index set, that is to say,
whenever p = {p,,} belongs to I and £ = {&,,} satisfies || < |um| for each m € Z,
then £ € T and ||¢]|r < ||u|lr- We also assume that I' contains all sequences with only
finitely many non-zero co-ordinates.

We say that I' is K-non-trivial if

(1) {min(1,2™)} €T
The lattice I' is said to be J-non-trivial if

[ee}

(2) sup{ > min(1,27)&n] ¢ [{€nHlr <1} < oo

m=—0o0
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These conditions are equivalent to

(3) loo(max(1,27™)) CT
and
(4) I' C ¢y (min(1,27™)),

respectively (see [24]). Here, given any sequence {wy, } of positive numbers and 1 < ¢ < o0,

we put gq(w?n) ={{={&n} : {wmém} € gq}'

The associated space I of I consists of all sequences 7 = {n,,} for which

Il =sup{ > &mml = €lr <1} < o,

m=—0o0

If£ el and n € IV, we put

<&n>= Z EmMm-
Observe that if I' satisfies (4) then o (max(1,2™)) C IV and so if for R € N we define
the sequences () = {y,,}, p™ = {n,,} by

(5) tm = 1 if m < R and 0 otherwise, 7, =27 ™ if m > R and 0 otherwise

then it turns out that §(% and p(®) belongs to I'.

Let T be a K-non-trivial sequence space and let X = (X0, X1) be a Banach couple.
The abstract K-space )_(F;K = (Xo, X1)r,k is defined as the collection of all z € X+ X
such that {K(2™,z)} € I'. The norm of Xr.x is 2l % = [HE (2™, 2) }H|r-

Let I" be a J-non-trivial sequence space. The abstract J-space XF;J = (Xo,X1)r,s is
formed by all those elements z € X + X; for which there is a sequence {u,,} C XoN X3
such that

(6) T = Z U, (convergence in Xo + X;) and {J(2™,un)} €T

m=—0o0

The norm in Xr.; = (Xo, X1)r.s is
2l %, = Inf{{I{J (2™, um) }|r}

where the infimum is taken over all representations of x satisfying (6). It turns out that
Xole ‘—>X1";J ‘—>X0+X1 and Xole ‘—>XYF;K ‘—>X0—|—X1.

The classical real method (-,-)p,4 (see [3] or [26]) can be recovered by the choice
[ =¢,(27%™). Namely,

(Xo, X1)o,g = (X0, X1),(2-0m);x = (Xo, X1)g,(2-0m);0

with equivalence of norms. We write | - ||9,4 for any of the norms in (Xg, X1)g,q-.
In general K- and J-spaces do not coincide. We only have that Xr.j < Xr.; for any
Banach couple X. The converse inclusion holds if the Calderén transform
o0

Oa) = { Y min(1,27 )6}

Z
ke oo me
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is a bounded operator in ' (see [24], Lemma 2.5). If we have equality, we denote any of
these two spaces by X = (Xo, X1)r and we write || - || 5, to mean any of the equivalent
norms || - [[x. . or || - [/, . This however will not cause any confusion.

In our later considerations, it will be important to know when one can compute the
J-norm of the elements in Xy N X; by using only finite representations. This property is
related with the behaviour of shift operators {7 }rcz on I'. Recall that 74 is defined by
Ti{&€m} = {&m+k fmez. A natural assumption on shift operators is

(7) lim 2_nHTn||F,F =0 and lim ||7—7nHF,F =0
(see [11], [12] or [13]). Sometimes one even has

(8) sup{[|[7—rlr,rll7&llr,r : R € N} < oo.
This is, for example, the case of the classical real method where I' = Eq(279m) because
||TR||zq(2—9m),eq(2—em) < 20R,

We can compare the norms of shift operators in I' and I as the following lemma
shows.

LEMMA 3.1. Let I" be a lattice satisfying (2). Then, for each k € Z, we have ||7x|r 1 <
I7—kllrr-

Proof. According to the definition of the norm in I we obtain

I7wllrrr = sup{{[zen]l : [[nlr <1} = sup{| <& men > |+ nller < L [|€]lr < 1}
=sup{| <7x&n > [ [Inller <1, [[Efr <1}
< sup{flTg€llrllnlfe = nlle < 1 lIElr <1} = fl7llrr. =

Let e,, be the sequence which is zero at all co-ordinates but the mth co-ordinate
where it is 1. Next we show a first result on the equivalence between the norms ||| %, |
and

lzl%,., = inf{||{J(2m7 Um) Hir : z = Z Uy, and only a finite number of u,, # 0}
Y m=—oo
in Xg N X7. In the case of the classical real method, this result was proved by Janson in
[18], Lemma 1.

LEMMA 3.2. Let T be a lattice satisfying (2). Assume also that shift operators on T satisfy
(7) and (8). Then, for any Banach couple X = (Xo, X1), the norms ||- .., and |- H}(FJ
are equivalent on XgN Xy. ’

Proof. Clearly |z %, , < |l#|/%_ for any x € Xo N Xy. Let us check that the converse
inequality holds with a constant independent of z. Take any = € Xy N X; and any
J-representation & = > °_ Uy, of  with |[{J(2™, un)}|r < 2|z, ,. Using (7) we

can find R € N such that

9) max (2™ | 7x|Ir,r

leollrllzllx,, [T—rlr.rlleollrllzllx,) < 2]l%., -
Put xp = Y, ~pum and x_p = >~ pUp. We claim that g and x_g belong to

Xo N Xi. In order to check it, we shall use the sequences 6(%), p(f)) defined in (5). We
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have

lzrllx, < lellxo + Y lumllxe < l2llxe+ D T um)

m<R-1 m<R-1
< [l xo + 172" wm) HIr 167 e
= llzllx, + 2zl 2, 17— (r=1) I 2 16O N[ < N2l x + 26e1ll7R-1lIrr 2] %1,
where we have used Lemma 3.1 in the last inequality. As for the norm in X; we get

lzrllx, < 3 umlx, < 3 27T um) < 17", wm) Hir 0™
m>R m>R

<205y, 2 V- rp @l < 20027 F|7R |0 0l -
Therefore, for some constant ¢z we obtain

J(2%, 2r) < |zlx, + eslTrlr,r

|:C||XF;J'
Similarly,
J27 %z g) <27F||z|x, + esllm_gllrr

2/l 5., -
R—1

Consequently, we have for = the finite representation x = x_p+ >~~~

Ri1Tm + TR and
SO

)%, < 17@F zp)e—rllr + {2, zm) e + [ 7(2F, 2r)er]r
< J@2 " z_g)|rallvrllellr + 2l <., + 72 zr)lI7—rlr.rleollr
< lleollr (2~ ®|I7rllr,r

< osll2l %y,

[zl + = rllerlllx, + callzlx,) + 212 %,

where the last inequality follows from (9). This yields that the norms [|-|| . , and [|-[I%
are equivalent on Xy N X; and completes the proof. m 1

Assumption (8) is not suitable for our latter considerations, but equivalence between
I, , on Xo N Xy still holds if we replace (8) by boundedness of the
Calderon transform  in T' as was shown in [12], Lemma 2.2

LEMMA 3.3. Let T" be a K- and J-non-trivial lattice satisfying (7) and with Q bounded
in I. Then for any Banach couple X = (Xo,X1) and for any x € Xo N X1 we have

”xH}FJ S 8||$||XF;K'

I %, and |-

Note that under the assumptions of Lemma 3.3 we have XF;K = XF;J.
It will be important latter that X, N X; is dense in Xp. It is not hard to check that
this happens if

(10) &= lim Z &je; (convergence in I') for any & = {&,,} € I.
n—oo

j=—n

For example, this is the case of (X, X1)g,4 if ¢ < 0.

4. Interpolation of Banach algebras. By a couple of Banach algebras A = (Ag, A;)
we understand a Banach couple formed by Banach algebras A;, j = 0,1, such that
multiplications in Ay and A; coincide in Ag N Aj.
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Note that the ordered couple (Wp, W7 ) which arose in Section 2 is a couple of Banach
algebras.

DEFINITION 4.1. Let I" be a K- and J-non-trivial sequence space satisfying (7) and (10),
and with  bounded in I". We say that the method (-, -)r preserves the Banach-algebra
structure if given any couple of Banach algebras A = (A, A;) there is a constant ca. >0
such that for all z,y € Ag N Ay

H3331||AF CApHx”AFHyHAF

Notice that multiplication of x, y is well defined because these vectors belong to AgNA;
and multiplications in Ay and A; agree on AgN Ajy.

Observe also that, since AgN A; is dense in (Ag, A1)r, multiplication can be extended
by continuity to the whole of (Ag, A)r, turning (Ap, A1)r into a Banach algebra.

The following result was essentially established by Bishop [4]. So far as we are aware,
this is the first result known on an interpolation method that preserves Banach algebras.

THEOREM 4.2. Let 0 < 6 < 1. The classical real method (-,-)g1 with parameters (0,1)
preserves the Banach-algebra structure.

Proof. We start by showing that for any Banach couple X = (Xp, X1) the norm | - ||} ,
is equivalent to
R R

2§, = inf{ Z |5 leml %, @ = Z T, {Tm} € XoN X1, R€ N}
m=—R m=—R

OHAX0ﬂ;¥1
Indeed, as ||z]jg,1 < c||a:HXD‘9Hx||X1 for any x € XoN X (see, for example, [3] or [26]),

. R
given any finite representation z = Zm:7 R Tm We have

R R
lzllon < D Nemlon < D lzmly,’ llzml, -

m=—R m=—R
This yields that [|z|[5 ; < e1]lz]|g ; for all z € XoNX;. Conversely, given any € > 0, we can
find a finite representation z = Zfz:iR L With Efm:fR 20 J (2™, ) < (L+e)|zl5 -
Whence,

R
l2ll5: < D lemli llemlk, < Z J(2 )T IR wm))’
m=—R m=—R
R
= > 27J2" ) < (1L+8)||zll5,-
m=—R

This gives the equivalence of norms on Xy N Xj.
Next take any couple of Banach algebras (Ao, 41) and any z,y € AgN A;. Given any
€ > 0, there are finite representations z = 22:73 U, Y = ZkR:iR vk such that

R

0
D Ml lumll, < (1+e€)ll]l5,
m=—R
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and
R
—6
> el loels, < (1 +2)llyls -
k=—R
Then zy = Zﬁ ke — R UmUk and so
R
lollss < D2 Numoill s lumvrll%,
m,k=—R
R
—0 —0
<max(eagear) D Nl el el ol %,
m,k=—R
R R
—6 —6
< max(eag,ea) (2 Nl s, ) (32 el el )
m=—R k=—R

< max(cay, ca,)(1+€)?[[2l]5 1 1yllf -

Letting ¢ — 0, we see that (Ag, A1)p1 is a Banach algebra. =

If in the definition of (-,-)g1 we replace the function t? by a more general function
parameter f(t) then we get the more general method (-,-)s1 = (-, )¢, (1/f(2m)) Which also
preserves Banach algebras as was established by Zafran [27] and Kaijser [19].

As for the complex interpolation method (-,-)i, it was proved by A.P. Calderén in
his famous seminal paper [7] that it preserves the Banach-algebra structure.

In principle we might try to apply to the ordered couple of Banach algebras (Wp, W1)
any of these interpolation methods to complete the proof of the factorization theorem
following the approach described in Section 2. The outcome is going to be a Banach
algebra F such that Wy — E <— W;. But we want F to be reflexive and to obtain
it we can use that the embedding Wy — W; is weakly compact. So we want to use an
interpolation method F that in addition to the property of interpolating Banach algebras,
it fulfils that whenever an ordered Banach couple (Xj, X;) satisfies that the embedding
Xo — X is weakly compact then F(Xo, X;) is reflexive. Unfortunately, no one of the
methods (-,-)g,1, (+,-),1, (-, )] has this last property. The following example was given
by Maligranda in [21]. It shows the failure of the property for the complex method.

EXAMPLE 4.3. Let us work on [0, 1] with the Lebesgue measure and for 1 < p < oo put

. t
Lpoo = {f S —— {trl / f*(S)dS} < oo}.

Here f* is the non-increasing rearrangement of f,
f*(s) =inf{t > 0: mes{w : |f(w)| >t} < s}.

Let Lg,oo be the closure of L, in L, . The space Lg,oo is not reflexive because (Lg’oo)** =
Ly -

Take 1 <p <r < gq<ooandlet 0 <6 <1such that 1/r = (1—0)/q+ 6/p. Then
Lg’oo — L, — Lgm, so the embedding Lg’oo — LS,OO is weakly compact because L,

is reflexive. However, applying the complex method we obtain (LS,OO,L?J,OO)[Q] = LSVOO
which is not reflexive.
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Interpolation methods (-,-)g1 and (-,)f1 have a worse behaviour. They do not gen-
erate reflexive spaces in general. In fact, Levy [20] proved that if Xy N X; is not closed
in Xo + X1, which is usually the case, then (X, X1)p,1 contains a subspace isomorphic
to 41, so (Xo, X1)p,1 cannot by reflexive. The same happens for (-,-)s1 (see [8]).

If 1 < ¢ < oo the classical real method behaves well concerning weak compactness.
Indeed, Beauzamy [2] proved that (Ag, A1)g,q is reflexive if the embedding Ay N A; —
Ag + A is weakly compact. This results has been extended in several directions (see, for
example, the paper by Heinrich [17] and by Maligranda and Quevedo [22]). But (-,-)g 4
does not preserve the Banach-algebra structure.

In the paper by Blanco, Kaijser and Ransford [5] it is shown a class of real interpolation
methods which interpolate Banach algebras and give reflexive spaces.

Next we review the behaviour of these properties for the general real method (-, )r.
Results on weak compactness and the K-method (-, )r.x are due to Aizenstein and
Brudnyi (see [6], Thm. 4.6.8) and Mastyto [23]. The case of the J-method (-,-)r.; has
been studied by Manzano, Martinez and the present authors in [10]. We can summarize
all these results in the following theorem.

THEOREM 4.4. Let T' be a reflexive lattice satisfying (7). Let X = (Xo,X1) and Y =
(Yy,Y1) be Banach couples, and let T € L(Xy + X1,Yy + Y1) be a linear operator whose
restrictions T : X; — Y; are bounded, j = 0,1, and T : Xo N X, — Yy + Y1 is weakly
compact.

(i) If T is K-non-trivial, then T : Xr.fx — Yr.x is weakly compact.
(i3) If T is J-non-trivial, then T : Xr.; — Yr.; is weakly compact.

As for interpolation of Banach algebras, the result by Astashkin [1] and by Martinez
and the authors [12] reads as follows.

THEOREM 4.5. Let I' be a K- and J-non-trivial lattice, with the Calderén transform
bounded in T'. Suppose that (10) is satisfied and that shift operators on T fulfill (7). Then
a necessary and sufficient condition for the method (-,-)r to preserve the Banach-algebra
structure is that I' be a Banach algebra with multiplication defined as convolution

5*77:{ i §k77m—k} - E={&mb n={mm}

Z
k=—o0 m

For 0 < 8 < 1,1 < ¢ < o and v > (¢ — 1)/q, one can check that the lattice
[ = £,(27%"(1 + |m|)?) is a Banach algebra with convolution and it is also reflexive.
Hence, interpolating the ordered couple of Banach algebras (Wy, W7) of Section 2 by
the general real method defined by I', we obtain the desired reflexive Banach algebras
W = (Wp, W1)r that completes the proof of the factorization theorem for weakly compact
homomorphisms.

The above considerations also show that the real method is not enough to complete
the proof. Namely, as an immediate consequence of Theorem 4.5 we have the following
characterization.

COROLLARY 4.6. The classical real method (-,-)g,, preserves the Banach-algebra structure
only if ¢ = 1.
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5. Multilinear interpolation. By means of a direct argument, we have proved in
Theorem 4.2 that (-,-)p,1 interpolates Banach algebras. For (-,-)s1 (see [27], [19]), for
the general real method (-, -)r (see [12]) and for the methods studied in [5] the arguments
are also direct. However, for the case of the complex method, the approach followed
by Calderén in [7] was to prove first a multilinear interpolation theorem and then, as
an immediate consequence of the bilinear result, to derive that the complex method
preserves the Banach-algebra structure. It is then natural to investigate the relationship
between real interpolation of Banach algebras and interpolation of bilinear operators.
This problem has been considered in [1] and [9]. Next we recall their main result. We
need the following definition.

DEFINITION 5.1. Let I' be a K- and J-non-trivial lattice satisfying (10). If for any Banach
couples X = (Xg, X1),Y = (Yo,Y1), V = (Vy, V1) and for any bilinear operator T' defined
in (XoN X1) x (YoNYy) with values in V N V3 and such that

IT(z, y)llv, < Mjllzlx; llylly,, 5= 0,1, forall z € Xo N X3, y € YoN 17,
there exists a constant M = M (T') such that
1T, ) lvrse < Mlllxp, 0]y, forallz € Xo N Xy, y € YoN Y

then we say that the bilinear interpolation theorem Jr X Jr — Kr holds.
We say that the bilinear interpolation theorem Jr x Jr — Jr is fulfilled if a similar
condition is satisfied but replacing VF;K by VF;J.

By density of XqgNX; in XF;J and YpNY; in YF;J, if the theorem Jr x Jr — Kr holds
then T can be uniquely extended to a continuous bilinear mapping from XF;J x Yr.; to
VF;K- For the case of the theorem Jr x Jpr — Jp, the extension is from XI‘;J X YF;J to
Vr.J.

Since VF;K — VF;J, it is clear that if the theorem Jr x Jr — Kr holds, then the
theorem Jr x Jr — Jr is also fulfilled.

The following result is proved in [9].

THEOREM 5.2. Let T' be a K- and J-non-trivial lattice satisfying (10). Assume also that
shift operators in T fulfil (7). Then the following conditions are equivalent.

(i) The bilinear interpolation theorem Jr x Jp — Kr holds.

(i) T is a Banach algebra with multiplication defined as convolution.

(#ii) The Calderdn transform Q is bounded in T' and the theorem Jr x Jp — Jr is
satisfied.

(iv) Q is bounded in T' and (-, )r preserves the Banach-algebra structure.
We finish the paper with a new multilinear result.

THEOREM 5.3. Let T'g,Tq,..., T, be K- and J-non-trivial lattices satisfying (7), (10)
and with Q bounded in Ty, for k =0,...,n. Assume also that the operator R defined by

REW,.em) ={ 3 (ﬁaﬁ?)} , M ={eWyerT,

Z
:’:1 k,=m v=1 me
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is bounded from ngl ', to 'y, that is, for some constant M

IRED, . & )lleg < MM Ip,, €M eT
v=1
Let X = (X(gy),Xl(”)), v=1,....n, and Y = (Y,Y1) be Banach couples and let T :
ngl(X(gy)ﬂXl(V)) — YoNY; be a multilinear operator such that for any x, € Xéy)ﬂXl(V),

||T(J)1,..., )”Y <M HHxVHX(")? .7_0 1.
v=1

Then there is a constant D such that

1T (@1, @n)llyr, < DH ol g e
v=1

and thus T may be uniquely extended to a bounded multilinear mapping from [[_, X(V)

to YFO
Proof. Take any z, € Xéy) ﬂXfV), v=1,...,n,and let z, = > ugﬁ) be any

) .

J-representation with only a finite number of terms wu,

put
1 n
Wy, = E T(u,(ﬁ), e ,u;n)).

n
v=1

distinct from zero. For m € 7Z,

k,=m

Then w,, € Yo NY; and

T(xy1,...,2,) = Z( Z (ugl) (n) ) Z Wiy,

mo 3 kv=m

Moreover
n n
(](27717 wm) < Z max (MQ H ||u§;:) Hxéu) , Qli H ||ul(<:’:) ||X§”))
p—1 kv=m =1 v
< max(My, My) Z (H J(2 uk 7X(V) X(V)))~
vy ky=m vr=l1
Consequently,

1T (1, - 2n) v, < (2™, wim) Hir,

gmax(MO,Ml)H{ nz (HJ ) X, X@)))H

ky=m

Lo
v=1

= max(Mo, My)|[RI{T2™, ull; X5, X ) Yoo {727, 65 X5, X)) e
SMmaX(MmMOHH{J(? Lu®; X8 X I,
v=1

By Lemma 3.3, this yields that for some constant D we have that

IT(z1, . n) v, < DH vl g forall z, € xWnxW v=1,...n

Since X(()V) N Xl(y) is dense in Xl(“y)v 1 < v < n, the desired conclusion follows. m
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In Theorem 5.3 it is assumed a certain property on the lattices I';, namely that
R is bounded, and the idea of the proof is to transfer this property to the interpolated
operator by using Lemma 3.3 and the information about 7" acting on the n-tuples. Similar
techniques have been used to establish other multilinear theorems (see, for example, [18]
and [1]).

Acknowledgements. It is a pleasure to thank Sten Kaijser for drawing our attention
to Theorem 5.3.
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